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I. Introduction

The use of adjoints for PDE constrained optimization problems has become a common design tool in
many areas of applied engineering. The use of adjoint methods for shape optimization has received much
attention as it exploits the inherent advantage of computing the Frechet derivative of a single or small number
of objectives with minimal computational effort.1 Topology optimization primarily for problems in structural
mechanics has also used adjoints to efficiently compute sensitivities of the weight of the structure.4 Inverse
design to recover the shape that results in a particular scattering pattern have used adjoints to quickly
morph topologies.3 Eulerian network models5 of transportation (personal and commercial) fleets have also
been controlled using adjoints to determine the control authority that maximizes throughput of hubs and
transportation corridors.

The objective of this paper is to formulate and solve the adjoint problem for a variety of PDE constrained
optimization problems. The PDEs we will address include Euler equations, linear elasticity, helmholtz and
wave equations. For the Euler equations, building on experience of the second author, we plan to tackle new
objective functions that include derivatives of the state variables. For the problems in linear elasticity we
compare continuous and discrete formulations for minimum weight structures. For the Hemlhotz problem,
we study objective functions that contain a mix of polynomial and derivatives in the state-variable. For
the wave propagation problem, we use the linear wave equation and its adjoint formulation to determine
time dependent optimal controls that enable the identification of the scattering object. Finally, we look
at problems in which the PDEs constraining the optimization problem discontinuously change in time and
space.

II. The general formulation of the Adjoint Approach to Optimal Design

The cost function are functions of the state variables, w, and the control variables, which may be repre-
sented by the function, F , say. Then

I = I(w,F),

and a change in F results in a change

δI =
∂IT

∂w
δw +

∂IT

∂F δF , (1)

in the cost function. Using control theory, the governing equations for the state variables are introduced as
a constraint in such a way that the final expression for the gradient does not require re-evaluation of the
state. In order to achieve this, δw must be eliminated from equation 1. Suppose that the governing equation
R which expresses the dependence of w and F within the domain D can be written as

R(w,F) = 0 (2)
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Then δw is determined from the equation

δR =
[
∂R

∂w

]
δw +

[
∂R

∂F
]
δF = 0 (3)

Next, introducing a Lagrange Multiplier ψ, we have

δI =
∂IT

∂w
δw +

∂IT

∂F δF − ψT

([
∂R

∂w

]
δw +

[
∂R

∂F
]
δF

)

δI =
(
∂IT

∂w
− ψT

[
∂R

∂w

])
δw +

(
∂IT

∂F − ψT

[
∂R

∂F
])

δF

Choosing ψ to satisfy the adjoint equation

[
∂R

∂w

]T

ψ =
∂I

∂w
(4)

the first term is eliminated and we find that

δI = GδF (5)

where

G =
∂IT

∂F − ψT

[
∂R

∂F
]

(6)

This process allows for elimination of the terms that depend on the flow solution with the result that the
gradient with respect with an arbitrary number of design variables can be determined without the need for
additional flow field evaluations.

After taking a step in the negative gradient direction, the gradient is recalculated and the process repeated
to follow the path of steepest descent until a minimum is reached. In order to avoid violating constraints,
such as the minimum acceptable wing thickness, the gradient can be projected into an allowable subspace
within which the constraints are satisfied. In this way one can devise procedures which must necessarily
converge at least to a local minimum and which can be accelerated by the use of more sophisticated descent
methods such as conjugate gradient or quasi-Newton algorithms. There is a possibility of more than one
local minimum, but in any case this method will lead to an improvement over the original design.

III. Design using the Euler Equations

In this section, we discuss the use of the adjoint-based approach for optimal design for a problem that
was formulated by the second author and since altered our view of gradient-based shape optimization.

The application of control theory to aerodynamic design problems is illustrated in this section for the
case of three-dimensional wing design using the compressible Euler equations as the mathematical model.
It proves convenient to denote the Cartesian coordinates and velocity components by x1, x2, x3 and u1, u2,
u3, and to use the convention that summation over i = 1 to 3 is implied by a repeated index i. Then, the
three-dimensional Euler equations may be written as

∂w

∂t
+
∂fi

∂xi
= 0 in D, (7)

where

w =





ρ

ρu1

ρu2

ρu3

ρE





, fi =





ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiu3 + pδi3

ρuiH





(8)
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and δij is the Kronecker delta function. Also,

p = (γ − 1) ρ
{
E − 1

2
(
u2

i

)}
, (9)

and
ρH = ρE + p (10)

where γ is the ratio of the specific heats.
Consider a transformation to coordinates ξ1, ξ2, ξ3 where

Kij =
[
∂xi

∂ξj

]
, J = det (K) , K−1

ij =
[
∂ξi
∂xj

]
,

and
S = JK−1.

The elements of S are the cofactors of K, and in a finite volume discretization they are just the face areas
of the computational cells projected in the x1, x2, and x3 directions. Using the permutation tensor εijk we
can express the elements of S as

Sij =
1
2
εjpqεirs

∂xp

∂ξr

∂xq

∂ξs
. (11)

Then

∂

∂ξi
Sij =

1
2
εjpqεirs

(
∂2xp

∂ξr∂ξi

∂xq

∂ξs
+
∂xp

∂ξr

∂2xq

∂ξs∂ξi

)

= 0. (12)

Now, multiplying equation(7) by J and applying the chain rule,

J
∂w

∂t
+R (w) = 0 (13)

where
R (w) = Sij

∂fj

∂ξi
=

∂

∂ξi
(Sijfj) , (14)

using (12). We can write the transformed fluxes in terms of the scaled contravariant velocity components

Ui = Sijuj

as

Fi = Sijfj =




ρUi

ρUiu1 + Si1p

ρUiu2 + Si2p

ρUiu3 + Si3p

ρUiH



.

Assume now that the new computational coordinate system conforms to the wing in such a way that
the wing surface BW is represented by ξ2 = 0. Then the flow is determined as the steady state solution of
equation (13) subject to the flow tangency condition

U2 = 0 on BW . (15)

At the far field boundary BF , conditions are specified for incoming waves, as in the two-dimensional case,
while outgoing waves are determined by the solution.

The weak form of the Euler equations for steady flow can be written as
∫

D

∂φT

∂ξi
FidD =

∫

B
niφ

TFidB, (16)
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where the test vector φ is an arbitrary differentiable function and ni is the outward normal at the boundary.
If a differentiable solution w is obtained to this equation, it can be integrated by parts to give

∫

D
φT ∂Fi

∂ξi
dD = 0

and since this is true for any φ, the differential form can be recovered. If the solution is discontinuous
(16) may be integrated by parts separately on either side of the discontinuity to recover the shock jump
conditions.

Suppose now that it is desired to control the surface pressure by varying the wing shape. For this purpose,
it is convenient to retain a fixed computational domain. Then variations in the shape result in corresponding
variations in the mapping derivatives defined by K. As an example, consider the case of an inverse problem,
where we introduce the cost function

I =
1
2

∫ ∫

BW

(p− pd)
2
dξ1dξ3,

where pd is the desired pressure. The design problem is now treated as a control problem where the control
function is the wing shape, which is to be chosen to minimize I subject to the constraints defined by the
flow equations (13). A variation in the shape will cause a variation δp in the pressure and consequently a
variation in the cost function

δI =
∫ ∫

BW

(p− pd) δp dξ1dξ3 +
1
2

∫

B
(p− pt)2dδS (17)

where typically the second term is negligible and can be dropped.
Since p depends on w through the equation of state (9–10), the variation δp can be determined from the

variation δw. Define the Jacobian matrices

Ai =
∂fi

∂w
, Ci = SijAj . (18)

The weak form of the equation for δw in the steady state becomes
∫

D

∂φT

∂ξi
δFidD =

∫

B
(niφ

T δFi)dB,

where
δFi = Ciδw + δSijfj ,

which should hold for any differential test function φ. This equation may be added to the variation in the
cost function, which may now be written as

δI =
∫ ∫

BW

(p− pd) δp dξ1dξ3

−
∫

D

(
∂φT

∂ξi
δFi

)
dD

+
∫

B

(
niφ

T δFi

)
dB. (19)

On the wing surface BW , n1 = n3 = 0. Thus, it follows from equation (15) that

δF2 =




0

S21δp

S22δp

S23δp

0




+




0

δS21p

δS22p

δS23p

0




. (20)
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Since the weak equation for δw should hold for an arbitrary choice of the test vector φ, we are free to
choose φ to simplify the resulting expressions. Therefore we set φ = ψ, where the co-state vector ψ is the
solution of the adjoint equation

∂ψ

∂t
− CT

i

∂ψ

∂ξi
= 0 in D. (21)

At the outer boundary incoming characteristics for ψ correspond to outgoing characteristics for δw. Conse-
quently one can choose boundary conditions for ψ such that

niψ
TCiδw = 0.

Then, if the coordinate transformation is such that δS is negligible in the far field, the only remaining
boundary term is

−
∫ ∫

BW

ψT δF2 dξ1dξ3.

Thus, by letting ψ satisfy the boundary condition,

S21ψ2 + S22ψ3 + S23ψ4 = (p− pd) on BW , (22)

we find finally that

δI = −
∫

D

∂ψT

∂ξi
δSijfjdD

−
∫ ∫

BW

(δS21ψ2 + δS22ψ3 + δS23ψ4) p dξ1dξ3. (23)

Here the expression for the cost variation depends on the mesh variations throughout the domain which
appear in the field integral. However, the true gradient for a shape variation should not depend on the way
in which the mesh is deformed, but only on the true flow solution. In the final version of the paper, we show
how the field integral can be eliminated to produce a reduced gradient formula which depends only on the
boundary movement.

A. The need for a Sobolev inner product in the definition of the gradient

Another key issue for successful implementation of the continuous adjoint method is the choice of an appro-
priate inner product for the definition of the gradient. It turns out that there is an enormous benefit from
the use of a modified Sobolev gradient, which enables the generation of a sequence of smooth shapes. This
can be illustrated by considering the simplest case of a problem in calculus of variations.

Choose y(x) to minimize

I =

b∫

a

F (y, y
′
)dx

with fixed end points y(a) and y(b). Under a variation δy(x),

δI =

b∫

a

(
∂F

∂y
δy +

∂F

∂y′
δy

′
)
dx

=

b∫

a

(
∂F

∂y
− d

dx

∂F

∂y′

)
δydx

Thus defining the gradient as

g =
∂F

∂y
− d

dx

∂F

∂y′

and the inner product as

(u, v) =

b∫

a

uvdx
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we find that
δI = (g, δy)

Then if we set
δy = −λg, λ > 0

we obtain a improvement

δI = −λ(g, g) ≤ 0

unless g = 0, the necessary condition for a minimum. Note that g is a function of y, y
′
, y
′′
,

g = g(y, y
′
, y
′′
)

In the case of the Brachistrone problem, for example

g = − 1 + y
′2 + 2yy

′′

2 (y(1 + y′2))3/2

Now each step
yn+1 = yn − λngn

reduces the smoothness of y by two classes. Thus the computed trajectory becomes less and less smooth,
leading to instability.

In order to prevent this we can introduce a modified Sobolev inner product

〈u, v〉 =
∫

(uv + εu
′
v
′
)dx

where ε is a parameter that controls the weight of the derivatives. If we define a gradient g such that

δI = 〈g, δy〉

Then we have

δI =
∫

(gδy + εg
′
δy

′
)dx

=
∫

(g − ∂

∂x
ε
∂g

∂x
)δydx

= (g, δy)

where
g − ∂

∂x
ε
∂g

∂x
= g

and g = 0at the end points. Thus g is obtained from g by a smoothing equation.
Now the step

yn+1 = yn − λngn

gives an improvement
δI = −λn〈gn, gn〉

but yn+1 has the same smoothness as yn, resulting in a stable process.
In applying control theory for aerodynamic shape optimization, the use of a Sobolev gradient is equally

important for the preservation of the smoothness class of the redesigned surface and we have employed it
to obtain all the results in this study. We refer the reader to numerous studies performed by the second
author in the area of shape optimization for transonic and supersonic flows for a complete mathematical
formulation and a wide variety of practical results.
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IV. Design using the Equations of Linear Elasticity

Topological optimization is an important aspect in the design of engineering structures. Typically, an
engineer is interested in the design of a structure with minimum weight while satisfying the compliance
conditions with respect to the external loads, while satisfying the constraints on maximum allowable stress.
This problem has been widely studied using a discrete adjoint formulation in conjunction with the use of
a regularizing method that transforms the originally ill-conditioned integer optimization problem to one of
continuous optimization. Thus the optimization problem can be written using a penalty function approach
as

I(σ, ρ) =
∫

D

ρdV + α

∫

D

(σ(xs)− σmax)δ(xs − x)dV

where ρ is the density at each point in the structural domain (D), α is the penalty parameter on the violation
of the stress constraints, σ is the stress field in the domain, σmax is the maximum allowable stress, δ is the
kronecker delta function that enables the inclusion of a domain integral in the objective function for the
pointwise stress constraints.

The constraint equations are the governing equations for linear elasticity

∂σij(u)
∂xj

+ fj = 0

where fj are the combined external and internal loads on the structure and u is the displacement field. The
optimization problem can now be posed as follows,

min
ρ
I(σ, ρ)

s.t. σij,j + fj = 0
and 0 ≤ ρ ≤ 1 (24)

Note that constraint equation is similar in form to the viscous operator for the Navier-Stokes equation.
Proceeding in a manner similar to shape optimization for flow problems, we write the variation in the cost
function as,

δI =
∂I

∂σ
δσ(u) +

∂I

∂ρ
δρ

The variational form the constraint equations, R(σ, ρ) = 0, for an arbitrary test function φ, can be written
as,

∫

D

φδR(σ, ρ) = 0

where,

δR =
∂R

∂σ
δσ +

∂R

∂ρ
δρ

. Here the dependence of the constraint equation on the control variable, ρ, is through the definition of the
Young’s modulus,

E(ρ) =
(
ρ

ρ0

)β

E(ρ0)

This regularization enables ρ to vary smoothly between 0 and 1. Integration of the terms in the variational
form of the constraint that contain terms corresponding to the variation in the stresses by parts can be
written as

∫

B

φδσdB −
∫

D

∂φ

∂xi
σijdV
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The first term represents an integral over the boundary of the domain and the test function on the boundary
can be chosen to cancel the term in the variation of the cost function that depends on the variation in the
stresses. The second term can be integrated by parts again after noting that

σij = E(ρ)
∂ui

∂xj

∫

B

∂φ

∂x
Eδui −

∫

D

∂

∂xi
E
∂φ

∂xj

where the first term is identically equal to zero as the displacements are either prescribed as boundary
conditions or as a compliance condition. The second term along with the boundary conditions on the test
function along the boundary is the adjoint equation. It has a form similar to the constraint equation (as
is well-known that equations of linear elasticity are self-adjoint) and can be solved using the FE procedure
used to obtain the displacement field. The gradient can now be written as,

∫

D

(
1− φT ∂

∂xi

∂E

∂ρ

∂ui

∂xj

)
dV

Compared to the discrete adjoint formulation that starts with Ku = f , it appears that the adjoint
equations, its boundary conditions and the gradient term are exactly similar.

Using this formulation, we use a freely available software, FEAP, from Robert Taylor at University of
California at Berkeley and optimize the structural layout of a plate with different boundry conditions and
loads. Figure 1 shows the optimized structural layout of aplte with pin-jointed ends and point load at the
center. The red portions in the figure shows regions of high material density. It can be seen that the optimal
topology that is similar to a truss-like structure. Figure 2 shows the optimal layout for a plate with clamped
ends and point load in the middle. Again a truss like-layout is recovered by the optimization process.

0 1 2 3 4 5 6
0

0.5

1
Point loaded plate with pin joints at bottom corners

Figure 1. Optimal Topological layout of a plate with pin-jointed ends

0 1 2 3 4 5 6
0

0.5

1
Point loaded plate with pin joints along either side

Figure 2. Optimal Topological layout of a plate with clamped ends

V. PDEs with Discontinuous State Transitions

There exists many areas of engineering where the constrained equation changes behavior and form in
state and time. Eulerian models for transportation fleets and biological systems are common examples. As
the state variables discontinuously change value when the PDE changes behavior, additional mathematical
difficulties arise in the adjoint formulations due to the non-differentiable nature of the resulting weak form
of the constraint equation and the gradients for the optimization problem. While similar problems exist for
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transonic shape optimization problems when shocks are present, the computational strategy that employs
adjoints recovers meaningful designs.

Figure 3 shows the evolution of the state equation that has the form

∂ρ

∂t
+ ci(t)

∂ρ

∂x
= 0

where ρ represents the density of cars over the interval in space, ci(t) is a constant that controls the speed
of traffic at different instants in time. The numerical solution of this PDE has been obtqained using a SLIP
construction to accurately capture the discontinuous nature in the evolution of the density of vehicles. The
objective is to determine when to switch the speed of traffic so that the flux of cars is maximized. Figure 5
shows the flux of cars as a function of time illustrating the discontinuous nature of the functional to be
maximized.

maxJ = max

2∑

i=1

∫ t2i

t1i

∫ l

0

ρ u dx dt

It is easy to see that the co-state equation has a similar form as the state equation, linear wave-equation
like PDE. Figure 4 shows the evolution of the co-state equation for a given initial condition and the state
equation that evolves according to figure 3.
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Variation of the density of cars in time and space

Figure 3. Evolution of the density of vehicles along the highway, c1(x) = 1 0 < x < 0.5, c2(x) = 1.5 0.5 < x < 1.0
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Figure 4. Evolution of the adjoint variable in time and space
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Figure 5. Discontinuous flux of vehicles

It is straight-forward to follow the procedure outlined for aerodynamic shape optimization to derive the
gradient of the cost function with respect to the instant in time when the traffic flow switches from one
speed to another. This is a simple problem where it is easy to see that to maximize the traffic flow through
the interval in space, one would want to allow all traffic to pass through in the mode with maximum speed.
Figure 6 shows that this is captured by the numerical procedure. The switching time gradually moves
towards the final time as the first mode allows vehicles to travel at twice the speed.

0 0.01 0.02 0.03 0.04 0.05 0.06
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Time
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Integral of flux over interval in space vs. instance in time

 

 
Initial
Subsequent

Figure 6. Evolution of flux during optimization

VI. Conclusions

The aim of this study was to take a closer look at the adjoint formulations for problems other than shape
optimization for flow problems. We show that using the same frame-work, one can easily extend the adjoint
technique to other PDEs. Towards this end, we have looked at other PDEs common in engineering systems
and formulated adjoints and the corresponding gradients for them. This has been demonstarted for model
problems in linear elasticity and traffic flow problems.
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