
AIAA 2004–1090
StreamFLO: an Euler solver for streaming
architectures
Massimiliano Fatica , Antony Jameson and Juan J. Alonso

Stanford University
Stanford, CA 94305, U.S.A.

42nd AIAA Aerospace Sciences Meeting and Exhibit
January 5–8, 2004/Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191–4344

StreamFLO: an Euler solver for streaming
architectures

Massimiliano Fatica∗, Antony Jameson†and Juan J. Alonso‡

Stanford University
Stanford, CA 94305, U.S.A.

The Computer Systems Laboratory at Stanford University in collaboration with
the Center for Integrated Turbulence Simulation is developing “Merrimac”, a new high-
performance computer system, based on a streaming architecture, that could achieve an
improvement of two orders of magnitude in cost/performance compared to the current
generation of supercomputer based on clusters of Symmetric Multiprocessors (SMP). In
parallel with the hardware development, a new stream programming language has been
developed, “Brook”. In order to realize the performance of a streaming supercomputer,
applications need to be converted to a stream programming model. This paper presents
a short discussion of the proposed streaming architecture, our experience in re-coding a
compressible Euler solver in the Brook programming language, and some preliminary re-
sults of the performance of StreamFLO using a cycle-accurate simulator for the Merrimac
supercomputer.

Introduction

RECENT trends in the supercomputing market
have been to cluster together hundreds or thou-

sands of commercial servers with fast interconnection
networks. The resulting systems have a theoretical
peak performance in the Teraflops range, but the sus-
tained performance in real applications is far from that
peak. There are several factors that contribute to this:
insufficient memory bandwidth, low network perfor-
mance and scalability problems to mention just a few.

Two notable exceptions to this trend are the Earth
Simulator1 (ES) and the Cray X1. The ES is a mas-
sively parallel vector supercomputer that consists of
640 processor nodes interconnected by a single-stage
crossbar switch, with a peak performance of 40.95
Tflops. A global atmospheric simulation2 was able
to achieve 65% of the peak performance and other
simulations were in the 30-50% range. To put these
percentages in perspective, the application Salinas,3

a structural and solid mechanics simulation engineer-
ing package, recipient of one of the 2002 Gordon Bell
Awards, was able to achieve a sustained performance
of 1.16 Tflops on the ASCI White system that has a
peak performance of 12 Tflops: this is less than 10%.
The Cray X1 is just being deployed, but the perfor-
mance of early production systems looks promising.
A fully configured system should reach a peak per-

∗Senior Research Engineer, Center for Integrated Turbulence
Simulations, AIAA Member

†Professor, Department of Aeronautics and Astronautics,
AIAA Fellow

‡Assistant Professor, Department of Aeronautics and Astro-
nautics, AIAA Member

Copyright c© 2004 by the authors. Published by the American
Institute of Aeronautics and Astronautics, Inc. with permission.

formance of 54 Tflops. One of the reasons for the
good performance of these two computers is that they
are custom engineered systems with exceptional mem-
ory bandwidth, interconnect performance and vector-
processing capabilities.

A major drawback of massively parallel vector su-
percomputers is their cost: machines like the ES or the
Cray X1 use custom components at all levels. Other
strategies are being pursued to achieve high perfor-
mance at a lower cost, for example the Virtual Vector
Architecture of Blue Planet and machines using the
concept of ”system-on-a-chip” like Blue Gene/L.4

During the last few years, the Computer Systems
Laboratory at Stanford University, has shown the po-
tential of a streaming processor for signal and image
processing with the Imagine chip.5 Imagine is a pro-
grammable signal and image processor that achieves a
peak performance of 20 Gflops (single-precision float-
ing point) and sustains over 12 Gflops on key sig-
nal processing benchmarks. Using stream proces-
sors as building blocks, a new high-performance ar-
chitecture could be built. The goal of the Merri-
mac project (a Native American word meaning “fast
moving stream”), under the leadership of W. Dally
and P. Hanrahan, is to achieve superior performance
through the combination of stream processors, a high-
performance interconnection network that efficiently
provides good global bandwidth, and a new program-
ming paradigm to exploit this architecture. The final
hardware should be able to scale from a 2 Tflops work-
station to a 2 Pflops machine-room size computer with
up to 16K processors. Our strategy includes a close
collaboration between a team of applications develop-
ers and the hardware and language groups to design
the hardware specifications and the language features.

1 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

This paper presents results of this collaboration in its
application to CFD solvers.

In the following sections, a brief overview of the
hardware and programming system will be presented
to familiarize the reader with this new architecture (a
detailed description of the architecture can be found
in the CITS Annual Technical Report6 and in Dally
et al.7). The final sections will present preliminary
results of the performance of a 2D Euler solver on a
single Merrimac node.

Streaming Supercomputer Architecture
With modern VLSI technology, arithmetic opera-

tions (FLOPS) are very inexpensive but global band-
width is costly. In a contemporary 0.13µm CMOS
process, a 64-bit arithmetic logic unit (ALU) that
can operate at 1 GHz takes less than 1 mm2 of chip
area. Hundreds of these units can be placed on a
single chip. While 100 GFLOPS of arithmetic perfor-
mance can be realized on one chip, the challenge is in
supplying them with instructions and data. Conven-
tional general-purpose processors that rely on global
structures such as large multiported register files to
provide data bandwidth cannot scale to this number
of ALUs. In contrast, special-purpose processors (like
the latest graphic cards) have many ALUs connected
by dedicated wires and buffers to provide needed data
and control bandwidth. However, special-purpose so-
lutions lack the flexibility to work effectively in a wide
variety of applications. Conventional CPUs are thus
unable to exploit the potential of VLSI technology for
realizing 100+ GFLOPS chips.

Recent developments enable streaming architectures
that efficiently convert the capabilities of emerging
technologies into realized performance on scientific ap-
plications. In the stream programming model, streams
of records pass through arithmetic kernels. All the op-
erations contained in a kernel can be applied in parallel
to every record of the stream. This exposes parallelism
and locality in the application. Stream processors
share with vector processors the ability to hide latency,
amortize instruction overhead and expose data paral-
lelism by operating on large aggregate of data. Stream
processors extend the capabilities of vector processors
by adding a layer to the register hierarchy that enables
them to operate in record (rather than operation) or-
der.

A stream architecture provides large numbers of
arithmetic units to exploit the parallelism exposed by
the stream model. More importantly it provides a
register hierarchy that can exploit the kernel locality
and producer-consumer locality exposed by the stream
model to greatly reduce the demand on global band-
width. While the locality exposed by the stream model
can be applied to reducing bandwidth demands in a
conventional architecture, a stream processor with a
large number of arithmetic units and a richer register

hierarchy is required to reap the full benefit.
The Merrimac supercomputer is a shared memory

parallel computer with up to 16K single-chip stream
processing nodes. An overall block diagram of the
Merrimac system is shown in Figure 1. The archi-
tecture leverages commodity technologies, not com-
modity processors, to economically achieve high per-
formance: the main memory of the system is built
entirely out of commodity high-bandwidth memory
chips; the streaming processor chips are fabricated us-
ing a standard CMOS process; the system interconnect
is constructed using off-the-shelf connectors and back-
plane technology.

The Merrimac supercomputer is designed with con-
servative technology assumptions. All of the technol-
ogy required to build the streaming supercomputer
is available today: the memory chips, the signal-
ing technology, the connectors, the parallel optical
transceivers, exist today. We expect that by the time
we build this machine in 2005-6, significantly better
technology will be available.

Stream Processor

Figure 2 is a block diagram of the stream processor
chip that, together with 16 DRAM chips, forms a node
of the Merrimac supercomputer. A stream processor
consists of three independent modules:

• the scalar processor, a standard 64-bit RISC pro-
cessor core, whose instruction set has been ex-
tended to include non-blocking stream instruc-
tions and whose register set has been extended
to access scalar registers and stream descriptor
registers in the stream processor. The scalar pro-
cessor’s 64-bit address space can be configured to
cover some or all of the global shared memory
across all the Merrimac nodes.

• a set of 16 statically scheduled SIMD clusters of
floating-point units controlled by a programmable
microcontroller. Each cluster, depicted in fig-
ure 3, consists of 4 fully-pipelined 64-bit floating
point multiply-add units, a lookup table that gives
a starting point for the iterative computation of
1/x,

√
x, and 1√

x
, and an inter-cluster communi-

cation unit. With all 16 clusters operating with
perfect occupancy, the peak arithmetic perfor-
mance of the stream processor is 128 GFLOPS
at the target clock rate of 1 GHz. The 16 clus-
ters are connected to each other by a full 16x16
crossbar; the inter-cluster communication unit in
each cluster can send and receive one word of
data over the crossbar each cycle. The data-level
parallelism exposed by the stream programming
model is exploited by having all 16 clusters oper-
ate on different stream elements in parallel, and
instruction-level parallelism is exploited by the
use of multiple functional units within each clus-

2 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

S
t
r
e
a
m

P
r
o
c
e
s
s
o
r

1
2
8
G
F
L
O
P
S

1
6

x

D
R
D
R
A
M

2
G
B
y
 t
e
s

1
6
G
B
y
 t
e
s
 /
s

1
6
G
B
y
 t
e
s
/
s

3
2
+
3
2

p
a
i
 r
s

N
o
d
e

O
n
-
B
 o
a
 r
d

N
e
 t
w
o
 r
k

N
 o
d
e

2

N
o
d
e

1
6

B
 o
a
 r
d

1

1
6

N
o
d
e
s

2
T
F
L
O
P
S

3
2
G
B
y
 t
e
s

I
n
 t
r
a
 -
C
a
b
i
n
e
 t

N
e
t
w
o
r
k

3
2

R
o
u
t
e
r
 s

 (
8

c
a
 r
d
s

o
f

4

 r
o
u
 t
e
 r
s

e
a
c
h
)

B
o
a
r
d

3
1
6
4
G
B
y
 t
e
s
 /
s

1
2
8
+
1
2
8

p
a
 i
r
s

T
e
 r
a
d
y
n
e

G
b
X

B
o
a
 r
d

B
a
c
k
p
 l
a
n
e

I
n
 t
e
 r
-
C
a
b
i
n
e
 t

N
 e
t
w
o
r
k

5
1
2

R
o
u
t
e
r
s

B
a
c
k
p
 l
a
n
e

2

3
2

B
 o
a
 r
d
s

5
1
2

N
o
d
e
s

6
4
T
F
L
O
P
S

1
T
B
y
 t
e
s
1
T
B
y
 t
e
s
 /
s

2
K
 +
2
K

l
i
n
k
s

R
 i
b
b
o
n

F
i
b
e
 r

B
i
s
e
c
 t
i
o
n

3
2
T
B
y
 t
e
s
 /
s

A
l
l

l
 i
n
k
s

5
G
b
/
s

p
e
r

p
a
 i
r

o
r

 f
i
b
e
r

A
l
l

b
a
n
d
w
 i
d
t
h
s

a
r
e

 f
u
 l
l

d
u
p
l
e
x

Fig. 1 Block diagram of the Merrimac supercomputing system.

ter.

• a memory system, that performs stream load and
store instructions.

The scalar processor fetches instructions for all three
modules from a single instruction stream and dis-
patches instructions to the stream processor and the
memory system via a pair of instruction queues.

Stream Register File

Arith.

Cluster

0

Arith.

Cluster

15

Micro-

controller

Scalar

Processor

Scalar

Cache

Memory System
Network

DRAM
 DRAM

Inter-cluster Crossbar

Stream

Controller

Fig. 2 Merrimac Stream Processor: block diagram

Stream instructions, which include loading and stor-
ing streams and invoking kernels, operate at the granu-
larity of streams of data rather than individual words,
and are dispatched by the scalar processor accompa-
nied by explicit dependency information. The exe-
cution of the stream instructions is handled by the

MUL

ADD

Comm.

Unit

Intra-cluster Interconnect

SRF

Inter-cluster

Crossbar

MUL

ADD

MUL

ADD

MUL

ADD

SQRT, INV

Lookup

Fig. 3 Merrimac Cluster Architecture

stream controller, which keeps a scoreboard of pending
instructions and their dependencies as well as avail-
able resources; a stream instruction is issued to the
stream hardware when its dependencies are met and
the resources it requires are free. Allowing a single
stream instruction to specify operations on an en-
tire stream of data makes the stream execution units
memory-latency insensitive by amortizing the latency
of memory access over the many (possibly thousands)
of individual words accessed by a single stream load or
store.

Memory system architecture

The memory system of the Merrimac supercomputer
provides high-bandwidth access to a flat address space
to all of the streaming processors and scalar processors
in the system. The memory system provides a cache
bandwidth of 8 words per cycle (64GBytes/s) on each
node and DRAM memory bandwidth to random loca-

3 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

tions of 2 words per cycle (16GBytes/s) on each node.
Single word access to remote memory locations is made
via the interconnection network.

Each Merrimac node has 2 GBytes of external mem-
ory distributed across 16 1Gbit DRAM chips. De-
pending on the final choice of DRAM chip (DDR
SDRAM or Rambus DRDRAM), each node will have
38-40 GBytes/s of sequential memory bandwidth and
at least 16 GBytes/s of random memory bandwidth.

The Merrimac memory system supports floating-
point and integer add & store operations across multi-
ple nodes at full cache bandwidth. Performance on add
& store, which sums its argument into a memory lo-
cation, is important to applications like finite-element
codes in which several elements - possibly on different
nodes - all sum contributions into the state of a vertex.

The bandwidth hierarchy of a Merrimac node is il-
lustrated in Figure 4 and summarized in Table 1. At
the top of the hierarchy, the 240 dual-port local reg-
ister files provide almost 4 TBytes/s of bandwidth
necessary to support the 128 GFLOPS of 64-bit arith-
metic. These local registers directly feed the inputs
and accept the outputs of the 64, 64-bit floating-point
multiply-adders in each node. The bandwidth then
drops by nearly an order of magnitude to 512 GBytes/s
at the stream register file which holds streams of data
between execution kernels. Bandwidth drops to 64
GBytes/s at the stream cache which captures temporal
locality in irregular applications. The final bandwidth
is 16 GBytes/s at the DRAM memory system.

DRAM

DRAM

Stream

Cache

Bank 0

Stream

Cache

Bank 7

Stream

Register

File

Func.

Units

Func.

Units

Cluster 0

Cluster 15

Local Register File

16 GB/s
 64 GB/s
 512 GB/s
 3,840 GB/s

Fig. 4 Bandwidth hierarchy of a Merrimac node.

Level Bandwidth
(GBytes/s)

Local Register Files 3,840
Stream Register File 512
Stream Cache 64
DRAM Memory 16

Table 1 Bandwidth hierarchy of a Merrimac node.

Interconnection network

The interconnection network of the Merrimac su-
percomputer provides nearly flat memory bandwidth
across up to 16K stream processing nodes. The in-
herent latency hiding of stream memory operations
provides sufficient simultaneous outstanding memory
accesses to fully exploit the bandwidth of the network.

The Merrimac network uses a folded Clos topol-
ogy that enables the most efficient use of inexpensive
high-bandwidth electrical signaling for short, on-board
and in-cabinet, connections reserving the use of opti-
cal interconnects for the inter-cabinet routing. This
topology also allows us to smoothly vary the global
bandwidth of the system by varying the number of
routers on the board and the degree of concentration
at each router. The folded Clos topology has the fur-
ther advantage that it is inherently fault tolerant. The
network gracefully routes around one or more failed
routers or channels.

Node

0

Router

0

Node

15

Router

3

Board 0

Node

0

Router

0

Node

15

Router

3

Board 32

Backplane 0
 Backplane 32

Router

B0

Router

B7

Router

B31

2
 2
 2
 2
 2
 2
2
 2

OE/EO

16

Router

S0

Router

S511

Router

S15

OE/EO

16

OE/EO
 OE/EO
 OE/EO

System Interconnect Cabinet

OE/EO

16

16
 16
 16

OE/EO

512

Fig. 5 The Merrimac network employs a hier-
archical folded Clos topology. Each 2.5GByte/s
channel consists of 4 5Gb/s signals. All routing is
performed by a single component type, a 48-port
flit-reservation router.

Brook Programming Environment
Streaming architectures achieve high performance

by exploiting data parallelism and high arithmetic
intensity. The programming environment therefore
should expose these fundamental machine constraints
in order to encourage the programmer to write code
which will run efficiently on such an architecture. For
this purpose, a prototype of a new streaming program-
ming environment entitled “Brook” has been designed
and built.

The current Brook programming environment ex-
tends the “C” programming language with a few new

4 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

modifier keywords such as stream and kernel for
specifying streaming primitives. In addition, Brook
introduces a runtime library of functions which allow
for creation and manipulation of streams.

A Brook program largely resembles any other C pro-
gram which includes a main function, variables and
function definitions. Other than the presence of these
new keywords, Brook’s similarity to C allows any pro-
grammer with basic C experience to understand Brook
code.

Streams and Kernels
The basic programming element (or data structure)

in Brook is the stream, a sequence of data records of
the same type. Typically, streams represent the col-
lection of data being operated on. The programmer
executes functions, or kernels, on each element of the
stream. Kernels operate on each element of an input
stream and place the result of a computation on an
output stream.

A Brook program consists of defining streams of
data and operating on those data with a sequence of
user-defined kernel functions. A critical decision in
the design of Brook was to establish the constraints
for kernel functions. With these restrictions in place,
Brook semantics allow for efficient execution of ker-
nels on streaming hardware by operating in parallel
over the elements in a stream. Although these deci-
sions are still not finalized, we decided to place the
following restrictions on kernels:

• Global variables are not visible within kernels.
Only the arguments to the kernel function are ac-
cessible.

• No data dependencies can exist between elements
of a stream. No static variables may be declared
within a kernel.

• Stream arguments are read only or write only.

These restrictions ensure data parallelism and high
arithmetic intensity for Brook kernels. By removing
possible dependencies between stream elements, the
compiler is free to schedule the computation in par-
allel. Furthermore, since kernel execution is entirely
local, we limit the number of global reads required for
computation.

A crucial decision in the development of Brook
was the support of data structures, like multidimen-
sional arrays, commonly found in scientific applica-
tions. Streams are views of memory, sequences of
references to stored data. For example, using the same
array A we can generate one stream that accesses the
data in column-major order and another in row-major
order. Other access patterns could create block-access
modes. In physical simulations, it is often necessary
to access the data within a regular stencil: the local
neighborhoods of a record. This neighborhood locality

may be exploited in the architecture to minimize data
movement.

To efficiently support multidimensional arrays in
Brook, a shape attribute was added to streams. This
shape may be used to associate a stencil around each
stream element. Although this feature is common
in array processing languages, it is a new feature in
streaming languages, and makes coding scientific ap-
plications in Brook much easier.

Stream Operators

Brook programs consist of a sequence of kernel ap-
plications, intermixed with data movement and reor-
ganization. Some key stream operators are:

1. StreamLoad and StreamStore. These operators
create a stream from a base address and store the
result of a kernel computation into main memory.

2. A stream of memory references may be cre-
ated using StreamLoadRef. StreamGather and
StreamScatter loads and stores a stream in the
references contained in another stream.

3. StreamStencil, StreamGroup, These oper-
ators perform re-arrangements on streams.
StreamStencil forms a stream of neighborhoods;
the group operators combine consecutive records
into a single record;

4. StreamDomain selects a sub-domain of a stream.
For example, if the stream has a 2D shape, a 2D
subset can be easily defined.

Our current goal is to settle on a small yet complete
set of operators in the base system, and to complement
them with a library of more complex operators built
on top of those operators.

The final important feature of the language is sup-
port for reductions. One way to perform a reduction
is to use StreamScatterOp. Another way is to declare
a variable in a kernel to be a reduction variable.

The work on applications is helping the hardware
group and the language developers in making decisions
on the hardware specifications and on the language
features.

StreamFLO

StreamFLO is a finite volume 2D Euler solver that
uses a non-linear multigrid algorithm. The original
FORTRAN code (FLO82) was written by Prof. Jame-
son and this approach is used in many industrial and
research codes. The choice of the code was moti-
vated by the need for a complete application that was
representative of a typical CFD application, without
unnecessary complexity.

5 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

Governing equations and discretization

The equations solved are the 2D Euler equations
written in conservative form:

d

dt

∫∫
Ω

w dx dy +
∮
∂Ω

(f dy − g dx) = 0,

where w = {ρ, ρu, ρv, ρE} is the vector of conserved
flow variables, and f , g are the Euler flux vectors

f =


ρu

ρu2 + p
ρuv
ρuH

 , g =


ρv
ρuv

ρv2 + p
ρvH

 .

This set of equations is completed by an equation of
state for the pressure:

p = (γ − 1)ρ
[
E − 1

2
(u2 + v2)

]
.

A cell-centered finite-volume formulation is used to
solve the equations together with multigrid accelera-
tion. Time integration is performed using a five stage
Runge-Kutta scheme.

d

dt
(wij Vij) + R(wij) = 0.

On the fine mesh, a symmetric limited positive
H-CUSP scheme8,9 is used for artificial dissipation,
while on the coarse meshes, a standard JST (Jameson-
Schmidt-Turkel) scheme is employed.

Code organization

The code is organized as follow:

• An external driver controls both the multigrid
strategy and the multigrid data movement (trans-
fer from fine to coarse grids and vice versa). All
data is stored in 1D arrays which hold the infor-
mation for all the multigrid levels. Each level is
selected using the streamDomain command and
is reshaped into a 2D stream using streamShape.
When the 3D version of StreamFLO is developed,
the logical structure of this driver will not be
changed, we will only need to reshape the data
at each level into a 3D stream. The data move-
ment in a multigrid algorithm consists of two
operations, restriction and prolongation. The re-
striction operation transfers the data from a fine
to a coarse mesh, while the prolongation opera-
tion does the opposite. To implement these kinds
of data movement, Brook added an operator that
performs local grouping.

• On each multigrid level, the code works on a 2D
grid where it needs to compute the time step
and the convective and dissipative fluxes in or-
der to advance the solution in time. This involves

mostly operations performed on stencils. The
width of the stencil depends on the numerical
scheme. Most of the operations (computation of
admissible time step, convective fluxes, dissipative
fluxes used on coarse meshes) are performed on a
3× 3 stencil. The computation of the dissipative
fluxes on the fine mesh use a more sophisticated
algorithm (symmetric limited positive H-CUSP
scheme) that requires a 5 × 5 stencil. The code
uses O meshes around the surface of the airfoil
being analyzed; this means that the grid is peri-
odic in one dimension and has both a wall and
an external boundary in the other direction. To
handle this kind of topology, Brook was modified
to implement stencil operators with independent
boundary conditions in each logical direction.

Code porting

To port a Fortran/C code to Brook, there are two
essential steps:

• Define the data layout and arrange the data into
streams

• Define the computation kernels to be applied to
the streams.

The decoupling of the data access pattern from the
computation, produces a code that is cleaner and easy
to understand. In order to show this and an exam-
ple of Brook code, we show the code performing the
restriction operator in the multigrid algorithm below.
In the original Fortran code we had:

C TRANSFERS THE SOLUTION TO A COARSER MESH
.........
DO N=1,4
JJ = 1
DO J=2,JL,2
JJ = JJ +1
II = 1
DO I=2,IL,2
II = II +1
WWR(II,JJ,N)=VOL(I,J)*DW(I,J,N)

+VOL(I+1,J)*DW(I+1,J,N)
+VOL(I,J+1)*DW(I,J+1,N)
+VOL(I+1,J+1)*DW(I+1,J+1,N)

END DO
END DO
END DO
.........

we can see that all this routine does (see figure),
it is to combine the change in the flow solution (DW)
in 4 cells on the fine grid (A,B,C,D), into a single cell
(AA) on the coarser level. The algorithm then moves
to the next 4 cells and continues until it covers all the
interior of the fine domain.

6 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

1 2 IL+1IL

JL+1

JL

1

2 A B

C D
AA

Fig. 6 Restriction operator

The first operation we need to perform is to create
the right stream from the fine grid to feed the kernel.
We want to take the fine and coarse grids, select the
interior elements, arrange the fine grid in 2× 2 groups
and apply the TransferField kernel. The arrays on the
fine grid are dimensioned as (nx + 2)× (ny + 2).

// Fine mesh:
// fine_flow is a 2D stream of
// shape (nx+2,ny+2)
// Coarse mesh:
// coarse_flow is a 2D stream
// of shape (nx/2+2,ny/2+2)

// Select the interior cells on the fine mesh
streamDomain(flow,flow,2,2,nx+1,2,ny+1);
streamDomain(vol,vol,2,2,nx+1,2,ny+1);

// Group elements of the fine grid
// in a 2x2 stencil
streamGroup(local_flow2d,flow,

STREAM_GROUP_HALO,2,2,2);

// Apply restriction operator
TransferField(local_flow2d, coarse_flow)

The following Brook code for the kernel function
performing the restriction operator will sum the 4 el-
ement on the fine grid stream and store the result in
the corresponding element on the coarse grid stream.

kernel void TransferField(flow2d_s fine_flow,
float2d_s vol ,
outfixed Flow coarse_flow)

{
float volc=(vol[0][0]+vol[0][1]

+vol[1][0]+vol[1][1]);
for (int n=0;n<4;n++) {
coarse_flow.w[n]=

(
vol[0][0]*fine_flow[0][0].w[n]
+vol[0][1]*fine_flow[0][1].w[n]
+vol[1][0]*fine_flow[1][0].w[n]
+vol[1][1]*fine_flow[1][1].w[n]
)/volc;

}
}

The code is less compact than the original Fortran
code but is easier to understand and to modify.

Implementation of boundary conditions
The implementation of boundary conditions in a

SIMD program is not a simple task. The numeri-
cal treatment of the elements close to the boundary
is generally different from the one used for the inte-
rior points, in contrast with the SIMD philosophy of
applying the same instructions to multiple data. In-
side the kernels, depending on the global position of an
element in the original stream, we may need to have
different branches of code to handle this. In Brook,
when a stream enters a kernel, all the information re-
garding the global position of an element is lost (at
least from the programmer’s point of view). The solu-
tion found to overcome this problem is to encode the
information about the position in the geometry. The
original definition for the mesh:

struct Grid_struct {
float x;
float y;};
typedef stream struct Grid_struct Grid;

was modified to include information about the logical
position.

struct Grid_struct {
int i; /* logical position in x direction */
int j; /* logical position in y direction */
float x;
float y;};
typedef stream struct Grid_struct Grid;

In a conventional cache based machine, this modi-
fication results in a cache load of all the 4 elements
of the Grid struct (they are contiguous in memory)
for every reference to any element and therefore in a
waste of precious cache space and bandwidth. In the
streaming architecture, the compiler will analyze the
use of the elements of the Grid struct and will load in
the stream register file only the elements used by the
kernel. If a kernel does not need information on the
logical position of a cell but just its physical coordi-
nates, it will not waste stream register file space with
elements that it is not going to use. Another possible
solution is to use a mask array. For some situations,
it is also convenient to write a different kernel that
just deals with the boundaries, but this is not always
possible.

Results
We have two implementations of the Brook lan-

guage: one is a compiler that translates Brook to C
and then links with a set of runtime libraries for the
stream manipulation. The other is a compiler that
produces code for a cycle-accurate simulator based on

7 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

the Imagine tools (from previous experience the re-
sults from the simulator have a margin of error of
5 − 10%). We use the first implementation to check
correctness, perform language studies and to run on
standard hardware (the compiler is based on gcc and
runs on several platforms). The second tool is used to
predict the performance of the code on actual hard-
ware (when it becomes available). Both tools are still
under development and the optimization is far from
optimal. The cycle-accurate simulator does not yet
support multiply-and-add instructions, so for these
preliminary results the peak performance of the node
is only 64 Gflops. Nevertheless, the results from the
initial simulations on the cycle accurate simulator are
very encouraging. The schedule of the kernel for the
computation of the diffusive flux using a symmetric
limited positive H-CUSP scheme is shown in figure 7.
The simulator indicates that this kernel in its current
form will run at 37 GFlops, 58% of the peak perfor-
mance. Improving the set up of the stencil operator
(that is now using only 20% of the resources) should
bring the sustained performance up to 50 GFlops, close
to 80% of peak.

According to the simulator, the full application will
be able to sustain 11.4 GFlops (18% of peak), per-
forming 7.4 floating point operations for each global
memory access. Note that only real ops are counted
in this figure, such as floating point add/mul/compare
instructions, and not non-arithmetic ops such as
branches. Divides are counted as single floating point
operations, even though each divide requires several
multiplication and addition operations when executed
on the hardware. This leads to the lower performance
numbers – for example, the sustained performance of
StreamFLO would double if we counted all the mul-
tiplies and adds required for divisions as well. The
hardware design group is currently looking at improv-
ing the performance of divide operations. Once again,
it should be stressed the preliminary nature of these
performance number: the tools are still in an early
stage and far from optimal performance.

Brooktran
In order to simplify the porting of pre-existing For-

tran code to Merrimac, we are developing a new vari-
ant of Brook, called Brooktran, that will be a stream-
ing extension of Fortran.

Brook is an extension of C which allows incremen-
tal porting of pre-existing C codes: computationally
intensive functions can be individually replaced with
kernels to take advantage of the stream processors
(a kernel is a piece of code that will be executed
on the streaming processor unit). This incremental
streamification, similar to the incremental paralleliza-
tion possible with OpenMP, greatly simplifies porting
an existing C code to Merrimac. The code will run
with no changes on Merrimac, and increasing perfor-

mance can be obtained by converting regular functions
to kernels. For pre-existing codes written in Fortran
the situation is completely different. The whole code
needs to be rewritten in C and Brook, with their many
differences from Fortran, making the task even harder
than, say, parallelizing a serial code using MPI. For-
tran is still very popular in the High Performance
Computing community. The national laboratories,
national agencies (such as NASA), universities, and
many industries have millions of lines of existing, valu-
able Fortran codes. This investment in Fortran can be
expected to continue with the advent of the Fortran
90 and 95 standards, which include modern memory
management and data and control structures. Porting
all these codes to C/Brook is not feasible, particu-
larly considering the validation efforts that have been
spent bringing the codes to their current state of ac-
ceptability. Some of these codes are used for mission
critical tasks which require their results to have a very
high level of reliability. The purpose of Brooktran, a
streaming extension of Fortran, is to give an incremen-
tal porting path to the Fortran community. In order
to have an interface consistent with the C counterpart,
we will adapt certain Fortran 90 features, such as the
intent attribute, to the language. This also facilitates
use in a mixed-language environment. The kernels are
written using a Fortran syntax and have the same con-
straints as Brook kernels. As in Brook, the setup of
streams is done through library calls.

Future work
The project is still under active development. In

particular, the Brook syntax has been refined and a
new compiler infrastructure is under development. A
3D Navier-Stokes solver is being developed to further
study the validity of the approach. The solver con-
tains a large portion of the execution kernels of the
three-dimensional, Reynolds Averaged Navier-Stokes
flow solver TFLO (the main RANS application for our
ASCI Center) and is intended to provide performance
benchmarks for realistic, industrial-strength flow ap-
plications.

The authors think that major breakthroughs to the
aerospace industry will come from desktop machines
based on Merrimac nodes, when every engineer will
have the capability of running high fidelity 3D simu-
lation on their desks in a short amount of time. We
anticipate that it should be possible to demonstrate
working hardware in 2006-2007 (the actual schedule
will depend on availability of funding)

Acknowledgments
This work is supported by the US Department of

Energy under the ASCI program. The authors would
like to express their gratitude to the other members
of the Merrimac project, in particular to Mattan Erez
and Ian Buck. The section on the Merrimac computer

8 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

architecture is a summary of the chapter in CITS An-
nual Technical Report6 written by W. Dally and P.
Hanrahan.

References
1Yoshida K., Shingu S.,“Research and Development of the

Earth Simulator” Proceedings of the 9th ECMWF Workshop.
World Scientific, 2000, pp 1-13.

2Shingu S., Takahara H., Fuchigami H., Yamada M., Tsuda
Y., Ohfuchi W., Sasaki Y., Kobayashi K., Hagiwara T., Habata
S., Yokokawa M., Itoh H. and Otsuka K., “A 26.58 Tflops Global
Atmospheric Simulation with the Spectral Transform Method
on the Earth Simulator”, SC2002 Proceedings.

3Bhardwaj M., Pierson K., Reese G., Walsh T., Day D.,
Alvin K., Peery J., Farhat C. and Lesoinne M., “Salinas: A
Scalable Software for High-Performance Structural and Solid
Mechanics Simulation” , SC2002 Proceedings.

4McCurdy W., Stevens R., Simon H., Kramer W., Bailey
D., Johnston W., Catlett C., Lusk R., Morgan T , Meza J.,
Banda M., Leighton J. and Hules J., “Creating Science-Driven
Computer Architecture: A New Path to Scientific Leadership”,
LBNL, October 2002,Publication 5483.

5Khailany B., Dally W. , Rixner S. , Kapasi U., Mattson P.,
Namkoong J., Owens J., Towles B., Chang. A., “Imagine: Media
Processing with Streams”. IEEE Micro, Volume: 21, Issue: 2,
March 2001.

6“2002 Annual Technical Report”, Center for Inte-
grated Turbulence Simulations, Stanford University, edited
by M. Fatica, W.C. Reynolds and J.J. Alonso, available at
http://cits.stanford.edu.

7William J. Dally, Patrick Hanrahan, Mattan Erez, Timo-
thy J. Knight, Franois Labont, Jung-Ho Ahn, Nuwan Jayasena,
Ujval J. Kapasi, Abhishek Das, Jayanth Gummaraju and Ian
Buck, “Merrimac: Supercomputing with Streams” ,SC2003,
November 2003, Phoenix, Arizona.

8Jameson, A.,“Analysis and design of numerical schemes for
gas dynamics 1. Artificial diffusion, upwind biasing, limiters and
their effects on accuracy and multigrid convergence” Interna-
tional Journal of Computational Fluid Dynamics, Volume 4,
1995, pp 171-218.

9Jameson, A.,“Analysis and design of numerical schemes for
gas dynamics 2. Artificial diffusion and discrete shock structure”
International Journal of Computational Fluid Dynamics, Vol-
ume 5, 1995, pp 1-38.

9 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

� MUL0� MUL1� MUL2� MUL3� DIV0� INO0� INO1� INO2� INO3� INO4� INO5� INO6� INO7� SP_0� SP_0� COM0� MC_0� JUK0� VAL0�

0

�

20

�

40

�

60

�

80

�

100

�

120

�

140

�

160

�
180

� 200�

220

�

240

�

260

�

280

�

300

�

320

�

340

�

360

�

380

�

400

�

420

�

440

�

460

�

480

�

500

�

520

�

540

�

560

�

580

�

600

�

620

�

640

�

660

�

680

�

700

�

720

�

740

�

760

�

780

�

800

�

820

�

840

�

860

�

880

�

900

�

920

�

940

�

960

�

980

�

1000

�

1020

�

1040

�

1060

�

(B10)

� MUL 0� MUL1� MUL2� MUL 3� DIV0� INO0� INO1� INO2� INO3� INO4� INO5� INO6� INO7� SP_0� SP_0� COM 0� MC_0� JUK0� VAL0�

0

�

2

�

4

�

6

�

8

�

10

�

12

�

14

�

16

�

18

�

20

�

22

�

24

�

26

�

28

�

30

�

32

�

34

�

36

�

38

�

40

�

42

�

44

�

46

�

48

�

50

�

52

�

54

�

56

�

58

�

60

�

62

�

64

�

66

�

68

�

70

�

72

�

74

�

76

�

78

�

80

�

82

�

84

�

86

�

88

�

90

�

92

�

94

�

96

�

98

�

100

�

102

�

104

�

106

�

108

�

110

�

112

�

114

�

116

�

118

�

120

�

122

�

124

�

126

�

128

�

130

�

132

�

134

�

136

�

138

�

140

�

142

�

144

�

146

�

148

�

150

�

152

�

154

�

156

�

158

�

160

�

162

�

164

�

166

�

168

�

170

�

172

�

174

�

176

�

178

�

180

�

182

�

184

�

186

�

188

�

190

�

192

�

194

�

196

�

198

�

200

�

202

�

204

�

206

�

208

�

210

�

212

�

214

�

216

�

218

�

220

�

222

�

224

�

226

�

228

�

230

�

232

�

234

�

236

�

238

�

240

�

242

�

244

�

246

�

248

�

250

�

252

�

254

�

256

�

258

�

260

�

262

�

264

�

266

�

268

�

270

�

272

�

274

�

276

�

278

�

280

�

282

�

284

�

286

�

288

�

290

�

292

�

294

�

296

�

298

�

300

�

302

�

304

�

306

�

308

�

310

�

312

�

314

�

316

�

318

�

320

�

322

�

324

�

326

�

328

�

330

�

332

�

334

� 336�
338

�

340

�

342

�

344

�

346

�

348

�

350

�

352

�

354

�

356

�

358

�

360

�

362

�

364

�

366

�

368

�

370

�

372

�

374

�

376

�

378

�

380

�

382

�

384

�

386

�

388

�

390

�

392

�

394

�

396

�

398

�

400

�

402

�

404

�

406

�

408

�

410

�

412

�

414

�

416

�

418

�

420

�

422

�

424

�

426

�

428

�

430

�

432

�

434

�

436

�

438

�

440

�

442

�

444

�

446

�

448

�

450

�

452

�

454

�

456

�

458

�

460

�

462

�

464

�

466

�

468

�

470

�

472

�

474

�

476

�

478

�

480

�

482

�

484

�

486

�

488

�

490

�

492

�

494

�

496

�

498

�

500

�

502

�

504

�

506

�

508

�

510

�

512

�

514

�

516

�

518

�

520

�

522

�

524

�

526

�

528

�

530

�

532

�

534

�

536

�

538

�

540

�

542

�

544

�

546

�

548

�

550

�

552

�

554

�

556

�

558

�

560

�

562

�

564

�

566

�

568

�

570

�

572

�

574

�

576

�

578

�

580

�

582

�

584

�

586

�

588

�

590

�

592

�

594

�

596

�

598

�

600

�

602

�

604

�

606

�

608

�

610

�

612

�

614

�

616

�

618

�

620

�

622

�

624

�

626

�

628

�

630

�

632

�

634

�

636

�

638

�

640

�

642

�

644

�

646

�

648

�

650

�

652

�

654

�

656

�

658

�

660

�

662

�

664

�

666

�

668

�

670

�

672

�

674

�

676

�

678

�

680

�

682

�

684

�

686

�

688

�

690

�

692

�

694

�

696

�

698

�

700

�

702

�

704

�

706

�

708

�

710

�

712

�

714

�

716

�

718

�

720

�

722

�

724

�

726

�

728

�

730

�

732

�

734

�

736

�

738

�

740

�

742

�

744

�

746

�

748

�

750

�

752

�

754

�

756

�

758

�

760

�

762

�

764

�

766

�

768

�

770

�

772

�

774

�

776

�

778

�

780

�

782

�

784

�

786

�

788

�

790

�

792

�

794

�

796

�

798

�

800

�

802

�

804

�

806

�

808

�

810

�

812

�

814

�

816

�

818

�

820

�

822

�

824

�

826

�

828

�

830

�

832

�

834

�

836

�

838

�

840

�

842

�

844

�

846

�

848

�

850

�

852

�

854

�

856

�

858

�

860

�

862

�

864

�

866

�

868

�

870

�

872

�

874

�

876

�

878

�

880

�

882

�

884

�

886

�

888

�

890

�

892

�

894

�

896

�

898

�

900

�

902

�

904

�

906

�

908

�

910

�

912

�

914

�

916

�

918

�

920

�

922

�

924

�

926

�

928

�

930

�

932

�

934

�

936

�

938

�

940

�

942

�

944

�

946

�

948

�

950

�

952

�

954

�

956

�

958

�

960

�

962

�

964

�

966

�

968

�

970

�

972

�

974

�

976

�

978

�

980

�

982

�

984

�

986

�

988

�

990

�

992

�

994

�

996

�

998

�

1000

�

1002

�

1004

�

1006

�

1008

�

1010

�

1012

�

1014

�

1016

�

1018

�

1020

�

1022

�

1024

�

1026

�

1028

�

1030

�

1032

�

1034

�

1036

�

1038

�

1040

�

1042

�

1044

�

1046

�

1048

�

1050

�

1052

�

1054

�

1056

�

1058

�

1060

�

(B10)

�

S P R E A D

�

C O M M U C D A T A

�

C O M M U C D A T A

�

S P R E A D _ W T

�

S P W R I T E

�

S P R E A D

�

S P R E A D

�

S E L E C T

�

S P R E A D _ W T

�

S P W R I T E

�

C O M M U C D A T A

�

S P R E A D

�

C O M M U C D A T A

�

N S E L E C T

�

I E Q3 2

�

P A S S

�

S P R E A D

�

N S E L E C T

�

I E Q3 2

�

S E L E C T

�

S E L E C T

�

I E Q 3 2

�

N S E L E C T

�

S P R E A D _ W T

�

S P W R I T E

�

N S E L E C T

�

S P R E A D _ W T

�

S P W R I T E

�

S P R E A D _ W T

�

S P W R I T E

�

S P R E A D

�

S P R E A D

�

S P R E A D

�

C O M M U C D A T A

�

S P R E A D

�

S P R E A D

�

C O M M U C D A T A

�

N S E L E C T

�

I E Q3 2

�

I S U B3 2

�

I S U B3 2

�

S P R E A D

�

N S E L E C T

�

P A S S

�

S E L E C T

�

I E Q 3 2

�

S P R E A D _ W T

�

S P W R I T E

�

I L T3 2

�

I A D D3 2

�

I S U B3 2

�

S P R E A D

�

N S E L E C T

�

C O M M U C D A T A

�

I S U B3 2

�

S P R E A D _ W T

�

S P W R I T E

�

N S E L E C T

�

I S U B3 2

�

I L T3 2

�

I A D D 3 2

�

C O M M U C D A T A

�

S P R E A D

�

N S E L E C T

�

I A D D3 2

�

S P R E A D _ W T

�

S P W R I T E

�

I S U B3 2

�

I S U B 3 2

�

S P R E A D

�

S E L E C T

�

I L T3 2

�

I E Q 3 2

�

S P R E A D

�

I S U B3 2

�

I S U B 3 2

�

I L T 3 2

�

I A D D3 2

�

N S E L E C T

�

S E L E C T

�

S P R E A D

�

S E L E C T

�

S P R E A D

�

I S U B 3 2

�

I L T3 2

�

I A D D3 2

�

N S E L E C T

�

S P R E A D _ W T

�

S P W R I T E

�

S P R E A D

�

I L T3 2

�

I A D D3 2

�

S E L E C T

�

S P R E A D

�

S P R E A D

�

S E L E C T

�

S P R E A D

�

S P R E A D

�

S P R E A D

�

C O M M U C D A T A

�

S P R E A D

�

C O M M U C D A T A

�

S P R E A D

�

C O M M U C D A T A

�

N S E L E C T

�

I E Q3 2

�

P A S S

�

S P R E A D

�

N S E L E C T

�

I E Q 3 2

�

S E L E C T

�

S E L E C T

�

I E Q3 2

�

N S E L E C T

�

S P R E A D _ W T

�

S P W R I T E

�

N S E L E C T

�

S P R E A D _ W T

�

S P W R I T E

�

S P R E A D _ W T

�

S P W R I T E

�

S P R E A D

�

S P R E A D

�

S P R E A D

�

C O M M U C D A T A

�

S P R E A D

�

S P R E A D

�

C O M M U C D A T A

�

N S E L E C T

�

I E Q3 2

�

S P R E A D

�

N S E L E C T

�

I S U B3 2

�

S E L E C T

�

I E Q 3 2

�

S P R E A D _ W T

�

S P W R I T E

�

I M U L 3 2

�

N S E L E C T

�

S P R E A D

�

I L T 3 2

�

I A D D3 2

�

S P R E A D _ W T

�

S P W R I T E

�

I S U B3 2

�

S P R E A D

�

S P R E A D

�

S E L E C T

�

I M U L 3 2

�

I L T 3 2

�

I A D D3 2

�

S P R E A D

�

S P R E A D

�

C O M M U C D A T A

�

S P R E A D

�

N S E L E C T

�

P A S S

�

S E L E C T

�

I E Q 3 2

�

S P R E A D

�

N S E L E C T

�

S P R E A D

�

S P R E A D _ W T

�

S P W R I T E

�

F I N V S Q R T _ L O O K U P

�

S P R E A D

�

F M U L

�

S P R E A D

�

S P R E A D

�

C O N D _ I N _ R

�

S P R E A D

�

S P R E A D

�

F M U L

�

S P R E A D

�

S P C R E A D _ W T

�

S P C W R I T E

�

S P R E A D

�

C O M M U C D A T A

�

S P R E A D

�

F S U B

�

S P R E A D

�

C O M M U C D A T A

�

N S E L E C T

�

C O M M U C D A T A

�

S P R E A D

�

S P R E A D _ W T

�

S P W R I T E

�

C O M M U C D A T A

�

S P R E A D

�

F M U L

�

C O N D _ I N _ D

�

S P R E A D

�

S E L E C T

�

I E Q3 2

�

S P R E A D

�

N S E L E C T

�

S E L E C T

�

I E Q3 2

�

S P R E A D _ W T

�

S P W R I T E

�

S P C R E A D _ W T

�

S P C W R I T E

�

N S E L E C T

�

C O M M U C D A T A

�

F M U L

�

S P R E A D _ W T

�

S P W R I T E

�

C O M M U C D A T A

�

C O M M U C D A T A

�

S P R E A D

�

S P R E A D

�

S E L E C T

�

S P R E A D

�

F M U L

�

S P R E A D _ W T

�

S P W R I T E

�

S P R E A D

�

N S E L E C T

�

I E Q 3 2

�

P A S S

�

S P R E A D

�

N S E L E C T

�

I E Q3 2

�

S E L E C T

� MUL 0� MUL1� MUL2� MUL 3� DIV0� INO0� INO1� INO2� INO3� INO4� INO5� INO6� INO7� SP_0� SP_0� COM 0� MC_0� JUK0� VAL0�

0

�

2

�

4

�

6

�

8

�

10

�

12

�

14

�

16

�

18

�

20

�

22

�

24

�

26

�

28

�

30

�

32

�

34

�

36

�

38

�

40

�

42

�

44

�

46

�

48

�

50

�

52

�

54

�

56

�

58

�

60

�

62

�

64

�

66

�

68

�

70

�

72

�

74

�

76

�

78

�

80

�

82

�

84

�

86

�

88

�

90

�

92

�

94

�

96

�

98

�

100

�

102

�

104

�

106

�

108

�

110

�

112

�

114

�

116

�

118

�

120

�

122

�

124

�

126

�

128

�

130

�

132

�

134

�

136

�

138

�

140

�

142

�

144

�

146

�

148

�

150

�

152

�

154

�

156

�

158

�

160

�

162

�

164

�

166

�

168

�

170

�

172

�

174

�

176

�

178

�

180

�

182

�

184

�

186

�

188

�

190

�

192

�

194

�

196

�

198

�

200

�

202

�

204

�

206

�

208

�

210

�

212

�

214

�

216

�

218

�

220

�

222

�

224

�

226

�

228

�

230

�

232

�

234

�

236

�

238

�

240

�

242

�

244

�

246

�

248

�

250

�

252

�

254

�

256

�

258

�

260

�

262

�

264

�

266

�

268

�

270

�

272

�

274

�

276

�

278

�

280

�

282

�

284

�

286

�

288

�

290

�

292

�

294

�

296

�

298

�

300

�

302

�

304

�

306

�

308

�

310

�

312

�

314

�

316

�

318

�

320

�

322

�

324

�

326

�

328

�

330

�

332

�

334

�

336

�

338

�

340

�

342

�

344

�

346

�

348

�

350

�

352

�

354

�

356

�

358

�

360

�

362

�

364

�

366

�

368

�

370

�

372

�

374

�

376

�

378

�

380

�

382

�

384

�

386

�

388

�

390

�

392

�

394

�

396

�

398

�

400

�

402

�

404

�

406

�

408

�

410

�

412

�

414

�

416

�

418

�

420

�

422

�

424

�

426

�

428

�

430

�

432

�

434

�

436

�

438

�

440

�

442

�

444

�

446

�

448

�

450

�

452

�

454

�

456

�

458

�

460

�

462

�

464

�

466

�

468

�

470

�

472

�

474

�

476

�

478

�

480

�

482

�

484

�

486

�

488

�

490

�

492

�

494

�

496

�

498

�

500

�

502

�

504

�

506

�

508

�

510

�

512

�

514

�

516

�

518

�

520

�

522

�

524

�

526

�

528

�

530

�

532

�

534

�

536

�

538

�

540

�

542

�

544

�

546

�

548

�

550

�

552

�

554

�

556

�

558

�

560

�

562

�

564

�

566

�

568

�

570

�

572

�

574

�

576

�

578

�

580

�

582

�

584

�

586

�

588

�

590

�

592

�

594

�

596

�

598

�

600

�

602

�

604

�

606

�

608

�

610

�

612

�

614

�

616

�

618

�

620

�

622

�

624

�

626

�

628

�

630

�

632

�

634

�

636

�

638

�

640

�

642

�
644

� 646�

648

�

650

�

652

�

654

�

656

�

658

�

660

�

662

�

664

�

666

�

668

�

670

�

672

�

674

�

676

�

678

�

680

�

682

�

684

�

686

�

688

�

690

�

692

�

694

�

696

�

698

�

700

�

702

�

704

�

706

�

708

�

710

�

712

�

714

�

716

�

718

�

720

�

722

�

724

�

726

�

728

�

730

�

732

�

734

�

736

�

738

�

740

�

742

�

744

�

746

�

748

�

750

�

752

�

754

�

756

�

758

�

760

�

762

�

764

�

766

�

768

�

770

�

772

�

774

�

776

�

778

�

780

�

782

�

784

�

786

�

788

�

790

�

792

�

794

�

796

�

798

�

800

�

802

�

804

�

806

�

808

�

810

�

812

�

814

�

816

�

818

�

820

�

822

�

824

�

826

�

828

�

830

�

832

�

834

�

836

�

838

�

840

�

842

�

844

�

846

�

848

�

850

�

852

�

854

�

856

�

858

�

860

�

862

�

864

�

866

�

868

�

870

�

872

�

874

�

876

�

878

�

880

�

882

�

884

�

886

�

888

�

890

�

892

�

894

�

896

�

898

�

900

�

902

�

904

�

906

�

908

�

910

�

912

�

914

�

916

�

918

�

920

�

922

�

924

�

926

�

928

�

930

�

932

�

934

�

936

�

938

�

940

�

942

�

944

�

946

�

948

�

950

�

952

�

954

�

956

�

958

�

960

�

962

�

964

�

966

�

968

�

970

�

972

�

974

�

976

�

978

�

980

�

982

�

984

�

986

�

988

�

990

�

992

�

994

�

996

�

998

�

1000

�

1002

�

1004

�

1006

�

1008

�

1010

�

1012

�

1014

�

1016

�

1018

�

1020

�

1022

�

1024

�

1026

�

1028

�

1030

�

1032

�

1034

�

1036

�

1038

�

1040

�

1042

�

1044

�

1046

�

1048

�

1050

�

1052

�

1054

�

1056

�

1058

�

1060

�

(B10)

�

F S Q R T

� F S U B� F A D D�

F S U B

�

F M U L

�

F M U L

�

F S U B

�

F A D D

�

F M U L

�

S P R E A D

�

F S Q R T

�

F M U L

�

F S U B

�

F M U L

�

F S U B

�

S P R E A D

�

P A S S

�

F S U B

�

F A D D

�

F A D D

�

F A D D

�

P A S S

�

P A S S

�

S P R E A D

�

F M U L

�

F A D D

�

F S U B

�

F M U L

�

S P R E A D

�

F M U L

�

P A S S

�

P A S S

�

F A D D

�

F A D D

�

F A D D

�

S P R E A D

�

F M U L

�

F S U B

�

F M U L

�

F A D D

�

P A S S

�

S P R E A D

�

P A S S

�

F A D D

�

F S U B

�

F A D D

�

F A D D

�

S P R E A D

�

N S E L E C T

�

F M U L

�

F S U B

�

F S U B

�

S P R E A D

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F M U L

�

F A D D

�

F S U B

�

S P R E A D

�

P A S S

�

F S U B

�

F A D D

�

F S U B

�

F A D D

�

S P R E A D

�

F S U B

�

F S U B

�

F A B S

�

F A D D

�

S P R E A D

�

F M U L

�

F A D D

�

F M U L

�

F A D D

�

S P R E A D

�

P A S S

�

F M U L

�

F M U L

�

P A S S

�

F A D D

�

S P R E A D

�

P A S S

�

F M U L

�

F A B S

�

F M U L

�

F S U B

�

S P R E A D

�

F S Q R T

�

F S U B

�

F S U B

�

F L T

�

F S U B

�

S P R E A D

�

F S U B

�

F A D D

�

F I N V S Q R T _ L O O K U P

�

F L T

�

F M U L

�

F M U L

�

F M U L

�

F A D D

�

F S U B

�

S P R E A D

�

F S U B

�

F M U L

�

F M U L

�

F S U B

�

P A S S

�

P A S S

�

S P R E A D

�

F A D D

�

F A D D

�

F A D D

�

S P R E A D

�

F M U L

�

F I N V S Q R T _ L O O K U P

�

F S U B

�

F S U B

�

S P R E A D

�

F M U L

�

F M U L

�

F S U B

�

F L T

�

P A S S

�

S P R E A D

�

P A S S

�

F M U L

�

F A D D

�

F M U L

�

P A S S

�

F S U B

�

S P R E A D

�

P A S S

�

F I N V S Q R T _ L O O K U P

�

F A B S

�

F A D D

�

F M U L

�

F A D D

�

S P R E A D

�

F M U L

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

P A S S

�

F M U L

�

S P R E A D

�

F M U L

�

F M U L

�

F S U B

�

S E L E C T

�

F S U B

�

F M U L

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F S U B

�

F A D D

�

P A S S

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F A B S

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

P A S S

�

P A S S

�

F M U L

�

P A S S

�

F S U B

�

F S U B

�

F M U L

�

F A B S

�

F M U L

�

F A B S

�

F I N V S Q R T _ L O O K U P

�

F S U B

�

F L T

�

F M U L

�

F A D D

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F M U L

�

F S U B

�

F M U L

�

F M U L

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F M U L

�

F M U L

�

F L T

�

F S U B

�

F A D D

�

F S U B

�

F M U L

�

F S U B

�

P A S S

�

P A S S

�

S P R E A D

�

F A D D

�

F S U B

�

F M U L

�

F S U B

�

S P R E A D

�

F M U L

�

F M U L

�

F S U B

�

F S U B

�

F M U L

�

F M U L

�

F M U L

�

F A D D

�

N S E L E C T

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F S U B

�

F M U L

�

P A S S

�

F M U L

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

S P C R E A D _ W T

�

S P C W R I T E

�

F S U B

�

F S U B

�

F M U L

�

F M U L

�

F S U B

�

F S U B

�

F M U L

�

P A S S

�

C O M M U C D A T A

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F M U L

�

F M U L

�

S P R E A D

�

F M U L

�

F L T

�

F M U L

�

F M U L

�

P A S S

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

S E L E C T

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F M U L

�

P A S S

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

P A S S

�

N S E L E C T

�

F M U L

�

F M U L

�

F S U B

�

F S U B

�

F I N V S Q R T _ L O O K U P

�

F M U L

�

F M U L

�

F A D D

�

F A D D

�

P A S S

�

F M U L

�

F M U L

�

P A S S

�

F S U B

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F S U B

�

S E L E C T

�

F M U L

�

F M U L

�

F S U B

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

F I N V S Q R T _ L O O K U P

�

P A S S

�

F M U L

�

F M U L

�

F S U B

�

F M U L

�

P A S S

�

N S E L E C T

�

F S U B

�

F S U B

�

F S U B

�

F M U L

�

F I N V S Q R T _ L O O K U P

�

S E L E C T

�

S P R E A D

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

P A S S

�

S P R E A D _ W T

�

S P W R I T E

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

P A S S

�

S P R E A D

�

F M U L

�

F M U L

�

N S E L E C T

�

F S U B

�

F S U B

�

P A S S

�

S P R E A D

�

F A D D

�

F M U L

�

F M U L

�

F M U L

�

S P R E A D

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

S P R E A D

�

F S U B

�

F S U B

�

F S U B

�

F S U B

�

P A S S

�

P A S S

�

S P R E A D

�

F S U B

�

F S U B

�

S E L E C T

�

F M U L

�

F M U L

�

S P R E A D

�

F S Q R T

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

S P R E A D

�

C O M M U C D A T A

�

F S U B

�

F M U L

�

F M U L

�

F M U L

�

S P R E A D

�

P A S S

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

S P R E A D

�

P A S S

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

P A S S

�

S P R E A D

�

F M U L

�

F M U L

�

F S U B

�

F A D D

�

P A S S

�

S P R E A D

�

P A S S

�

F M U L

�

F S U B

�

F S U B

�

F M U L

�

P A S S

�

N S E L E C T

�

S P R E A D

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

P A S S

�

S P R E A D

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

S P R E A D

�

P A S S

�

F M U L

�

F S U B

�

F A D D

�

F M U L

�

P A S S

�

S P R E A D

�

F M U L

�

F A D D

�

F M U L

�

F M U L

�

S P R E A D

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

P A S S

�

S P R E A D

�

S E L E C T

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

S P R E A D

�

F S U B

�

F M U L

�

F M U L

�

F S U B

�

S P R E A D

�

S E L E C T

�

F S Q R T

�

F M U L

�

F M U L

�

F M U L

�

F S U B

�

P A S S

�

S P R E A D _ W T

�

S P W R I T E

�

F M U L

�

F M U L

�

F M U L

�

F M U L

�

P A S S

�

S E L E C T

Set up of the 5x5 stencil: %20 of utilization

Computation of the flux: %90 of utilization

Fig. 7 Kernel schedule for the H-CUSP dissipative flux calculation: Clock cycles are displayed in the
vertical column on the left and the next columns display the utilization of the various resources of the
SIMD cluster. Magnification of the encircled areas are shown on the right. The 4 left-most columns
in the magnified section are the 4 multiply and add units, the fifth column represents the lookup table
for the inverse and square-root operations. The 3 right-most columns are related to the intracluster
communications. Filled spaces indicates full utilization, while empty spaces indicate wasted resources.

10 of 10

American Institute of Aeronautics and Astronautics Paper 2004–1090

