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Abstract

Cognitive functions such as a perception, thinking andngctire based on the
working of the brain, one of the most complex systems we kribue traditional
scientific methodology, however, has proved to be not saffidio understand the
relation between brain and cognition. The aim of this papéo review an alterna-
tive methodology — nonlinear dynamical analysis — and toatestrate its benefit
for cognitive neuroscience in cases when the usual redustimethod fails.



1 Introduction

Cognitive science aims at both understanding natural tiognfas in humans or
animals) and creating artificial systems resembling tharahbriginal. There are
basically two established ways of doing research in cogniscience (including
cognitive and computational neuroscience), either toprdor bottom-up. Both

approaches have their pro’s and con’s, and none is pradtiséite pure form.

For example, the main research strategy in computationaioseience - reverse
engineering - is basically bottom-up. Itis informed, hoaeby top-down consid-
erations about the goal of the computation performed by ¢weal system under
study. It is expected that united efforts of this kind willcseed in providing a
theory of cognition that is ultimately grounded in brain ggeses.

However, objections have been also raised saying that thblishied methods
do not meet the complexity of the object of study, and thatélsearch methodolgy
must be complemented accordingly. In this paper, I'll firesctibe briefly the
two traditional ways of doing cognitive (neuro-)sciencatthre commonly thought
to exhaust the possibilities. Then a third way of analysi®nlinear dynamical
analysis — is described that relies on results of complendsearch, i.e. chaos
theory and nonlinear modeling.

2 Top-down and bottom-up approaches

The top-down approach consists of (1) specifying a cognitivnction by focus-
ing on the characterization of the abstract principles theterlie that function.
Ideally, it proposes (2) possible neural algorithms thajhhsubserve this cogni-
tive function, and finally (3) maps these algorithms ontdrb@rcuits. In many
cases, however, the identification steps (2) and (3)hawedrto be very difficult
or unfeasible. The bottom-up approach consists of desgritkie structural and
functional properties of given brain circuits, and themfing this function into
congruence with the cognitive function under study.

Previously [1, 2], | have shown that both approaches set gmtbthod of
reverse engineeringThis method combines analysis with synthesis in the follow
ing way. Analysis is carried out top-down by specifying fiastertain cognitive
function which is assumed to be computed through the contesome cortical
subsystem. Then a decompositional analysis is perfornmedhie cortical system
is both functionally (computationally) and structurallg@bmposed, and the inter-
actions between components are determined. Followingottadisation concept,
the functional components (computational units) are assigo the anatomical
components.

Synthesis first requires modelling, i.e building a strualiyradequate, func-
tional model of the computational unit. Based on knowledb®aalised compo-
nents and their interactions, a structurally adequate ar&twodel of the cortical
system is build composed of the computational unit modelmutations of the



network model should eventually prove that the specific &ngnfunction under
study is generated this way.

Recent efforts to builartificial brains' employ both approaches [6, 7]. Large-
scale brain simulations attempt to model in a realisticifasthe details of the brain
organisation, i.e. its structure and function. The BlueiBRroject is one promi-
nent example of this bottom-up modelling strategy; its iExpdoal is to reverse
engineer the brain. On the other hand, biologically ingb@egnitive architectures
(BICAS) rely on the top-down approach. They attempt to achitbe brain’s cog-
nitive functionality by emulating its high-level performee without capturing the
neural details.

In the survey [6, 7] it was concluded that the two approacligsal very dif-
ferent strengths. While bottom-up brain simulations anefioed to syntactic as-
pects like how collections of neurons synchronize theicteleal discharges, they
do not tell anything about semantics, i.e. how brain praesnable cognitive
agents to achieve goals, select actions or process inflammdh contrast, BICAs
propose how brains may realise cognitive functions, buteashey demonstrate
rather simplistic behaviour compared to real brains. Thbas conjecture that
the deficiencies may be due to the fact that "BICAs lack theottbacomplex
generativity that comes from neural nonlinear dynamics.-they have the sensi-
ble and brain-like higher-level structures, but lack thedolevel complexity and
emergence that one sees in large-scale brain simulatiphsg. 48]. Bringing
large-scale brain simulations and BICAs together, theygesty will accomplish
progress toward the goals of cognitive science - understgrile brain and creat-
ing artificial cognitive systems.

3 Complex systems

The suggestion to integrate bottom-up, large-scale bmainlations and top-down
theories such as BICAs to progress in neuro-cognition rebelaas been made
from time to time. However, the predicted success has natapd what is appar-
ently due to the fact that both approaches have restrictidrish cannot be over-
come even by integration. Actually, both analysis methadsapplicable only to
a limited class of systems, the (near-)Jdecomposable sgs&srshown elsewhere
[1, 2]. There | have argued that the subjects of study of ¢ivgnand computa-
tional neuroscience — cognitive systems that realise ifmgtlocalised in neural
circuits of the brain — are not members of this class. Theyratances otomplex
systemsvhich resist the usual reductionist analyses.

The study of complex systems originated during the lastetlidecades or so
from the interplay of disciplines such as physics, math@sabiology, economy,

I Artificial brain” is a term used to describe research thaisto develop software and hardware
with cognitive abilities similar to humans or other mammaRrominent examples are SyNAPSE
(Systems of Neuromorphic Adaptive Plastic Scalable Ebits)[3], the Blue Brain Project[4] and
the China Brain Project [5].



engineering, and computer science. There is still no géperecepted definition
of complexity, despite a multitude of proposed approachkes (8, 9, 10]).

Important is the following distinction: we must differeaie between systems
that are complex and those which are merely complicatedd.511]:

A complicated system is composed of a large number of integac
components. Importantly, the properties of such a systembeaac-
curately predicted from a knowledge of the properties otheakits
components and a complete enumeration of their interastiomother
words, a complicated system is exactly the sum of its padsplex,
on the other hand, is a term reserved for systems that digptapyer-
ties that are not predictable from a complete descriptiothefr com-
ponents, and that are generally considered to be qualitidifferent
from the sum of their parts.

Editorial. Nature Biotechnology, 1999

From complexity theory we know that complex phenomena caprbduced
from the interaction of rather simple components. Wellanstbod examples are
artificial neural networks and cellular automata. Thesecarepositionally com-
plex systems, and it is indeed feasible to predict their ielia from the knowl-
edge of the properties of the components and their interatiThis is completely
different in the case of complex systems whose behaviourgaaen an unpre-
dictable way. The question then arises: how should compistesis be studied,
and which methods of investigation are available? In thiefiohg, | will consider
the method ofnonlinear dynamical analysis Other methods include relational
modelling [12, 13] and quantum theories [14].

4 Nonlinear dynamical analysis

4.1 Terminology

To apply a nonlinear dynamical analysis to a complex systeans to specify its
temporal evolution. Thetate spacéor phase spageof the system consists of the
set of all its possible states, determined by the values of all the variables that
describe the system at a particular moment in times iff described bym vari-
ables, it can be represented by a pointidimensional spacs,c R™. The system
dynamics is given by the set of equations or rules that cbititeosystem evolution
over time. In many cases the dynamics consists of a systencofipled differen-
tial equations, one for each system variable. Most natystess are continuous
systems and thereforeis a function of times(t). As the system evolves in time
its states trace tmajectoryin the state space.



An attractor in state space may be defined as a stafat(@ttractor) or set of
states, toward which the system settles (relaxes) over tBesides point attrac-
tors, three more attractor types can occur: (i) limit cyc{@storus attractors; (iii)
chaotic attractors. Aimit cycleis a closed trajectory (aorbit) in state space that
the system performs cyclically; when a system evolves tdgvarmperiodic attractor,
it will oscillate endless through the same sequence ofstatdess perturbed). A
torus attractor has a 'donut like’ shape, and correspongadsi periodic dynamics.
A chaoticattractor is a non-repeating orbit in state space, i.e. b dynamics,
although deterministic, will never repeat the same statis; Galleddeterministic
chaos

Several measures are used to characterize the properaésaators, and thus
of the corresponding dynamics more exac@prrelation dimensions a measure
of the complexity of the deterministic dynamics. A pointattor has dimension
zero, a limit cycle dimension one, a torus has an integer wfiioa corresponding
to the number of superimposed periodic oscillations, andaatic attractor has a
fractal dimensionLyapunov exponeniadicate the exponential divergence (posi-
tive exponents) or convergence (negative exponents) abpedeajectories on the
attractor, thus giving information about the systems ddpene on initial condi-
tions. A positive Lyapunov exponent is a strong indicatocludios.

4.2 Anexample

Figure 1. The damped, periodically driven non-linear pdumoaiu Displayed is
the chaotic attractor in théd, w)—phase space that occurs for large values of the
driving forceg.



Complex behaviourdynamical complexijycan arise even in simple systems
with low compositional complexity. The damped, periodigalriven non-linear
pendulum is suited for illustrating the principles behirmmmplex dynamics and
chaotic attractors (Fig. 2). The dimensionless motion ggaaf the pendulum is:
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with 6 the angular position in radiang,the damping parameteg,the ampli-
tude of the driving force, andyp the frequency of that force. For small an@ehe
equation can be integrated, i.e. the pendulum either undergegular oscillations
or, without a driving term, eventually stop swinging. Forgler anglesf, how-
ever, this approximation is invalid and hence the equatamno longer be solved
analytically.

The dynamical variables of the system, i.e. the angulattipas and velocity
w = d@/dt, are the coordinates defining the systepfmse spaceln the two—
dimensional case, the variables can be plotted to displalyage portraitof the
dynamical behaviour.

By varying the parameteng, g and wp of the motion equation (1) and then
plotting the resulting phase portrait a wide range of behavican be observed.
In the case of a non-zero damping parameter and no drivirag far replace the
energy loss, the pendulum igdissipativesystem, i.e. it comes to the resting point
(0,0), a fixpoint attractor. Using a non-zero driving forgethe attractor is no
longer a single point at (0,0) but now a closed orbit, thatis pendulum undergoes
regular motion. A bifurcation has occurred, changing thedirt into a limit cycle
attractor. Increasing the driving foragfurther, a sequence of period doublings
occurs which continues agis increased until a point is reached where the motion
of the pendulum ceases to be regular and becomes chaatia,dleotic attractor
occurred.

This example nicely shows that even in a compositionally wémple system
the dynamics can be chaotic. In this case, the analysis ¢tmutdade because the
dynamical system model, i.e. the equation of motion (1) nisvn.

4.3 Nonlinear time seriesanalysis

We have discussed complex systems with nonlinear dynanoidarsusing the
bottom-up, deductive approach: given the system equatthesbehaviour of the
system can be predicted. However, the situation in cogniteuroscience is totally
different: instead of the system equations, a set of ob8engis given, say in the
form of an EEG record. The problem then is to find a way to gehftiee observa-
tions of a system with unknown properties to an understandfrihe dynamics of
the underlying system. This can be achievechbylinear time series analysia
systemic approach starting with the output of the systemh waorking towards the
state space, attractors and their properties.



Nonlinear time series analysis proceeds as follows: (ipmstruction of the
systems dynamics in state space; (ii) characterizationeofdconstructed attractor;
(i) checking the validity of the procedure [17].

State spacereconstruction. In order to reconstruct the state space using atime
series, it is resolved into coordinate values dfdimensional embedding space by
an embedding method. Let the state space be characterizbd bgt of variables,
{xo(t),x1(t),...,Xd—1(t)}. Most frequently used i8me delay embeddingAssume
that only time seriego(t) is availablé. Then time-delayed values of this series are
used,

{xo(t),%o(t +T),..., %[t + (d — 1)7]}.

This set is topologically equivalent to the original set gétem variables, see
[18]. These variables are obtained by shifting the origtivak series by a fixed
time lagt = mAt wherem s an integer andit is the interval between successive
samplings. A most important problem of state space reaactgin is the determi-
nation of the delay time and embedding dimensiahfor which several methods
are available. This result is known as Taken’s famous ‘ErdlmedTheorem’ which
says: valuable information about the dynamics of the sysi@mbe obtained, even
if direct access to all the systems variables is impossédét, is common in cogni-
tive neuroscience!

Characterization of thereconstructed attractor. After reconstruction of the
attractor by embedding the next step is to characterize itcolsmon way to do
this is to visualize it with a phase portrait. A phase pottigia two— or three—
dimensional plot of the reconstructed state space and thectar. The graph
shown in Fig. 1 is an example of a two—dimensional phasegibr®ther methods
to display the reconstructed trajectories are Poincaroses and recurrence plots
[19].

Following embedding and visualization of the reconstrdatractor the next
step is to attempt to characterize it in a quantitative wakie Tlassic measures
applied are correlation dimension, Lyapunov exponentsesrichpy mentioned in
Section 4, and new measures introduced frequently in thetitre.

Checking thevalidity of the procedure. The interpretation of nonlinear mea-
sures is known to present problems sometimes since noigyseémes can give rise
to the unwarranted impression of low—dimensional dynaraitd chaos. There-
fore, the nonlinearity of the time series should be teste. dustomary to do this
by surrogate data testThe null hypothesis of the test is that the original time se-
ries is generated from a linear stochastic process (pgssitslergoing a nonlinear
static transform). Demonstration of nonlinearity is imjanit since only nonlinear
dynamical systems can have attractors other than a trixjabifit attractor. Chaos
in particular can only occur in nonlinear dynamical systems

2xo may represent the electrical potential recorded by the EEG



5 Explanation by nonlinear dynamic analysis

In the preceding sections the methodology of nonlinear ayoanalysis was out-
lined roughly. We are now prepared to demonstrate how it élus cognitive
neuroscience. Let us consider the situation presentedyin2Fiin cellA the phys-
ical system under study is displayed (a human’s head with EteGrding sites).
Cell B shows a formal model (a system of nonlinear differentialagigus). Estab-
lishing the model requires that all the variables detemgjrthe system and their
dynamic connections are exactly known. In ¢gllhe phase portrait in the system
state space is schematically illustrated. It allows to dieeche possible system
behaviour in terms of trajectories, attractors, bifuimagi etc. CelD presents the
observed system behaviour which is often measured in é¢egrdtience in the
form of time series (in this case the EEG activity recordeddsaveral channels).
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Figure 2: Reductionist, deductive explanation is illustdaby following the path
through cellsA — B — C — D. This approach fails in non-decomposable systems
with complex dynamics since no system equations can belissigth. Instead, ob-
servable behaviour of the real system is explained by neatidlynamic analysis,
i.e. moveC — D is to be made (inspired by [16]).

The usual kind of reductionist, deductive explanation catilbstrated by fol-
lowing the path through cell& — B— C — D in Fig. 2. The behaviour of the



physical system as measured at the emergent level is redizcto: formal model

to the lower level of the physical substrate. The transitibetween the fields
are all non-trivial. MoveA — B requires to determine the relevant system vari-
ables and to study their dynamics which is rather unfeagibtke case of neuro-
cognitive systems. Mov8 — C means nonlinear dynamical analysis of system
equations which may pose serious difficulties, dependingystem characteris-
tics. Finally, by movingC — D the formal constructs of nonlinear system theory
are to be mapped on real, observable phenomena in the negindiee system.
This move again is very challenging, and cannot be formaljsa].

Emergent phenomena of the real, dynamically complex systerst be ex-
plained using nonlinear dynamic analysis since traditianalyses fail. Thatis, in
the scheme of Fig. 2 only mov@ — D is (and can be) made. A meanwhile fa-
mous example is the work by Babloyantz and Destexhe [15] velnoxhstrated that
the epileptic electric brain activity measured by the EEff®a chaotic attractor.
Here the Lyapunov exponents of the attractors and the enmgedinension of the
phase space was calculated from the time series of the EE&WHS done with-
out having available a formal model. From the mere fact thelhaotic attractor
with certain mathematical properties is present, nonafrigonclusions (e.g., on
stability, dimensionality of embedding space etc.) hanrawn.

Systemic explanations of this kind have explanatory povesabse dynami-
cally complex systems own certain universal propertiesa Whole class of dy-
namic systems is characterised by a certain qualitativpgety it is unnecessary
to know the exact form of the special dynamic model which aix@ the particular
emergent phenomenon. It is only necessary to assure thayshem under study
belongs to the corresponding class of dynamic systems iohad@rtain qualitative
phenomena are universal. This kind of the explanation wbecause classes of
dynamically complex systems own qualitative propertigsdator types, bifurca-
tions, pattern generation, chaos).

6 Conclusions

The progress made with analyses of compositionally comf@erplicated) sys-
tems such as artificial neural networks, cellular autométa bas led many to
believe that this can be achieved with dynamically complstesns, too. This
means that the reverse engineering method has to be applted bbserved dy-
namically complex phenomenon to work out which mechanispiaéxs it best. A
mechanism is known if the participating system componendstieir interactions
are known, i.e. the term ‘mechanism’ is nearly synonymous Wwiecomposabil-
ity’. If we remember that dynamically complex systems aredecomposable, it
follows that no mechanism can be revealed, and the redigttianalysis fails!

In this vein, proponents of the synthetic bottom-up simafaapproach of-
ten argue that a systemic, non—reductionist approach sunbrdinear dynamical
analysis merely provides provisional solutions which meemnly then full expla-



nations when they are complemented by a formal model andebghiasical basis
of the empirical system. However, this view again ignores specificity of the
dynamically complex systems which do not allow reductigmsechanistic expla-
nation. Thus, nonlinear dynamic analyses provide fullsgagéxplanations which
are highly appropriate to the situation in cognitive neuai@sce.
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