Chapter3 Modeling data in the organization

Kun Yue March, 2009

Outline

Data modeling is the most important part of the system development process.

- Introduction
- The E-R model
- E-R diagram
- Entities
- Attributes
- Relationships
- Modeling time-dependent data

Introduction

• Business rules — requirements

- Define or constrain some aspects of the business
- Assert business structure, control or influence the behavior of the business
- Policies, procedures, events, functions, other business objects and state constraints
- How to find the business rules? From the iterative inquiry process
- How to map the business rules into the database?

The E-R model

- Introduction
- The E-R model
- E-R diagram
- Entities
- Attributes
- Relationships
- Modeling time-dependent data

The E-R model

Entity-relationship diagram: entities, relationships, attributes

modeling data in the organization

Each product must use at least one item. (one or more) (2)

Entities and their attributes

- Entity type vs. entity instance
- Strong entity types vs. weak entity types
- Simple attributes vs. composite attributes
- Single-valued attributes vs. multivalued attributes
- Stored attributes vs. derived attributes
- Identifier attribute

Entity type vs. entity instance

Entity type

- A collection of entities that share common properties or characteristics
- E-R diagram includes the *entity types* that *can not be computed by others*

Entity instance

- A single occurrence of an entity type
- An entity type is described once in the database
- **E.g.**, *EMPLOYEE* (*No*, *name*, *address*, *city*, *zip*, *birthday*)
- Many entity instances of the entity type are stored in the database.

E .g. ,	642-17-8630	Michelle	2 North Cuihu Road	Kunming	650091	03-12-1993
	534-10-1971	David	220 Handan Road	Shanghai	200433	08-16-1994

Strong entity types vs. weak entity types (1)

A motivating example:
 Book-Chapter

Book_ID	Book_Name	Chapter_ID	Chapter_Name
B 01	Data Structure	C01	Introduction
B 01	Data Structure	C02	Graph
B02	Algorithm	C01	Introduction
B02	Algorithm	C02	Graph

• Does the book exist uniquely and independently?

• Does the chapter exist uniquely and independently?

Strong entity types vs. weak entity types (2)

- Strong entity type:
- An entity type that exists *independently* of other entity types
- Has a *unique* identifier globally
- Weak entity type:

Book

- An entity type whose existence depends on some other entity type
- Makes sense only in the context of the entity type that it depends on
- Identifying owner the entity type on which the weak entity type depends
- weak entity type does not have its own globally unique identifier, may ave a partial identifier

ntifying relationship — the relationship between a weak and its owner

Owner of Chapter: Book

Partial identifier of Chapter: Chapter_ID

How to identify "Chapter" and "Dependent" globally?

Discussion

- Is the owner of the weak entity sure to be a strong entity?
- Is there any weak entities in the tree-structured data?

Example: Book — Chapter — Section

- Owner is said relatively to the weak entity.
- What are weak entities? What are the owners of them respectively?
- The owner may be strong or weak entity.

.

Attributes (1)

An attribute:

A property or characteristic of an entity type that of interest to the organization
An entity instance is composed of the attribute values of the entity type

Simple attributes vs. composite attributes

Attributes (2)

Single-valued attributes vs. multivalued attributes

Attributes (4)

Identifier attribute

- An attribute or combination of attributes that *uniquely* identifies individual instances of an entity type
- Single identifier vs. composite identifier —
- Single attribute vs. Composite attribute
- More than one candidate identifiers Keys The chosen one as the identifier — Primary key

modeling data in the organization

Relationships

- Basic concepts and definitions
- Degree of a relationship
- Attributes or relationships?
- Cardinality constraints

Basic concepts and definitions of relationships (1)

Relationship type

A meaningful association between (among) entity types

Relationship instance

An association between (among) entity instances where each relationship instance includes *exactly one* entity instance from each participating entity type.

Attributes on relationships

Basic concepts and definitions of relationships (2)

• Associative entities (different from the attributes of the relationship)

- An entity type that associates the instances of one or more entity types and **contains attributes that are peculiar to the relationship** between those entity instances.
- A single-attribute identifier
- Independent on the entities in the associated relationship

Degree of a relationship (1)

Degree

- The number of entity types that participate in a relationship
- The 3 common relationship degrees in E-R models: unary (degree 1), binary (degree 2), ternary (degree 3)
- Unary relationship
 - (1) one-to-one

(2) One-to-many

Unary relationships are recursive relationship, between the instances of a single entity type

Degree of a relationship (2)

Degree of a relationship (3)

Ternary relationship

A simultaneous relationship among instances of 3 entity types

Note:

A ternary relationship is not the same as three binary relationships!

Example:

"*Unit_cost*" is meaningful only when it is associated with "*supplier*"

Attributes or relationships? (1)

- When should an attribute be linked to an entity type via a relationship?
- If the *multivalued* or *composite attributes* are directly linked to the entity type, then **add a new relationship** linked to the entity type

Attributes or relationships? (2)

Why should the multivalued or composite attributes be linked to an entity type via a relationship?

- Decrease the redundancy of data storage
- Unify the data query processing method
- Simplify and standardize data update methods

Why can we do the conversion like this?

- No semantics loss after the conversion
- The inherent relationships are preserved

Should all the multivalued or composite attribute

cases be processed like this?

Cardinality constraints

Cardinality constraint

The *number* of instances of entity B that can (or must) be associated with each instance of entity A

The range of cardinalities for a relationship

- Minimum cardinality (participation constraint)
- Maximum cardinality

Cardinalities in E-R diagrams

Modeling time-dependent data

Time stamp

- Example:

- A time value that is associated with a data value
- A time stamp may be associated with any data value that changes over time when we need to maintain a history of those data value
- An attribute about the time, with the data type of "Time_Stamp"

- Frequently, time-dependent data are processed in data warehousing applications

Naming and defining in E-R diagrams

- Entity type
- A singular noun
- Specific to the organization
- concise
- Attribute
- A noun
- Unique
- Similar attributes should use the same qualifiers and classes (structures)
- ...

- ...

- Relationship
- Verb phrase (action)
- Avoid vague names
- modeling data in the organization

Summary

Business rules as requirements

• E-R model

- Type and instance (entity type and instance, relationship type and instance)
- E-R diagram (entities, attributes, relationships; cardinality)
- -Entities (strong, weak)
- Attributes (entity's, relationship's; single and composite, multivalued, derived)
- -Relationships (degree, cardinality, associative entity, attributes or relationships?)
- Cardinality constraints
- Modeling time-dependent data (time stamp)
- Naming and defining in E-R diagrams

Assignments

- Page 119: 3(e), (f)
 - 3. Contrast the following terms:
 - (e) strong entity type; relationship type
 - (f) degree; cardinality
- Page 120: 3(e)

BTW: Some concepts should also be distinguished and clarified other than above exercises! ©

