Demonstration of a Lossless Monolithic 16x16 QW SOA Switch

H. Wang ${ }^{(1)}$, A. Wonfor ${ }^{(1)}$, K.A Williams ${ }^{(1,2)}$, R.V. Penty ${ }^{(1)}$, I.H. White ${ }^{(1)}$
${ }^{(1)}$ Centre for Photonic Systems, Electrical Engineering Division, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK, hw288@cam.ac.uk
${ }^{(2)}$ Technische Universiteit Eindhoven, P.O. Box 513,5600 MB, Eindhoven, The Netherlands

Abstract $10 \mathrm{~Gb} / \mathrm{s}$ error-free operation of the first monolithic 16×16 quantum well semiconductor optical amplifier switch is demonstrated. The switch has a 2dB facet-to-facet gain and a minimum power penalty of 2.5 dB .

Introduction

In recent years, the demand for optical networks able to rapidly re-route signals between moderate numbers of input and output fibres has encouraged research into the use of photonics in switching. As optical switches using MEMs technology and the like have limited speed ${ }^{1}$, semiconductor optical amplifier (SOA) based photonic switches have attracted growing interest owing to their ability to achieve lossless switching of high capacity data with nanosecond switching timescales ${ }^{2}$. Such switches have recently undergone much development, with integrated $2 \times 2^{3}, 4 \times 4^{4}$ and 8×8 port switches ${ }^{5}$ being reported, the latter being achieved with multiple integrated 1×8 switching elements. Scaling further requires unprecedented levels of component integration ${ }^{6}$.
However, for practical applications, devices with port counts of at least 16×16 are needed for systems applications ${ }^{7}$. Recently, feasibility studies have shown that 16×16 port counts can be achieved using cascaded 4×4 devices with fibre interconnections ${ }^{8}$.
In this work we report the first monolithically integrated 16×16 port SOA based optical switch, incorporating ~ 1100 individual components. The switch is re-arrangably non-blocking and has a chip area of $40 \mathrm{~mm}^{2}$.

Device details

The monolithic integrated 16×16 switch used for this work is based on a 3-stage hybrid Clos-Tree structure, shown in figure 1. Three columns of four 4×4 port switching elements are connected by two shuffle networks to create the 16×16 port switch. Each of the 4×4 switching elements comprises its own input and output shuffle networks and 16 SOA gates.

Fig. 1: Schematic of 3 -stage 16×16 switch architecture based on 4×4 switch elements
The switch is fabricated from all active material with a 6 QW AlGalnAs active region, grown on an InP
substrate. The paths through the switch are constructed from $2 \mu \mathrm{~m}$ ridge waveguides, whereas the SOA gates are tapered to $4 \mu \mathrm{~m}$ wide ridges. The waveguide interconnections comprising the shuffle networks are constructed from deep etched total internal reflection (TIR) mirrors and beam splitters formed with tapered waveguides.
The waveguides in each shuffle network are biased to provide a small loss between successive SOA gates, to minimize the buildup of amplified spontaneous emission. The SOA gates provide routeing functionality and sufficient gain to allow lossless operation of the entire switch.
It should be stressed that the current chip is re-growth free i.e. without active-passive interfaces. It is believed that the inclusion of, for example, passive shuffle networks would reduce ASE, nonlinear distortion and power consumption.
Figure 2 shows the layout of the switch. Each path has three gating SOAs and goes through eight shuffle sections with a mean path length of 9 mm . The switch contains 192 SOAs, 210 waveguide crossings, 288 splitters, 424 etched corner mirrors and has dimensions of $6.3 \mathrm{~mm} \times 6.5 \mathrm{~mm}$.

Fig. 2: Schematic of the 16×16 switch showing the 4×4 switch elements and shuffle network sections (left). Insets show (i) waveguide beam splitter, (ii) gating SOA waveguides and (iii) TIR turning mirror.

Experimental details

The integrated switch is mounted on a thermo-electric cooler and operated at $15^{\circ} \mathrm{C}$, with lensed fibres used to couple light on and off the chip. Operation of the entire 16×16 switch requires 192 high bandwidth electrical connections for the gating SOAs and 26 low speed connections for the shuffle. We switch between two outputs so that the dynamic performance of the device may be characterized.
The switch is operated with selected gating SOAs
driven switched between 0 and 100mA. This ensures good crosstalk performance within the switch. The shuffle networks associated with the first two banks of switching elements are each biased at 495 mA , while the shuffle network for the last bank is biased at 600 mA . The two large intermediate shuffle networks are each biased at 700 mA . This drive current is equivalent to 750 mA per path.
Optical measurements are performed using a tunable laser and optical spectrum analyser to determine the c.w. performance of the switch, with fibre coupling losses estimated from photocurrent measurements. Dynamic optical measurements are performed using a $10 \mathrm{~Gb} / \mathrm{s} 2^{31}-1$ PRBS signal from a Mach-Zehnder modulator and an optically pre-amplified and filtered receiver.

Results

The switch has a facet-to-facet gain of 2 dB at 1557.5 nm with fibre coupling losses measured to be 4 dB per facet. The TIR mirror loss has been measured to be 4 dB . Optimisation of the design is expected to improve this to 2 dB per mirror ${ }^{9}$. The 3 dB on-chip output saturation power is -6.3 dBm with a 3 dB spectral bandwidth of 9 nm . The switch output has an in-band optical signal-to-noise ratio (OSNR) of 15.5 dB . As can be seen from figure 3, the switch operates with a power penalty of 2.5 dB at a BER of 10^{-9} for an on-chip input power of -15 dBm . An input power dynamic range (IPDR) of $>4 \mathrm{~dB}$ is measured for a power penalty of less than 4 dB , as can be seen in figure 4.

Fig. 3 Bit error rates and eye diagrams showing low power penalty for a number of different input powers

Fig. 4 Power penalty as a function of on-chip input power
Dynamic switch performance is assessed by modulating the drive current to the gating SOAs. The
dynamic operation of the switch is demonstrated by switching packets between two paths (the output from one path being shown in figure 5). This is achieved by switching on/off the middle gate SOAs from OmA to 100 mA with a 1 ns electrical transition. A 15 dB optical extinction ratio is observed at the output when the switch is operated, as the final gate SOAs and shuffle networks remain on and therefore contribute to ASE at the output. The non-optimised switching times are measured to be 10 ns and 3 ns for the rising and falling edges, respectively.

Fig. 5 Switching of $10 \mathrm{~Gb} / \mathrm{s}$ signal with 10 ns rise-time and 3ns fall-time.

Discussion

The power consumption of the current chip is estimated to be $\sim 12 \mathrm{~W}$ for a fully non-blocking 16×16 interconnection, a power density of $0.3 \mathrm{~W} / \mathrm{mm}^{2}$ which is a relatively modest value for heat dissipation. This power consumption could be reduced further by the replacement of the current active shuffle networks with their passive equivalents. Currently the shuffle networks consume $\sim 60 \%$ of the drive current and so this approach may reduce the power requirement to <5W (or $300 \mathrm{~mW} /$ path).

Conclusions

The first monolithically integrated 16×16 SOA crosspoint switch is demonstrated. The switch has a positive facet-to-facet gain, and an output saturation power of -7 dBm . Routing of a $10 \mathrm{~Gb} / \mathrm{s}$ signal is achieved with a minimum power penalty of 2.5 dB , showing its promising ability for high speed switching applications such as packet switching.

References

1 D.T. Neilson et al. J Lightwave Technol. ,Vol 22, No 6, (2004).
2 R.P. Luijten et al. Proc OFC '09 (2009)
3 E.T. Aw et al. CLEO'08 (2008)
4 H. Wang et al. Proc ECOC '08 (2008)
5 Y. Kai et al. Proc ECOC '08 (2008)
6 R. Nagarajan and M. Smit, IEEE LEOS Newsletter, 4-10, June 2007
7 L. Dittmann et al. J Sel Area Comm. Vol 21, No 7 (2003)

8 H. Wang et al. Proc OFC '09 (2009)
9 J. D. Burton et al. J Quantum Elect., Vol 29, No 6, (1993)

Acknowledgement

We acknowledge funding for the EPSRC HIPNet and COPOS projects and from the EU FP7 NoE BONE.

