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Abstract

Cognitive functions such as a perception, thinking and acting are based on the
working of the brain, one of the most complex systems we know.The traditional
scientific methodology, however, has proved to be not sufficient to understand the
relation between brain and cognition. The aim of this paper is to review an alterna-
tive methodology – nonlinear dynamical analysis – and to demonstrate its benefit
for cognitive neuroscience in cases when the usual reductionist method fails.



1 Introduction

Cognitive science aims at both understanding natural cognition (as in humans or
animals) and creating artificial systems resembling the natural original. There are
basically two established ways of doing research in cognitive science (including
cognitive and computational neuroscience), either top-down or bottom-up. Both
approaches have their pro’s and con’s, and none is practisedin the pure form.
For example, the main research strategy in computational neuroscience - reverse
engineering - is basically bottom-up. It is informed, however, by top-down consid-
erations about the goal of the computation performed by the neural system under
study. It is expected that united efforts of this kind will succeed in providing a
theory of cognition that is ultimately grounded in brain processes.

However, objections have been also raised saying that the established methods
do not meet the complexity of the object of study, and that theresearch methodolgy
must be complemented accordingly. In this paper, I’ll first describe briefly the
two traditional ways of doing cognitive (neuro-)science that are commonly thought
to exhaust the possibilities. Then a third way of analysis - nonlinear dynamical
analysis – is described that relies on results of complexityresearch, i.e. chaos
theory and nonlinear modeling.

2 Top-down and bottom-up approaches

The top-down approach consists of (1) specifying a cognitive function by focus-
ing on the characterization of the abstract principles thatunderlie that function.
Ideally, it proposes (2) possible neural algorithms that might subserve this cogni-
tive function, and finally (3) maps these algorithms onto brain circuits. In many
cases, however, the identification steps (2) and (3)have proved to be very difficult
or unfeasible. The bottom-up approach consists of describing the structural and
functional properties of given brain circuits, and then bringing this function into
congruence with the cognitive function under study.

Previously [1, 2], I have shown that both approaches set up the method of
reverse engineering. This method combines analysis with synthesis in the follow-
ing way. Analysis is carried out top-down by specifying firsta certain cognitive
function which is assumed to be computed through the cortex or some cortical
subsystem. Then a decompositional analysis is performed, i.e. the cortical system
is both functionally (computationally) and structurally decomposed, and the inter-
actions between components are determined. Following the localisation concept,
the functional components (computational units) are assigned to the anatomical
components.

Synthesis first requires modelling, i.e building a structurally adequate, func-
tional model of the computational unit. Based on knowledge of localised compo-
nents and their interactions, a structurally adequate network model of the cortical
system is build composed of the computational unit models. Simulations of the
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network model should eventually prove that the specific cognitive function under
study is generated this way.

Recent efforts to buildartificial brains1 employ both approaches [6, 7]. Large-
scale brain simulations attempt to model in a realistic fashion the details of the brain
organisation, i.e. its structure and function. The Blue Brain Project is one promi-
nent example of this bottom-up modelling strategy; its explicit goal is to reverse
engineer the brain. On the other hand, biologically inspired cognitive architectures
(BICAs) rely on the top-down approach. They attempt to achieve the brain’s cog-
nitive functionality by emulating its high-level performance without capturing the
neural details.

In the survey [6, 7] it was concluded that the two approaches display very dif-
ferent strengths. While bottom-up brain simulations are confined to syntactic as-
pects like how collections of neurons synchronize their electrical discharges, they
do not tell anything about semantics, i.e. how brain processes enable cognitive
agents to achieve goals, select actions or process information. In contrast, BICAs
propose how brains may realise cognitive functions, but as yet they demonstrate
rather simplistic behaviour compared to real brains. The authors conjecture that
the deficiencies may be due to the fact that ”BICAs lack the chaotic, complex
generativity that comes from neural nonlinear dynamics - i.e. they have the sensi-
ble and brain-like higher-level structures, but lack the lower-level complexity and
emergence that one sees in large-scale brain simulations.”[7, p. 48]. Bringing
large-scale brain simulations and BICAs together, they suggest, will accomplish
progress toward the goals of cognitive science - understanding the brain and creat-
ing artificial cognitive systems.

3 Complex systems

The suggestion to integrate bottom-up, large-scale brain simulations and top-down
theories such as BICAs to progress in neuro-cognition research has been made
from time to time. However, the predicted success has not appeared what is appar-
ently due to the fact that both approaches have restrictionswhich cannot be over-
come even by integration. Actually, both analysis methods are applicable only to
a limited class of systems, the (near-)decomposable systems, as shown elsewhere
[1, 2]. There I have argued that the subjects of study of cognitive and computa-
tional neuroscience – cognitive systems that realise functions localised in neural
circuits of the brain – are not members of this class. They areinstances ofcomplex
systemswhich resist the usual reductionist analyses.

The study of complex systems originated during the last three decades or so
from the interplay of disciplines such as physics, mathematics, biology, economy,

1”Artificial brain” is a term used to describe research that aims to develop software and hardware
with cognitive abilities similar to humans or other mammals. Prominent examples are SyNAPSE
(Systems of Neuromorphic Adaptive Plastic Scalable Electronics)[3], the Blue Brain Project[4] and
the China Brain Project [5].
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engineering, and computer science. There is still no generally accepted definition
of complexity, despite a multitude of proposed approaches (e.g. [8, 9, 10]).

Important is the following distinction: we must differentiate between systems
that are complex and those which are merely complicated [11,p.511]:

A complicated system is composed of a large number of interacting
components. Importantly, the properties of such a system can be ac-
curately predicted from a knowledge of the properties of each of its
components and a complete enumeration of their interactions. In other
words, a complicated system is exactly the sum of its parts. Complex,
on the other hand, is a term reserved for systems that displayproper-
ties that are not predictable from a complete description oftheir com-
ponents, and that are generally considered to be qualitatively different
from the sum of their parts.

Editorial. Nature Biotechnology, 1999

From complexity theory we know that complex phenomena can beproduced
from the interaction of rather simple components. Well-understood examples are
artificial neural networks and cellular automata. These arecompositionally com-
plex systems, and it is indeed feasible to predict their behaviour from the knowl-
edge of the properties of the components and their interactions. This is completely
different in the case of complex systems whose behaviour emerges in an unpre-
dictable way. The question then arises: how should complex systems be studied,
and which methods of investigation are available? In the following, I will consider
the method ofnonlinear dynamical analysis. Other methods include relational
modelling [12, 13] and quantum theories [14].

4 Nonlinear dynamical analysis

4.1 Terminology

To apply a nonlinear dynamical analysis to a complex system means to specify its
temporal evolution. Thestate space(or phase space) of the system consists of the
set of all its possible states,s, determined by the values of all the variables that
describe the system at a particular moment in time. Ifs is described bym vari-
ables, it can be represented by a point inm-dimensional space,s∈ Rm. The system
dynamics is given by the set of equations or rules that control the system evolution
over time. In many cases the dynamics consists of a system ofmcoupled differen-
tial equations, one for each system variable. Most natural systems are continuous
systems and therefores is a function of time,s(t). As the system evolves in time
its states trace atrajectory in the state space.
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An attractor in state space may be defined as a state (point attractor) or set of
states, toward which the system settles (relaxes) over time. Besides point attrac-
tors, three more attractor types can occur: (i) limit cycles; (ii) torus attractors; (iii)
chaotic attractors. Alimit cycle is a closed trajectory (anorbit) in state space that
the system performs cyclically; when a system evolves towards a periodic attractor,
it will oscillate endless through the same sequence of states (unless perturbed). A
torus attractor has a ’donut like’ shape, and corresponds toquasi periodic dynamics.
A chaoticattractor is a non-repeating orbit in state space, i.e. the system dynamics,
although deterministic, will never repeat the same state; it is calleddeterministic
chaos.

Several measures are used to characterize the properties ofattractors, and thus
of the corresponding dynamics more exactly.Correlation dimensionis a measure
of the complexity of the deterministic dynamics. A point attractor has dimension
zero, a limit cycle dimension one, a torus has an integer dimension corresponding
to the number of superimposed periodic oscillations, and a chaotic attractor has a
fractal dimension.Lyapunov exponentsindicate the exponential divergence (posi-
tive exponents) or convergence (negative exponents) of nearby trajectories on the
attractor, thus giving information about the systems dependence on initial condi-
tions. A positive Lyapunov exponent is a strong indicator ofchaos.

4.2 An example

Figure 1: The damped, periodically driven non-linear pendulum. Displayed is
the chaotic attractor in the(θ ,ω)–phase space that occurs for large values of the
driving forceg.
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Complex behaviour (dynamical complexity) can arise even in simple systems
with low compositional complexity. The damped, periodically driven non-linear
pendulum is suited for illustrating the principles behind complex dynamics and
chaotic attractors (Fig. 2). The dimensionless motion equation of the pendulum is:

d2θ
dt2

+
1
q

dθ
dt

+sinθ = gcos(ωDt) (1)

with θ the angular position in radians,q the damping parameter,g the ampli-
tude of the driving force, andωD the frequency of that force. For small angleθ the
equation can be integrated, i.e. the pendulum either undergoes regular oscillations
or, without a driving term, eventually stop swinging. For larger anglesθ , how-
ever, this approximation is invalid and hence the equation can no longer be solved
analytically.

The dynamical variables of the system, i.e. the angular position θ and velocity
ω = dθ/dt, are the coordinates defining the system’sphase space. In the two–
dimensional case, the variables can be plotted to display aphase portraitof the
dynamical behaviour.

By varying the parametersq, g and ωD of the motion equation (1) and then
plotting the resulting phase portrait a wide range of behaviour can be observed.
In the case of a non-zero damping parameter and no driving force to replace the
energy loss, the pendulum is adissipativesystem, i.e. it comes to the resting point
(0,0), a fixpoint attractor. Using a non-zero driving forceg, the attractor is no
longer a single point at (0,0) but now a closed orbit, that is,the pendulum undergoes
regular motion. A bifurcation has occurred, changing the fixpoint into a limit cycle
attractor. Increasing the driving forceg further, a sequence of period doublings
occurs which continues asg is increased until a point is reached where the motion
of the pendulum ceases to be regular and becomes chaotic, i.e. a chaotic attractor
occurred.

This example nicely shows that even in a compositionally very simple system
the dynamics can be chaotic. In this case, the analysis couldbe made because the
dynamical system model, i.e. the equation of motion (1), is known.

4.3 Nonlinear time series analysis

We have discussed complex systems with nonlinear dynamics so far using the
bottom-up, deductive approach: given the system equations, the behaviour of the
system can be predicted. However, the situation in cognitive neuroscience is totally
different: instead of the system equations, a set of observations is given, say in the
form of an EEG record. The problem then is to find a way to get from the observa-
tions of a system with unknown properties to an understanding of the dynamics of
the underlying system. This can be achieved bynonlinear time series analysis, a
systemic approach starting with the output of the system, and working towards the
state space, attractors and their properties.
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Nonlinear time series analysis proceeds as follows: (i) reconstruction of the
systems dynamics in state space; (ii) characterization of the reconstructed attractor;
(iii) checking the validity of the procedure [17].

State space reconstruction. In order to reconstruct the state space using a time
series, it is resolved into coordinate values of ad-dimensional embedding space by
an embedding method. Let the state space be characterized bythe set of variables,
{x0(t),x1(t), ...,xd−1(t)}. Most frequently used istime delay embedding. Assume
that only time seriesx0(t) is available2. Then time-delayed values of this series are
used,

{x0(t),x0(t + τ), ...,x0[t +(d−1)τ ]} .

This set is topologically equivalent to the original set of system variables, see
[18]. These variables are obtained by shifting the originaltime series by a fixed
time lagτ = m∆t wherem is an integer and∆t is the interval between successive
samplings. A most important problem of state space reconstruction is the determi-
nation of the delay timeτ and embedding dimensiond for which several methods
are available. This result is known as Taken’s famous ‘Embedding Theorem’ which
says: valuable information about the dynamics of the systemcan be obtained, even
if direct access to all the systems variables is impossible,as it is common in cogni-
tive neuroscience!

Characterization of the reconstructed attractor. After reconstruction of the
attractor by embedding the next step is to characterize it. Acommon way to do
this is to visualize it with a phase portrait. A phase portrait is a two– or three–
dimensional plot of the reconstructed state space and the attractor. The graph
shown in Fig. 1 is an example of a two–dimensional phase portrait. Other methods
to display the reconstructed trajectories are Poincaré sections and recurrence plots
[19].

Following embedding and visualization of the reconstructed attractor the next
step is to attempt to characterize it in a quantitative way. The classic measures
applied are correlation dimension, Lyapunov exponents andentropy mentioned in
Section 4, and new measures introduced frequently in the literature.

Checking the validity of the procedure. The interpretation of nonlinear mea-
sures is known to present problems sometimes since noisy time series can give rise
to the unwarranted impression of low–dimensional dynamicsand chaos. There-
fore, the nonlinearity of the time series should be tested. It is customary to do this
by surrogate data test. The null hypothesis of the test is that the original time se-
ries is generated from a linear stochastic process (possibly undergoing a nonlinear
static transform). Demonstration of nonlinearity is important since only nonlinear
dynamical systems can have attractors other than a trivial fixpoint attractor. Chaos
in particular can only occur in nonlinear dynamical systems.

2x0 may represent the electrical potential recorded by the EEG
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5 Explanation by nonlinear dynamic analysis

In the preceding sections the methodology of nonlinear dynamic analysis was out-
lined roughly. We are now prepared to demonstrate how it is used in cognitive
neuroscience. Let us consider the situation presented in Fig. 2. In cellA the phys-
ical system under study is displayed (a human’s head with EEGrecording sites).
Cell B shows a formal model (a system of nonlinear differential equations). Estab-
lishing the model requires that all the variables determining the system and their
dynamic connections are exactly known. In cellC the phase portrait in the system
state space is schematically illustrated. It allows to describe the possible system
behaviour in terms of trajectories, attractors, bifurcations etc. CellD presents the
observed system behaviour which is often measured in cognitive science in the
form of time series (in this case the EEG activity recorded via several channels).

Figure 2: Reductionist, deductive explanation is illustrated by following the path
through cellsA→ B→C → D. This approach fails in non-decomposable systems
with complex dynamics since no system equations can be established. Instead, ob-
servable behaviour of the real system is explained by nonlinear dynamic analysis,
i.e. moveC→ D is to be made (inspired by [16]).

The usual kind of reductionist, deductive explanation can be illustrated by fol-
lowing the path through cellsA → B → C → D in Fig. 2. The behaviour of the
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physical system as measured at the emergent level is reducedvia the formal model
to the lower level of the physical substrate. The transitions between the fields
are all non-trivial. MoveA → B requires to determine the relevant system vari-
ables and to study their dynamics which is rather unfeasiblein the case of neuro-
cognitive systems. MoveB → C means nonlinear dynamical analysis of system
equations which may pose serious difficulties, depending onsystem characteris-
tics. Finally, by movingC → D the formal constructs of nonlinear system theory
are to be mapped on real, observable phenomena in the neuro-cognitive system.
This move again is very challenging, and cannot be formalised [12].

Emergent phenomena of the real, dynamically complex systemmust be ex-
plained using nonlinear dynamic analysis since traditional analyses fail. That is, in
the scheme of Fig. 2 only moveC → D is (and can be) made. A meanwhile fa-
mous example is the work by Babloyantz and Destexhe [15] who demonstrated that
the epileptic electric brain activity measured by the EEG forms a chaotic attractor.
Here the Lyapunov exponents of the attractors and the embedding dimension of the
phase space was calculated from the time series of the EEG. This was done with-
out having available a formal model. From the mere fact that achaotic attractor
with certain mathematical properties is present, non-trivial conclusions (e.g., on
stability, dimensionality of embedding space etc.) has been drawn.

Systemic explanations of this kind have explanatory power because dynami-
cally complex systems own certain universal properties. Ifa whole class of dy-
namic systems is characterised by a certain qualitative property, it is unnecessary
to know the exact form of the special dynamic model which explains the particular
emergent phenomenon. It is only necessary to assure that thesystem under study
belongs to the corresponding class of dynamic systems in which certain qualitative
phenomena are universal. This kind of the explanation worksbecause classes of
dynamically complex systems own qualitative properties (attractor types, bifurca-
tions, pattern generation, chaos).

6 Conclusions

The progress made with analyses of compositionally complex(complicated) sys-
tems such as artificial neural networks, cellular automata etc. has led many to
believe that this can be achieved with dynamically complex systems, too. This
means that the reverse engineering method has to be applied to the observed dy-
namically complex phenomenon to work out which mechanism explains it best. A
mechanism is known if the participating system components and their interactions
are known, i.e. the term ‘mechanism’ is nearly synonymous with ‘decomposabil-
ity’. If we remember that dynamically complex systems are not decomposable, it
follows that no mechanism can be revealed, and the reductionist analysis fails!

In this vein, proponents of the synthetic bottom-up simulation approach of-
ten argue that a systemic, non–reductionist approach such as nonlinear dynamical
analysis merely provides provisional solutions which become only then full expla-
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nations when they are complemented by a formal model and by the physical basis
of the empirical system. However, this view again ignores the specificity of the
dynamically complex systems which do not allow reductionist, mechanistic expla-
nation. Thus, nonlinear dynamic analyses provide full-value explanations which
are highly appropriate to the situation in cognitive neuroscience.
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