## The Social Value of Expertise

Pablo Kurlat

Stanford University

SED 2013

◆□ > < 個 > < E > < E > E の < @</p>

## Questions

- How to think about expertise in financial markets
  - Rent-seeking vs. value-creation
  - "Are too many smart people going to Wall Street?"

- Expertise  $\equiv$  ability to evaluate assets
  - 1. Competitive equilibrium in lemons market with heterogeneous expertise

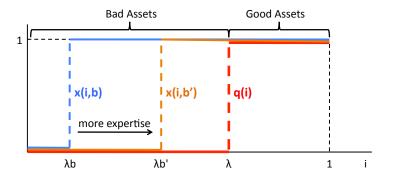
・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

2. Compare private vs social value of expertise

# The Economy

- Assets  $i \in [0,1]$  pay q(i) at t=2
  - $q(i) = \mathbb{I}(i > \lambda)$
  - Fraction  $\lambda$  are "lemons"
- Buyers b
  - Preferences  $u(c_1, c_2) = c_1 + c_2$
  - Endowment: w(b) of goods at t = 1
- Sellers v
  - Preferences  $u(c_1, c_2, v) = c_1 + \beta(v) \cdot c_2$ .  $\beta(v)$  increasing w.l.o.g.
  - Endowment: 1 unit of each possible asset
- Information:
  - Sellers: know i and therefore q(i)
  - Buyer b: observes signal  $x(i,b) = \mathbb{I}(i > b\lambda)$  but not index i
  - b exogenous for now; later: incentive to increase b

### Expertise



### Markets

- A large set of "markets" m. A market specifies
  - the price at which assets trade
  - "clearing algorithm" for assigning assets to buyers. Sellers may get rationed
- Sellers choose which assets to supply in each market
  - No exclusivity
- Buyers choose which markets to buy from
  - Impose an acceptance rule

$$\chi(i): I \rightarrow \{0,1\}$$

s.t.

 $\chi(i) = \chi(i')$  whenever x(i,b) = x(i',b)

•  $\chi(i) = 1$  means "I am willing to accept asset *i* in this market"

# Clearing Algorithms: Example

| i     | q(i) | $\chi(i)$ of buyer 1 | $\chi(i)$ of buyer 2 | <i>S</i> ( <i>i</i> ) |
|-------|------|----------------------|----------------------|-----------------------|
| Black | 0    | 0                    | 0                    | 1.5                   |
| Red   | 0    | 1                    | 0                    | 1.5                   |
| Green | 1    | 1                    | 1                    | 1.5                   |

• Option 1: buyer 1 picks first (at random)

| i     | Buyer 1 gets | Buyer 2 gets | Prob of selling |
|-------|--------------|--------------|-----------------|
| Black | 0            | 0            | 0               |
| Red   | 0.5          | 0            | $\frac{1}{3}$   |
| Green | 0.5          | 1            | 1               |

• Option 2: buyer 2 picks first (at random)

| i     | Buyer 1 gets | Buyer 2 gets | Prob of selling |
|-------|--------------|--------------|-----------------|
| Black | 0            | 0            | 0               |
| Red   | 0.75         | 0            | $\frac{1}{2}$   |
| Green | 0.25         | 1            | 56              |

## Equilibrium

• Define each possible {price, algorithm} as a separate market

#### Sellers:

- choose what markets (if any) to offer their assets in
- take as given the probability of selling each asset in each market
- Buyers
  - choose what markets to buy from and what acceptance rules to impose
  - take as given the distribution of assets they'll get in each market with each rule

ション ふゆ く 山 マ チャット しょうくしゃ

- Allocation: in each market
  - probability of selling each asset
  - distribution of assets for each acceptance rule
  - result from applying clearing algorithm to supply and demand

# Equilibrium Characterization

- Markets:
  - All trades take place in the same market
  - Clearing algorithm: "less-restrictive-first"
- Sellers:
  - Try to sell all bad assets
  - Try to sell good assets iff

$$\beta(v) \leq p^* \Rightarrow \text{defines cutoff } v^*$$

- Buyers:
  - Impose rule

$$\chi(i,b) = x(i,b)$$

- ▶ Only participate if sufficiently expert  $(b \ge b^*)$
- Trades
  - All good assets offered do get sold
  - Bad assets get rationed depending on how many active buyers they mislead

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

## Equilibrium Characterization

- 1. Indifference for buyer  $b^*$ 
  - Accepts all good assets. Measure:  $v^*(1-\lambda)$
  - Accepts bad assets that look good:  $i \in [\lambda b^*, \lambda]$  . Measure:  $\lambda \left(1 b^*\right)$
  - Indifference:

$$p^{*} = \frac{v^{*}(1-\lambda)}{v^{*}(1-\lambda) + \lambda(1-b^{*})}$$
(1)

2. Indifference for seller  $v^*$ 

$$p^* = \beta(v) \tag{2}$$

- 3. Good assets get sold
  - Good assets bought by buyer b:

$$rac{w\left(b
ight)}{p^{st}}rac{v^{st}\left(1-\lambda
ight)}{v^{st}\left(1-\lambda
ight)+\lambda\left(1-b
ight)}$$

If good assets are all sold:

$$\int_{b^*}^{1} \frac{w(b)}{p^*} \frac{v^*(1-\lambda)}{v^*(1-\lambda) + \lambda(1-b)} db = v^*(1-\lambda)$$
(3)



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

## Welfare Exercise

• Take w(b) (welath/expertise distribution) as given

• Consider single buyer with 1 unit of wealth and expertise b

- Compute marginal value of increasing expertise to  $b^\prime$ 
  - Marignal private value
  - Marginal social surplus

• For any cost-of-expertise function, efficiency depends on private vs. social

## Private Value

• Utility of buyer *b*:

$$U = \frac{1}{p^*} \left[ \frac{v^* (1 - \lambda)}{v^* (1 - \lambda) + \lambda (1 - b)} - p^* \right]$$

• Marginal value of expertise:

$$\frac{\partial U}{\partial b} = \frac{1}{p^*} \frac{\lambda (1-\lambda) v^*}{\left[ (1-\lambda) v^* + \lambda (1-b) \right]^2}$$

# Social Value

• Social surplus

$$S = (1 - \lambda) \int_{0}^{v^{*}} [1 - \beta(v)] dv$$

• Marginal social value of expertise

$$rac{\partial S}{\partial b} = (1 - \lambda) (1 - \beta(v)) rac{\partial v^*}{\partial b}$$

- Effects of more expertise  $\left(\frac{\partial v^*}{\partial b}\right)$ :
  - buy more good assets and fewer bad assets
  - $\Rightarrow\,$  (If nothing were to adjust) good assets run out
  - $\Rightarrow$  Higher equilibrium price (and marginal buyers withdraw)
  - $\Rightarrow$  Marginal sellers sell assets
- Computing:

$$\frac{\partial v^*}{\partial b} = \frac{\lambda(1-\lambda)v^*}{\left[ \begin{array}{c} w(b^*) \left[ \left[ (1-\lambda)v^* + \lambda(1-b^*) \right] \beta'(v^*) - \frac{\lambda(1-\lambda)(1-b^*)}{(1-\lambda)v^* + \lambda(1-b^*)} \right] \\ +\lambda(1-\lambda)v^*\beta'(v^*) + \lambda(1-\lambda)v^* \int_{\mathbf{b}^*}^{\mathbf{1}} w(b) \frac{(1-\lambda)}{[(1-\lambda)v^* + \lambda(1-b)]^2} db \end{array} \right]} \frac{\lambda}{\left[ (1-\lambda)v^* + \lambda(1-b) \right]^2}$$

## Comparison of Private and Social Value

• Ratio of private to social value:

$$\frac{\frac{\partial S}{\partial b}}{\frac{\partial U}{\partial b}} = \frac{p^* (1-p^*)}{\left[ \begin{array}{c} w \left(b^*\right) \left[ \left[ \frac{v^*}{\lambda} + \frac{1-b^*}{1-\lambda} \right] \beta' \left(v^*\right) - \frac{(1-b^*)}{(1-\lambda)v^* + \lambda(1-b^*)} \right] \\ + v^* \beta' \left(v^*\right) + v^* \int_{b^*}^{1} w \left(b\right) \frac{(1-\lambda)}{\left[(1-\lambda)v^* + \lambda(1-b)\right]^2} db \end{array} \right]}$$

ション ふゆ く 山 マ チャット しょうくしゃ

- Social value is relatively high when:
  - $\beta'(v^*)$  is low
    - ★ Many marginal sellers
  - w(b\*) is low
    - \* Expertise of marginal buyer very sensitive
  - p\* away from 0 or 1
    - $\star p^* \approx 1$ : marginal trades create little surplus
    - \*  $p^* \approx 0$ : large private return to expertise
- The ratio  $\frac{\frac{\partial S}{\partial b}}{\frac{\partial U}{\partial b}}$  does not depend on b
  - (Same for semi-experts and super-experts)