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A continuous adjoint method for unstructured grids
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Adjoint based shape optimization methods have proven to be computationally efficient
for aerodynamic problems. The majority of the studies on adjoint methods have used
structured grids to discretize the computational domain. Due to the potential advantages
of unstructured grids for complex configurations, in this study we have developed and
validated a continuous adjoint formulation for unstructured grids. The hurdles posed in
the computation of the gradient for unstructured grids are resolved by using a reduced
gradient formulation. Methods to impose thickness constraints on unstructured grids are
also discussed. Results for two and three dimensional simulations of airfoils and wings in
transonic flow are used to validate the design procedure. Finally, the design procedure is
applied to redesign the shape of a transonic business jet configuration, and we were able
to reduce the drag of the aircraft from 235 to 216 counts resulting in a shock free wing.

Introduction
With the availability of high performance computing

platforms and robust numerical methods to simulate
fluid flows, it is possible to shift attention to auto-
mated design procedures which combine CFD with
optimization techniques to determine optimum aero-
dynamic designs. The feasibility of this is by now well
established,1–6 and it is actually possible to calculate
optimum three dimensional transonic wing shapes in
a few hours, accounting for viscous effects with the
flow modeled by the Reynolds averaged Navier Stokes
(RANS) equations. By enforcing constraints on the
thickness and span-load distribution one can make sure
that there is no penalty in structure weight or fuel
volume. Larger scale shape changes such as planform
variations can also be accommodated.7 It then be-
comes necessary to include a structural weight model
to enable a proper compromise between minimum drag
and low structure weight to be determined.

Aerodynamic shape optimization has been success-
fully performed for a variety of complex configurations
using multi-block structured meshes.8,9 Meshes of this
type can be relatively easily deformed to accommodate
shape variations required in the redesign. However, it
is both extremely time-consuming and expensive in
human costs to generate such meshes. Consequently
we believe it is essential to develop shape optimization
methods which use unstructured meshes for the flow
simulation.

Typically, in gradient-based optimization tech-
niques, a control function to be optimized (the wing
shape, for example) is parameterized with a set of
design variables and a suitable cost function to be min-
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imized is defined. For aerodynamic problems, the cost
function is typically lift, drag or a specified target pres-
sure distribution. Then, a constraint, the governing
equations can be introduced in order to express the
dependence between the cost function and the control
function. The sensitivity derivatives of the cost func-
tion with respect to the design variables are calculated
in order to get a direction of improvement. Finally, a
step is taken in this direction and the procedure is re-
peated until convergence is achieved. Finding a fast
and accurate way of calculating the necessary gradi-
ent information is essential to developing an effective
design method since this can be the most time consum-
ing portion of the design process. This is particularly
true in problems which involve a very large number of
design variables as is the case in a typical three dimen-
sional shape optimization.

The control theory approach20–22 has dramatic com-
putational cost advantages over the finite-difference
method of calculating gradients. With this approach
the necessary gradients are obtained through the solu-
tion of an adjoint system of equations of the governing
equations of interest. The adjoint method is extremely
efficient since the computational expense incurred in
the calculation of the complete gradient is effectively
independent of the number of design variables.

In this study, a continuous adjoint formulation has
been used to derive the adjoint system of equations.
Accordingly, the adjoint equations are derived directly
from the governing equations and then discretized.
This approach has the advantage over the discrete
adjoint formulation in that the resulting adjoint equa-
tions are independent of the form of discretized flow
equations. The adjoint system of equations have a sim-
ilar form to the governing equations of the flow and
hence the numerical methods developed for the flow
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equations10,12,13 can be reused for the adjoint equa-
tions.

The gradient is derived solely from the adjoint so-
lution and the surface displacement, independent of
the mesh modification. This is crucial for unstruc-
tured meshes. If the gradient depends on the form of
the mesh modification, then the field integral in the
gradient calculation has to be recomputed for mesh
modifications corresponding to each design variable.
This would be prohibitively expensive if the geome-
try is treated as a free surface defined by the mesh
points. Consequently in order to reduce the compu-
tational cost with this approach,14–16 the number of
design variables would have to be reduced by param-
eterizing the geometry. However, this reduced set of
design variables could not recover all possible shape
variations.

A steepest descent method is finally used to improve
the initial design. In order to guarantee that the shape
variations remain sufficiently smooth the gradients are
redefined so that they correspond to an inner product
in a Sobolev space. This is accomplished by an implicit
smoothing procedure which also acts as an effective
pre-conditioner, with the result that the number of de-
sign steps needed to reach an optimum is quite small,
of the order of 20-50.

The General Formulation of the Adjoint
Approach to Optimal Design

For flow about an airfoil, or wing, the aerodynamic
properties which define the cost function are functions
of the flow-field variables, w, and the physical loca-
tion of the boundary, which may be represented by
the function, F , say. Then

I = I(w,F),

and a change in F results in a change

δI =
∂IT

∂w
δw +

∂IT

∂F δF , (1)

in the cost function. Using control theory, the gov-
erning equations of the flow field are introduced as a
constraint in such a way that the final expression for
the gradient does not require re-evaluation of the flow-
field. In order to achieve this, δw must be eliminated
from equation 1. Suppose that the governing equation
R which expresses the dependence of w and F within
the flow field domain D can be written as

R(w,F) = 0 (2)

Then δw is determined from the equation

δR =
[
∂R

∂w

]
δw +

[
∂R

∂F
]

δF = 0 (3)

Next, introducing a Lagrange Multiplier ψ, we have

δI =
∂IT

∂w
δw +

∂IT

∂F δF −ψT

([
∂R

∂w

]
δw +

[
∂R

∂F
]

δF
)

δI =
(

∂IT

∂w
− ψT

[
∂R

∂w

]
∂w

)
δw+

(
∂IT

∂F − ψT

[
∂R

∂F
]

δF
)

Choosing ψ to satisfy the adjoint equation

[
∂R

∂w

]T

ψ =
∂I

∂w
(4)

the first term is eliminated and we find that

δI = GδF (5)

where

G =
∂IT

∂F − ψT

[
∂R

∂F
]

(6)

This process allows for elimination of the terms that
depend on the flow solution with the result that the
gradient with respect with an arbitrary number of de-
sign variables can be determined without the need for
additional flow field evaluations.

After taking a step in the negative gradient direc-
tion, the gradient is recalculated and the process re-
peated to follow the path of steepest descent until a
minimum is reached. In order to avoid violating con-
straints, such as the minimum acceptable wing thick-
ness, the gradient can be projected into an allowable
subspace within which the constraints are satisfied. In
this way one can devise procedures which must neces-
sarily converge at least to a local minimum and which
can be accelerated by the use of more sophisticated
descent methods such as conjugate gradient or quasi-
Newton algorithms. There is a possibility of more than
one local minimum, but in any case this method will
lead to an improvement over the original design.

Design using the Euler Equations
The application of control theory to aerodynamic

design problems is illustrated in this section for the
case of three-dimensional wing design using the com-
pressible Euler equations as the mathematical model.
It proves convenient to denote the Cartesian coordi-
nates and velocity components by x1, x2, x3 and u1,
u2, u3, and to use the convention that summation over
i = 1 to 3 is implied by a repeated index i. Then, the
three-dimensional Euler equations may be written as

∂w

∂t
+

∂fi

∂xi
= 0 in D, (7)

where

w =





ρ
ρu1

ρu2

ρu3

ρE





, fi =





ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiu3 + pδi3

ρuiH





(8)
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and δij is the Kronecker delta function. Also,

p = (γ − 1) ρ

{
E − 1

2
(
u2

i

)}
, (9)

and
ρH = ρE + p (10)

where γ is the ratio of the specific heats.
Consider a transformation to coordinates ξ1, ξ2, ξ3

where

Kij =
[
∂xi

∂ξj

]
, J = det (K) , K−1

ij =
[

∂ξi

∂xj

]
,

and
S = JK−1.

The elements of S are the cofactors of K, and in a
finite volume discretization they are just the face areas
of the computational cells projected in the x1, x2, and
x3 directions. Using the permutation tensor εijk we
can express the elements of S as

Sij =
1
2
εjpqεirs

∂xp

∂ξr

∂xq

∂ξs
. (11)

Then

∂

∂ξi
Sij =

1
2
εjpqεirs

(
∂2xp

∂ξr∂ξi

∂xq

∂ξs
+

∂xp

∂ξr

∂2xq

∂ξs∂ξi

)

= 0. (12)

Now, multiplying equation(7) by J and applying the
chain rule,

J
∂w

∂t
+ R (w) = 0 (13)

where

R (w) = Sij
∂fj

∂ξi
=

∂

∂ξi
(Sijfj) , (14)

using (12). We can write the transformed fluxes in
terms of the scaled contravariant velocity components

Ui = Sijuj

as

Fi = Sijfj =




ρUi

ρUiu1 + Si1p
ρUiu2 + Si2p
ρUiu3 + Si3p

ρUiH




.

Assume now that the new computational coordinate
system conforms to the wing in such a way that the
wing surface BW is represented by ξ2 = 0. Then the
flow is determined as the steady state solution of equa-
tion (13) subject to the flow tangency condition

U2 = 0 on BW . (15)

At the far field boundary BF , conditions are specified
for incoming waves, as in the two-dimensional case,
while outgoing waves are determined by the solution.

The weak form of the Euler equations for steady flow
can be written as

∫

D

∂φT

∂ξi
FidD =

∫

B
niφ

T FidB, (16)

where the test vector φ is an arbitrary differentiable
function and ni is the outward normal at the bound-
ary. If a differentiable solution w is obtained to this
equation, it can be integrated by parts to give

∫

D
φT ∂Fi

∂ξi
dD = 0

and since this is true for any φ, the differential form
can be recovered. If the solution is discontinuous (16)
may be integrated by parts separately on either side of
the discontinuity to recover the shock jump conditions.

Suppose now that it is desired to control the surface
pressure by varying the wing shape. For this pur-
pose, it is convenient to retain a fixed computational
domain. Then variations in the shape result in corre-
sponding variations in the mapping derivatives defined
by K. As an example, consider the case of an inverse
problem, where we introduce the cost function

I =
1
2

∫ ∫

BW

(p− pd)
2
dξ1dξ3,

where pd is the desired pressure. The design problem
is now treated as a control problem where the con-
trol function is the wing shape, which is to be chosen
to minimize I subject to the constraints defined by
the flow equations (13). A variation in the shape will
cause a variation δp in the pressure and consequently
a variation in the cost function

δI =
∫ ∫

BW

(p− pd) δp dξ1dξ3 +
1
2

∫

B
(p− pt)2dδS

(17)
where typically the second term is negligible and can
be dropped.

Since p depends on w through the equation of state
(9–10), the variation δp can be determined from the
variation δw. Define the Jacobian matrices

Ai =
∂fi

∂w
, Ci = SijAj . (18)

The weak form of the equation for δw in the steady
state becomes

∫

D

∂φT

∂ξi
δFidD =

∫

B
(niφ

T δFi)dB,

where
δFi = Ciδw + δSijfj ,
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which should hold for any differential test function φ.
This equation may be added to the variation in the
cost function, which may now be written as

δI =
∫ ∫

BW

(p− pd) δp dξ1dξ3

−
∫

D

(
∂φT

∂ξi
δFi

)
dD

+
∫

B

(
niφ

T δFi

)
dB. (19)

On the wing surface BW , n1 = n3 = 0. Thus, it follows
from equation (15) that

δF2 =




0

S21δp

S22δp

S23δp

0




+




0

δS21p

δS22p

δS23p

0




. (20)

Since the weak equation for δw should hold for an
arbitrary choice of the test vector φ, we are free to
choose φ to simplify the resulting expressions. There-
fore we set φ = ψ, where the co-state vector ψ is the
solution of the adjoint equation

∂ψ

∂t
− CT

i

∂ψ

∂ξi
= 0 in D. (21)

At the outer boundary incoming characteristics for ψ
correspond to outgoing characteristics for δw. Con-
sequently one can choose boundary conditions for ψ
such that

niψ
T Ciδw = 0.

Then, if the coordinate transformation is such that
δS is negligible in the far field, the only remaining
boundary term is

−
∫ ∫

BW

ψT δF2 dξ1dξ3.

Thus, by letting ψ satisfy the boundary condition,

S21ψ2 + S22ψ3 + S23ψ4 = (p− pd) on BW , (22)

we find finally that

δI = −
∫

D

∂ψT

∂ξi
δSijfjdD

−
∫ ∫

BW

(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (23)

Here the expression for the cost variation depends
on the mesh variations throughout the domain which
appear in the field integral. However, the true gradient
for a shape variation should not depend on the way
in which the mesh is deformed, but only on the true
flow solution. In the next section, we show how the
field integral can be eliminated to produce a reduced
gradient formula which depends only on the boundary
movement.

Reduced Gradient Formulations

Continuous adjoint formulations have generally used
a form of the gradient that depends on the manner in
which the mesh is modified for perturbations in each
design variable. To represent all possible shapes the
control surface should be regarded as a free surface. If
the surface mesh points are used to define the surface,
this leaves the designer with a thousands of design
variables. On an unstructured mesh evaluating the
gradient by perturbing each design variable in turn,
would be prohibitively expensive because of the need
to determine corresponding perturbations of the entire
mesh. This would inhibit the use of this design tool in
any meaningful design process.

In order to avoid this difficulty an alternate for-
mulation to the gradient calculation is followed in
this study. This idea was developed by Jameson and
Sangho Kim24 and was validated for two and three di-
mensional problems with structured grids. However,
as it is possible to devise mesh modification routines
that are computationally cheap on structured grids,
the major benefit of this alternate gradient formu-
lation is for general three dimensional unstructured
grids. To complete the formulation of the control
theory approach to shape optimization, the gradient
formulations are outlined next. The formulation for
the reduced gradients in the continuous limit is pre-
sented in the context of transformation between the
physical domain and the computational domain, and
is easily extended to unstructured grid methods where
these transformations are not explicitly used.

The evaluation of the field integral in equation (23)
requires the evaluation of the metric variations δSij

throughout the domain. However, the true gradient
should not depend on the way the mesh is modified.

Consider the case of a mesh variation with a fixed
boundary. Then,

δI = 0

but there is a variation in the transformed flux,

δFi = Ciδw + δSijfj .

Here the true solution is unchanged. Thus, the vari-
ation δw is due to the mesh movement δx at fixed
boundary configuration. Therefore

δw = ∇w · δx =
∂w

∂xj
δxj (= δw∗)

and since
∂

∂ξi
δFi = 0,

it follows that

∂

∂ξi
(δSijfj) = − ∂

∂ξi
(Ciδw

∗) . (24)
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It is verified in reference24 that this relation holds in
the general case with boundary movement. Now

∫

D
ψT δRdD =

∫

D
ψT ∂

∂ξi
Ci (δw − δw∗) dD

=
∫

B
ψT Ci (δw − δw∗) dB

−
∫

D

∂ψT

∂ξi
Ci (δw − δw∗) dD. (25)

Here on the wall boundary

C2δw = δF2 − δS2jfj . (26)

Thus, by choosing ψ to satisfy the adjoint equation and
the adjoint boundary condition, we have finally the
cost variation that is reduced to a boundary integral

δI =
∫

BW
ψT (δS2jfj + C2δw

∗) dξ1dξ3

−
∫ ∫

BW

(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3.(27)

In this reduced formulation the cost variation de-
pends only on the boundary shape variations with the
result that the gradient can be evaluated without any
knowledge of the mesh deformation.

The need for a Sobolev inner product in the
definition of the gradient

Another key issue for successful implementation of
the continuous adjoint method is the choice of an
appropriate inner product for the definition of the gra-
dient. It turns out that there is an enormous benefit
from the use of a modified Sobolev gradient, which en-
ables the generation of a sequence of smooth shapes.
This can be illustrated by considering the simplest case
of a problem in calculus of variations.

Choose y(x) to minimize

I =

b∫

a

F (y, y
′
)dx

with fixed end points y(a) and y(b). Under a variation
δy(x),

δI =

b∫

a

(
∂F

∂y
δy +

∂F

∂y′
δy

′
)

dx

=

b∫

a

(
∂F

∂y
− d

dx

∂F

∂y′

)
δydx

Thus defining the gradient as

g =
∂F

∂y
− d

dx

∂F

∂y′

and the inner product as

(u, v) =

b∫

a

uvdx

we find that
δI = (g, δy)

Then if we set

δy = −λg, λ > 0

we obtain a improvement

δI = −λ(g, g) ≤ 0

unless g = 0, the necessary condition for a minimum.
Note that g is a function of y, y

′
, y
′′
,

g = g(y, y
′
, y
′′
)

In the case of the Brachistrone problem, for example

g = − 1 + y
′2 + 2yy

′′

2 (y(1 + y′2))3/2

Now each step

yn+1 = yn − λngn

reduces the smoothness of y by two classes. Thus the
computed trajectory becomes less and less smooth,
leading to instability.

In order to prevent this we can introduce a modified
Sobolev inner product23

〈u, v〉 =
∫

(uv + εu
′
v
′
)dx

where ε is a parameter that controls the weight of
the derivatives. If we define a gradient g such that

δI = 〈g, δy〉

Then we have

δI =
∫

(gδy + εg
′
δy

′
)dx

=
∫

(g − ∂

∂x
ε
∂g

∂x
)δydx

= (g, δy)

where
g − ∂

∂x
ε
∂g

∂x
= g

and g = 0at the end points. Thus g is obtained from
g by a smoothing equation.

Now the step

yn+1 = yn − λngn
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gives an improvement

δI = −λn〈gn, gn〉

but yn+1 has the same smoothness as yn, resulting in
a stable process.

In applying control theory for aerodynamic shape
optimization, the use of a Sobolev gradient is equally
important for the preservation of the smoothness class
of the redesigned surface and we have employed it to
obtain all the results in this study.

Imposing Thickness Constraints on
Unstructured Meshes

In order to perform meaningful drag reduction com-
putations, it is necessary to ensure that constraints
such as the thickness of the wing are satisfied dur-
ing the design process. On an arbitrary unstructured
mesh there appears to be no straightforward way to
impose thickness constraints. In our approach we in-
troduce cutting-planes at various span-wise locations
along the wing and tranform the airfoil sections to
shallow bumps by a square root mapping. Then we
interpolate the gradients from the nodes on the sur-
face to the airfoil sections on the cutting-planes, and
impose the thickness constraints on the mapped sec-
tions. The displacements of the points on the surface
of the CFD mesh are obtained by interpolation from
the mapped airfoil sections, and transformed back to
the physical domain by a reverse mapping. These sur-
face displacements are finally used as inputs to a mesh
deformation algorithm.

Mesh Deformation
The modifications to the shape of the boundary

are transferred to the volume mesh using the spring
method. This approach has been found to be adequate
for the computations performed in this study.

The spring method can be mathematically concep-
tualized as solving the following equation

∂∆xi

∂t
+

N∑

j=1

Kij(∆xi −∆xj) = 0

where the Kij is the stiffness of the edge connecting
node i to node j and its value is inversely proportional
to the length of this edge, ∆xi is the displacement
of node i and ∆xj is the displacement of node j, the
opposite end of the edge. The position of static equilib-
rium of the mesh is computed using a Jacobi iteration
with known initial values for the surface displacements.

Overview of the Design Process
A flow-chart describing the overall design process is

shown in figure 3.

Numerical Discretization and Convergence
Acceleration Techniques for the Flow and

Adjoint Equations
The numerical algorithms and convergence acceler-

ation techniques used in this study to obtain steady
state solutions for the Euler equations, are based on
a finite element approximation, initially reported in
Jameson, Baker and Weatherill.11 The method is de-
scribed here for completeness. Due to the remarkable
similarity between the adjoint system and the flow
equations, essentially the same numerical schemes can
be reused to obtain the solution to the adjoint system.

The finite element approximation can be obtained
by directly approximating the integral equations for
the balance of mass, momentum and energy in poly-
hedral control volumes. Each of these is formed by
the union of the tetrahedra meeting at a common ver-
tex (figure 1). It turns out that the flux balance can be
broken down into contributions of fluxes through faces
in a very elegant way (figure 2). This decomposition
reduces the evaluation of the Euler equations to a sin-
gle main loop over the faces. It is shown in Jameson,
Baker and Weatherill11 that the same discretization
can also be devised from the weak form of the equa-
tions, using linear trial solutions and test functions.
Thus it is essentially equivalent to a Galerkin method.

Shock waves are captured with the assistance of
added artificial dissipation. These shock capturing
schemes are derived from general class of schemes that
maintain the positivity of the co-efficients, thereby pre-
venting maximas from increasing and minimas from
decreasing. Steady state solutions are obtained by
integrating the time dependent equations with a mul-
tistage time stepping scheme. Convergence is acceler-
ated by the use of locally varying time steps, residual
averaging and enthalpy damping. Multigrid tech-
niques are also used to further improve convergence
to the steady state.

Computational Methodology and Finite
Element Approximation

The Euler equations in integral form can be written
as

d

dt

∫

V

wdV +
∫

S

F · dS = 0 (28)

Equation(28) can be approximated on a tetrahedral
mesh by first writing the flux balance for each tetra-
hedron assuming the fluxes (F ) to vary linearly over
each face. Then at any given mesh point one considers
the rate of change of w for a control volume consisting
of the union of the tetrahedra meeting at a common
vertex. This gives

d

dt

(∑

k

Vkw

)
+

∑

k

Rk = 0. (29)
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where Vk is the volume of the kth tetrahedron meet-
ing at a given mesh point and Rk is the flux of that
tetrahedron.

When the flux balances of the neighboring tetrahe-
dra are summed, all contributions across interior faces
cancel. Referring to figure 2, which illustrates a por-
tion of a three dimensional mesh, it may be seen that
with a tetrahedral mesh, each face is a common exter-
nal boundary of exactly two control volumes. There-
fore each internal face can be associated with a set of 5
mesh points consisting of its corners 1,2 and 3, and the
vertices 4 and 5 of the two control volumes on either
side of the common face. It is now possible to gener-
ate the approximation in equation(29), by pre-setting
the flux balance at each mesh point to zero, and then
performing a single loop over the faces. For each face,
one first calculates the fluxes of mass, momentum and
energy across each face, and then one assigns these
contributions of the vertices 4 and 5 with positive and
negative signs respectively. Since every contribution is
transferred from one control volume into another, all
quantities are perfectly conserves. Mesh points on the
inner and outer boundaries lie on the surface of their
own control volumes, and the accumulation of the flux
balance in these volumes has to be correspondingly
modified. At a solid surface it is also necessary to
enforce the boundary condition that there is no con-
vective flux through the faces contained in the surface.

While the original formulation of this method used
a face based loop to accumulate the fluxes, the first au-
thor later modified the loops to go through the edges
in the mesh as they were typically smaller in number
than the faces. The above arguments for flux accu-
mulation extend easily to edge-based schemes and it is
this approach that has been used in the current study.

Dissipation
A simple way to introduce dissipation is to add a

term generated from the difference between the value
at a given node and its nearest neighbors. That is, at
node 0, we add a term

Do =
∑

k

ε
(1)
ko (wk − wo) (30)

where the sum is over the nearest neighbors. This con-
tribution is balanced by a corresponding contribution
at node k, with the result that the scheme remains con-
servative. The coefficients ε

(1)
ko may incorporate metric

information depending on local cell volumes and face
areas, and can also be adapted to gradients of the so-
lution. As equation (30) is only first-order accurate
(unless the coefficients are proportional to the mesh
spacing), a more accurate scheme is obtained by recy-
cling the edge differencing procedure. After setting

Eo =
∑

k

(wk − wo) (31)

at every mesh point, one then sets

Do = −
∑

k

ε
(2)
ok (Ek − Eo) (32)

An effective scheme is produced by blending equa-
tion (30) and (32), and adapting ε

(1)
ko to the local

pressure gradient. This scheme has been found to have
good shock capturing properties and the required sums
can be efficiently assembled by loops over the edges.

Other shock capturing schemes that satisfy the LED
property have also been implemented, and have been
found to work equally efficiently. However, due to the
robust nature of the simple scalar dissipation model
described above, we have used it for all the computa-
tions in this study.

Integration to Steady State and Convergence
Acceleration Techniques

The resulting spatial discretizations yield a set of
coupled ordinary differential equations that can be in-
tegrated in time to obtain steady state solutions of
the Euler equations. To maximize the allowable time
step, the same multistage schemes that have proven
to be efficient in rectilinear meshes17 have been used
on unstructured meshes. These schemes bear close re-
semblance to Runge-Kutta schemes with modifications
to the evaluation of the dissipation terms that enlarge
the stability limit of the scheme along the imaginary
axis, thereby allowing convective waves to be resolved.

Convergence to steady state is accelerated by us-
ing a variable time step close to the stability limit
of each mesh point. The scheme is accelerated fur-
ther by the introduction of residual averaging18 and
multigrid procedure.19 In this study, the coarser grids
are either obtained through an independent mesh gen-
erator or through an edge-collapsing algorithm. In
either approach, transfer coefficients between the var-
ious meshes are accumulated in a pre-processing step
and recomputed when the meshes are deformed.

Modifications to the Numerical Method to
Treat the Adjoint Equations

In order to adapt the numerical scheme to treat
the adjoint equations three main modifications are re-
quired.

First, because the adjoint equation appears in a non-
conservative quasi-linear form, the convective terms
have to be calculated in a different manner. The
derivatives ∂ψ

∂xi
are calculated by applying the Gauss

theorem to the polyhedral control volume consisting of
the tetrahedrons that surround each node. Thus the
formula

∂ψ

∂xi
=

1
V

∫

S

ψdSxi (33)

is replaced by its discrete analog, and the contribu-
tions are accumulated by edge and face loops in the
same manner as the flux balance of equation (28). The
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transposed Jacobian matrices are simplified by using
a transformation to the symmetrizing variables. Thus
the Jacobian for flux in the x direction is expressed as

A = MÂM−1, AT = M−1ÂMT

where

M =




ρ
c 0 0 0 − 1

c2
ρu
c ρ 0 0 − u

c2
ρv
c 0 ρ 0 − v

c2
ρw
c 0 0 ρ − w

c2

ρH
c ρu ρv ρw − q2

2c2




(34)

and

Â =




Q Sxc Syc Syc 0
Sxc Q 0 0 0
Syc 0 Q 0 0
Szc 0 0 Q 0
0 0 0 0 Q




(35)

Second, the direction of time integration to a steady
state is reversed because the directions of wave propa-
gation are reversed. Third, while the artificial diffusion
terms are calculated by the same subroutines that are
used for the flow solution, they are subtracted instead
of added to the convective terms to give a downwind
instead of an upwind bias. Because of the reversed
sign of the time derivatives the diffusive terms in the
time dependent equation correspond to the diffusion
equation with the proper sign.

Results
The adjoint method described in the previous sec-

tions has been applied to two and three dimensional
problems with the flow modeled by the Euler equa-
tions. Both drag reduction and inverse design prob-
lems were used to validate the design procedure and
the gradient formulations. The method was then used
to redesign the shape of the wing of a transonic busi-
ness jet, where the complete aircraft configuration was
modeled. A flow-chart describing the overall design
process is shown in figure 3.

Airfoil Design
The unstructured adjoint technology was initially

validated for two-dimensional inverse design and drag
minimization problems. Figures 4 and 5, show the re-
sult of drag minimization for the RAE 2822 airfoil in
transonic flow (M∞ = 0.75). The lift was constrained
to be 0.6 and the angle of attack was perturbed to
maintain the lift. The final geometry is shock-free and
the drag was reduced by 36 drag counts. Figures 4
and 6 show the result of an inverse design for the RAE
2822 airfoil. Here the target pressure distribution was
a shock-free profile obtained from the drag minimiza-
tion exercise. As can be seen from these pictures, the
final pressure profile almost exactly matches the target
pressure distribution.

Wing Design
The design methodology was then applied to wing

shapes in transonic flow. Inverse design computations
were performed to validate the design process and the
gradient calculations. Figure 8 shows the result of
an inverse design calculation, where the initial geom-
etry was a wing with NACA 0012 sections and the
target pressure distribution was the pressure distribu-
tion over the Onera M6 wing. Figures 9, 10, 11, 12,
show the target and computed pressure distribution
at 4 span-wise sections. It can be seen from these
plots the target pressure distribution is almost per-
fectly recovered in 50 design cycles. The results from
this test case show that the design process is capable
of recovering pressure distributions that are signifi-
cantly different from the initial distribution and can
also capture shocks and other discontinuities in the
target pressure distribution.

Another test case for the inverse design problem
used the wing from an airplane (SHARK25) that was
designed for the Reno Air Races. The initial and tar-
get pressure distributions are shown the figure 13. As
can be seen from these plots, the initial pressure dis-
tribution has a weak shock in the outboard sections
of the wing. The target pressure distribution is shock-
free. The computed (after 50 design cycles) and target
pressure distributions along three sections of the wing
are shown in figures 14, 15, 16. Again the design pro-
cess captures the target pressure with good accuracy
in about 50 design cycles.

Shape Optimization of a Transonic Business
Jet

The design method has finally been applied to com-
plete aircraft configurations. As a representative ex-
ample we show the redesigns of a transonic business
jet to improve its lift to drag ratio during cruise. As
shown in figures 17, 18, 19, 20, the outboard sections
of the wing have a strong shock while flying at cruise
conditions (M∞ = 0.80, α = 2o). The results of a drag
minimization that aims to remove the shocks on the
wing are shown in figures 21, 22, 23, 24. The drag has
been reduced from 235 counts to 215 counts in about
8 design cycles. The lift was constrained at 0.4 by
perturbing the angle of attack. Further, the original
thickness of the wing was maintained during the de-
sign process ensuring that fuel volume and structural
integrity will be maintained by the redesigned shape.
The entire design process typically takes about 4 hours
on a 1.7 Ghz Athlon processor with 1 Gb of memory.
Parallel implementation of the design procedure has
also been developed that further reduces the compu-
tational cost of this design process.

Conclusions
The use of gradient formulations that depend only

of the surface mesh allows adjoint based methods to
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be used for unstructured grids in a computationally
efficient manner. Hence, it is now possible to devise a
completely automated shape optimization procedure
for complete aircraft configurations. Exploiting the
flexibility of unstructured grids, it is now possible to
tackle wing section and planform optimization, engine-
integration and empennage design with an integrated
computational procedure. Hence, we believe that this
approach holds great promise for airplane design.

Ongoing and Future Directions of Research
Our results provide a verification that an unstruc-

tured adjoint method is both computationally feasible,
and can satisfy the typical constraints encountered in
aerodynamic design. We plan to leverage this ability
to provide an engineering tool for airplane designers by
using a CAD interface to perform the shape modifica-
tion. We believe that this capability will provide the
designer with a consistent CAD definition of the final
redesigned shape that can be used for either struc-
tural analysis or for manufacturing purposes. Using
this tool we plan eventually to include all the major
components in the design, such as pylon, winglet, na-
celle, fin and tail shapes, along with the intersections of
the various components. We have already performed
flow simulations of a variety of airplane configurations
in transonic and supersonic flight (figures 25, 26, 27
and 28), and plan to show redesigns of some of these
configurations during the Aerospace Sciences Meeting
at Reno in 2004.
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Fig. 1 Control volume for cell-vertex schemes in
three dimensions
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Fig. 2 Evaluation of fluxes in three dimensions

Repeat until design

Mesh deformation

Pre−processor

Generate sequence of
meshes 

criterion is satisfied

thickness constraints
shape modification with

Gradient evaluation,

Adjoint Solver

Flow Solver

Fig. 3 Flow chart of the overall design process

RAE 2822                                                                        
MACH   0.750    ALPHA  0.703                

CL    0.5999    CD    0.0062    CM   -0.1334

GRID  161X33    NDES       0   RES0.785E-05   GMAX 0.000E+00
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Fig. 4 Initial pressure distribution for the RAE-
2822 airfoil
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RAE 2822 :DRAG REDUCTION                                                        
MACH   0.750    ALPHA  0.843                

CL    0.6000    CD    0.0026    CM   -0.1289

GRID  161X33    NDES      60   RES0.993E-05   GMAX 0.558E-02
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Fig. 5 Pressure distribution as a result of drag
minimization for the RAE-2822 airfoil, drag re-
duced by 36 counts

RAE 2822 : INVERSE TO SHOCK FREE SOLUTION                                       
MACH   0.750    ALPHA  0.763                

CL    0.6000    CD    0.0025    CM   -0.1242

GRID  161X33    NDES      40   RES0.466E-05   GMAX 0.255E-02

0.
1E

+
01

0.
8E

+
00

0.
4E

+
00

-.
2E

-1
5

-.
4E

+
00

-.
8E

+
00

-.
1E

+
01

-.
2E

+
01

-.
2E

+
01

C
p

+
+++++++++++++++++++

+
+

+
+

+
+

+
+

+
++++++++++++++++++++++++++++

+
+
+
+
+
+
+
+
+
+
+
+
+
+++

+
+

+

+

+

+

+

+

+
+
+
+
+
+
++
++
++
++
++
+++++++++++

++++++++++++++++++++++++++++++++
+

+
+

+
+

+
+

+++++++++
+
+
+
++

+
oooooooooooooooooo

o
o

o
o

o
o

o
o

ooooooooooooooooooooooooooooo
o
o
o
o
o
o
o
o
o
o
o
o
o
o
ooo
o

o

o

o

o

o

o

o

o

o
o
o
o
oo
oo
oo
ooo
ooooooooooo

ooooooooooooooooooooooooooooooooo
o

o
o

o
o

o
o

o
o
o
o
o
o
o
o
o
o
o
o
oo

Fig. 6 Attained(+,x) and target(o) pressure dis-
tribution for the RAE-2822 airfoil

NACA 0012 WING TO ONERA M6 TARGET                                               
Mach: 0.840    Alpha: 3.060                                                     
CL:  0.325    CD: 0.02319    CM: 0.0000                                         
Design:   0    Residual:  0.2763E-02                                            
Grid: 193X 33X 33                                                               

Cl:  0.308    Cd: 0.04594    Cm:-0.1176                                         
Root Section:   9.8% Semi-Span

Cp = -2.0

Cl:  0.348    Cd: 0.01749    Cm:-0.0971                                         
Mid Section:  48.8% Semi-Span

Cp = -2.0

Cl:  0.262    Cd:-0.00437    Cm:-0.0473                                         
Tip Section:  87.8% Semi-Span

Cp = -2.0

Fig. 7 Initial(dashed lines) and final (solid lines)
over a NACA 0012 wing

NACA 0012 WING TO ONERA M6 TARGET                                               
Mach: 0.840    Alpha: 3.060                                                     
CL:  0.314    CD: 0.01592    CM: 0.0000                                         
Design:  50    Residual:  0.1738E+00                                            
Grid: 193X 33X 33                                                               

Cl:  0.294    Cd: 0.03309    Cm:-0.1026                                         
Root Section:   9.8% Semi-Span

Cp = -2.0

Cl:  0.333    Cd: 0.01115    Cm:-0.0806                                         
Mid Section:  48.8% Semi-Span

Cp = -2.0

Cl:  0.291    Cd:-0.00239    Cm:-0.0489                                         
Tip Section:  87.8% Semi-Span

Cp = -2.0

Fig. 8 Initial(dashed lines) and final (solid lines)
pressure distribution and modified section geome-
tries
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NACA 0012 WING TO ONERA M6 TARGET               
MACH   0.840    ALPHA  3.060      Z     0.00

CL    0.2814    CD    0.0482    CM   -0.1113

GRID  192X32    NDES      50    RES0.162E-02
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Fig. 9 Attained(+,x) and target(o) pressure dis-
tributions at 0 % of the wing span

NACA 0012 WING TO ONERA M6 TARGET               
MACH   0.840    ALPHA  3.060      Z     0.40

CL    0.3269    CD    0.0145    CM   -0.0865

GRID  192X32    NDES      50    RES0.162E-02
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Fig. 10 Attained(+,x) and target(o) pressure dis-
tributions at 40 % of the wing span

NACA 0012 WING TO ONERA M6 TARGET               
MACH   0.840    ALPHA  3.060      Z     0.80
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Fig. 11 Attained(+,x) and target(o) pressure dis-
tributions at 80 % of the wing span
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Fig. 12 Final computed and target pressure dis-
tributions at 100 % of the wing span
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SHARKX6 (JCV:  16 DEC 99)                                                       
Mach: 0.780    Alpha: 1.400                                                     
CL:  0.280    CD: 0.00624    CM: 0.0000                                         
Design:  60    Residual:  0.1528E+00                                            
Grid: 193X 33X 49                                                               

Cl:  0.241    Cd: 0.02383    Cm:-0.1179                                         
Root Section:   6.6% Semi-Span

Cp = -2.0

Cl:  0.406    Cd: 0.00203    Cm:-0.1871                                         
Mid Section:  49.2% Semi-Span

Cp = -2.0

Cl:  0.280    Cd:-0.01369    Cm:-0.1042                                         
Tip Section:  91.8% Semi-Span

Cp = -2.0

Fig. 13 Initial(dashed lines) and final(solid lines)
pressure and section geometries

SHARKX6 (JCV:  16 DEC 99)                       
MACH   0.780    ALPHA  1.400      Z   16.548

CL    0.2787    CD    0.0120    CM   -0.1352

GRID  192X32    NCYC      80    RES0.683E-03
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Fig. 14 Attained(+,x) and target(o) pressure dis-
tributions at 5 % of the wing span

SHARKX6 (JCV:  16 DEC 99)                       
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Fig. 15 Attained(+,x) and target(o) pressure dis-
tributions at 50 % of the wing span

SHARKX6 (JCV:  16 DEC 99)                       
MACH   0.780    ALPHA  1.400      Z  115.834

CL    0.3122    CD   -0.0139    CM   -0.1244
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Fig. 16 Initial and final pressure distributions at
95 % of the wing span
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      AIRPLANE                                                                  
                                                                                
DENSITY                          from     0.6250 to     1.1000                  

Fig. 17 Density contours for a business jet at M =
0.8, α = 2
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Fig. 18 Pressure distribution at 66 % wing span
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Fig. 19 Pressure distribution at 77 % wing span
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Fig. 20 Pressure distribution at 88 % wing span
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      AIRPLANE                                                                  
                                                                                
DENSITY                          from     0.6250 to     1.1000                  

Fig. 21 Density contours for a business jet at M =
0.8, α = 2.3, after redesign
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Fig. 22 Pressure distribution at 66 % wing span,
after redesign, Dashed line: original geometry,
solid line: redesigned geometry
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Fig. 23 Pressure distribution at 77 % wing span,
after redesign, Dashed line: original geometry,
solid line: redesigned geometry
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Fig. 24 Pressure distribution at 88 % wing span,
after redesign, Dashed line: original geometry,
solid line: redesigned geometry
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      AIRPLANE                                                                  
                                                                                
DENSITY                          from     0.6250 to     1.1000                  

Fig. 25 Density contours for the A-320

                                                                                

      AIRPLANE                                                                  
                                                                                
DENSITY                          from     0.6250 to     1.1000                  

Fig. 26 Density contours for the MD-11

                                                                                

      AIRPLANE                                                                  
                                                                                
CP                               from    -0.8000 to     0.5000                  

Fig. 27 Pressure contours for the Boeing 747-200

                                                                                

      AIRPLANE                                                                  
                                                                                
DENSITY                          from     0.0000 to     2.0000                  

Fig. 28 Pressure contours for the Hermes Shuttle
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