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ABSTRACT: 

 

Air quality directly affects the health and living of human beings, and it receives wide concern of public and 

attaches great important of governments at all levels. The estimation of the concentration distribution of PM2.5 and 

the analysis of its impacting factors is significant for understanding the spatial distribution regularity and further 

for decision supporting of governments. In this study, multiple sources of remote sensing and GIS data are utilized 

to estimate the spatial distribution of PM2.5 concentration in Shijiazhuang, China, by utilizing multivariate linear 

regression modelling, and integrating year average values of PM2.5 collected from local environment observing 

stations. Two major sources of PM2.5 are collected, including dust surfaces and industrial polluting sources. The 

area attribute of dust surfaces and point attribute of industrial polluting enterprises are extracted from high 

resolution remote sensing images and GIS data in 2013. 30m land cover products, annual average PM2.5 

concentration values from the 8 environment monitoring stations, annual mean MODIS AOD data, traffic and 

DEM data are utilized in the study for regression modeling analysis. The multivariate regression analysis model is 

applied to estimate the spatial distribution of PM2.5 concentration. There is an upward trend of the spatial 

distribution of PM2.5 concentration gradually from west to east, of which the highest concentration appears in the 

municipal district and its surrounding areas. The spatial distribution pattern relatively fit the reality. 

 

 

1. INTRODUCTION 

Air quality directly affects the health and living of 

human beings (Pope III C A, et al., 2002), and it 

receives wide concern of public and attaches great 

important of governments at all levels. Air quality 

monitoring is significant for environmental 

governance and ecological construction. The 

estimation of the concentration distribution of 

atmospheric particulates and the analysis of its 

impacting factors is fundamental for deeply 

understanding the spatial distribution regularity and 

further decision making of governments. Physical 

modeling and statistical analysis are two major 

approaches to estimate the atmospheric particulates 

concentration. The former methodology is mostly 

applied to simulate the process of particulate matters 

diffusion; and the latter is for spatial distribution using 

statistical methods. Among the statistical analysis 

studies, much research work focused on regression 

modeling analysis of Particulate Matter (PM) with 

MODIS Aerosol Optical Depth(AOD) and 

meteorological data, including temperature, 

precipitation, and wetness (A Van Donkelaar, 2010; 

Lee H J, 2011; Cordero L, 2013; Hui C, 2014), and 

many other researches established improved 

regression models taking land use data into 

consideration as well (Mao L, 2012; Hu X, 2013; 

Olvera H A, 2012; Beckerman B S, 2013; Moore D K, 

2007; Ross Z, 2007; Hoek G, 2010; Eeftens M, 2012). 

These research studies provide important preliminary 

experience and knowledge. However, limited data 

from sparsely distributed environment monitoring 

stations and weather station reduce the accuracy of 

modeling estimation. In this study, multiple sources of 

remote sensing and GIS data are integrated with air 

quality monitoring data and climate data to estimate 

the spatial distribution of PM2.5 concentration in 

Shijiazhuang, China, to make up the deficiency of 

limited air and weather data by utilizing multivariate 

linear and nonlinear regression modeling (Johnson R 

A, 1992).  

 

2. STUDY AREA 

The study area, Shijiazhuang, is the provincial capital 

city of Hebei Province, China. It is located between 

37°27′ and 38°47′ (N), 113°30′ and 115°20′ (E) 

(Figure). Shijiazhuang is one of the major industrial 

cities in Hebei, and of the largest pharmaceutical 

industrial bases and important textile producing 

regions in China. The temperate monsoon climate 

dominates in Shijiazhuang with distinct seasons and 

rainfall concentrated in summer and fall. The study 

area is rich in mineral resources, including coal, 

limestone, dolomites and others, which is one of an 

indirect factor of regional hazy weather. In recent 

years, frequent foggy and hazy weather with high 

concentration of PM2.5 and PM10 in Shijiazhuang 

attracted widespread concern of society. 
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Figure 1. Location of Shijiazhuang City 

 

3. EXPERIMENT 

3.1 Framework of estimating the spatial 

distribution of PM2.5 concentration  

The simulation of spatially distributed PM2.5 

concentration is achieved through four steps: data 

collection and preprocessing, extracting geographic 

variables, correlation analysis, and multivariate 

regression modeling and mapping.  

 

Firstly, geographical factors including dust surfaces, 

land covers, industrial factories, national/provincial 

road and DEM data were collected and preprocessed. 

Secondly, ground geographic characteristics were 

extracted through GIS spatial analysis techniques, 

such as buffer analysis, proximity analysis. The third 

part was correlation analysis between observed PM2.5 

concentration data and characteristic variables. Those 

characteristic variables with a significant correlation 

with observed PM2.5 data are selected for multivariate 

regression modeling. Multivariate linear regression 

modelling is compared with nonlinear regression 

modelling in order to find an optimal modeling 

method with a higher coefficient of determination (R2). 

Finally, PM2.5 concentration values at the virtual 

supplementary monitoring sites were achieved using 

the multivariate regression model. Based on the 

observed PM2.5 data from environment monitoring 

stations and virtual monitoring sites, the spatial 

distribution of PM2.5 concentration were mapped by 

using spatial interpolation method.  

 
3.2 Data collection and preprocessing 

In order to estimate the spatial distribution of 

atmospheric PM2.5 concentration, a few potentially 

influencing factors are considered, including ground 

dust surfaces, polluting industries, traffic emission, 

terrain, weather conditions, land covers. However, 

weather data are available from only one weather 

station, and has no obvious contribution in spatial 

statistical analysis.  

 

Two major sources of PM2.5 are collected using 

remote sensing and GIS techniques, including dust 

surfaces and industrial polluting sources which are 

direct factors to produce fine particulate matters. Dust 

surface polluters include open mining fields, 

construction fields, natural bare surfaces, and tread 

surfaces. Iron and steel producing industries, thermal 

power industries, heat production and others are all in 

the industrial polluting sources. The area and extent 

attributes of dust surfaces are extracted from color 

aerial photos, ZY-3 satellite imagery and GIS data 

collected or updated in 2013. The point attribute of 

industrial polluting factories are spatially located in 

the map according to the address of each industry 

based on the basic geographic information data or 

navigation map data.  

 

Land cover map is produced by using 30m resolution 

LANDSAT-8 OLI multispectral images acquired in 

May of 2013. The land cover is classified into 6 main 

types including cultivated land (CD), grassland (GL), 

woodland (WL), artificial (AF), water body (WB) and 

bare land (BL). Considering the rapid dynamic daily 

change of PM2.5 in atmosphere, the available PM2.5 

concentration values from the 8 environmental 

monitoring stations in Shijiazhuang are annually 

averaged. Similarly the MODIS AOD product is also 

annual mean data. Road network and DEM data are 

also utilized in the study as one reference data for 

regression modeling analysis. 

 

3.3 Extraction of characteristic variables 

As the existing 8 environment monitoring stations are 

all located at central region of Shijiazhuang city, 32 

more virtual sites in remote areas without 

environment observing stations are randomly added. 

MODIS AOD data is an effective compensation for 

the limited observed PM2.5, due to their strong 

correlation (Chengcai L, 2005; Zhang H, 2009). The 

32 virtual PM2.5 concentration values are extracted by 

utilizing cokriging spatial interpolation approach 

between MODIS AOD data and observed PM2.5 

concentration data in Shijiazhuang and other 19 in the 

surrounding cities including Hengshui, Baoding, 

Yangquan and Xingtai city (Goovaerts P., 2000). The 

location of these environment monitoring stations are 

shown in Figure 2. 

 

 

Figure 2. Location of environment monitoring stations 
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The 65 geographic attributes of the 40 environment 

observed/supplementary sites are calculated using GIS 

analysis methods according to their impacting extent 

and distance to PM2.5 observing sites, including 

shortest distance to the national-level road (D_NR), 

provincial level road (D_PR) and to the industrial 

factories (D_IF), and the number of different 

industrial factories (1km/2km/3km_IF), percentage of 

different dust surfaces (1km/2km/3km_DS), and 

percentage of different land covers (1km/2km/3km_ 

CD/GL/WL/AF/WB/BL) within the range of certain 

buffer radius(Sangrador J L T, 2008; Giannadaki D, 

2014; Chen L, 2012).  

 

3.4 Correlation analysis  

Correlation analysis was carried out to analyze the 

relationship between the observed PM2.5 concentration 

data and the 65 geographic impacting attributes 

(Draper N R, 1996; Kleinbaum D, 2003). 

 
Correlation 

variable 

Pearson 

Coefficient 

Correlation 

variable 

Pearson 

Coefficient 

dist_NR -.436** 1km_BL -.503** 

dist_IF -.347* 2km_BL -.533** 

1km_IF .430** 3km_BL -.548** 

2km_IF .444** 1km_WL -.454** 

3km_IF .557** 2km_WL -.473** 

2km_DS .464** 3km_WL -.483** 

3km_DS .490** 1km_DS0830 .377* 

1km_AF .656** 1km_DS0718 .374* 

2km_AF .697** 2km_DS0718 .459** 

3km_AF .726** 2km_DS0718 .459** 

1km_AF .656** 1km_DS0800 -.363* 

Tab.1 Correlation analysis results between PM2.5 and 

its significantly related variables 

* * indicates a significant correlation at the 0.01 level 

(bilateral), and * indicates significant correlation at the 

0.05 level (bilateral). 

 

In table 1, significant correlation variables and their 

Pearson coefficients are listed, when Pearson 

coefficient is positive, the two variable is positively 

correlated with PM2.5, whereas a negative correlation 

(Johnson R A, 1992). The 22 geographic attributes 

with strong correlation above are utilized in regression 

modeling.  

 

3.5 Multivariate regression modelling and 

mapping 

The coefficient of determination (R2) of the 

multivariate nonlinear regression analysis model is 

distinctly higher, when compared with that using the 

multivariate linear model (Draper N R, 1966). The 

multivariate nonlinear regression model (R2=0.783) is 

defined as: 

 

 

PM2.5=-1.449×3km_BL+0.032×3km_BL
2
 

-1.969×10-4×3km_BL
3
+5.541×10-6×2km_DS 

+0.688×2km_DS
2
-2.734×2km_DS

3
+0.2314      (1) 

×3km_AF-0.0029× 3km_AF
2
+2.0215×10-5 

×3km_AF
3+118.906 

 

Among all geographic attributes that potentially 

impact the spatial distribution of PM2.5, concentration, 

the contribution of dust surfaces and construction 

fields is significant. The multivariate regression 

analysis model is applied to increase 500 more values 

of PM2.5 with randomly spatial distribution. An 

inverse distance weighted interpolation approach is 

adopted to estimate the spatial distribution of PM2.5 

concentration in the whole Shijiazhuang city (Lu G Y, 

2008). The spatial distribution of PM2.5 concentration 

was showed in Figure 3. 

 

 
Figure 3. Spatial distribution of PM2.5 concentration 

 

The N-1 cross validation method is utilized to 

evaluate the estimation accuracy of the nonlinear 

regression model (Kohavi R., 1995.). The result 

showed a low average error of 1.3ug/m3 between the 

observed and predicted data. 

 

3.6 Results 

The spatial distribution of PM2.5 concentration shows 

an upward trend gradually from west to east, of which 

the highest concentration appears in the municipal 

district and its surrounding areas. The spatial 

distribution pattern relatively fit the reality. The 

eastern region is under a serious polluted condition, 

where polluting industries, construction sites and 

manual stacked wastes are widely distributed. 

Meantime, these areas are located in the low-lying 

plain with high population density and low vegetation 

coverage. The western and northern mountainous 

areas with higher elevation are sparsely populated 

with relatively lush vegetation, coupled with the 

multiple factors such as climate and wind direction. 

Therefore, the air quality in these regions is relatively 

better.  

 

CONCLUSION 

The methodology of estimating PM2.5 concentration in 

this study showed a high accuracy, and the correlation 

analysis of PM2.5 impacting factors provided a good 
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reference to the public. Due to the limitation of 

environment observing stations located in municipal 

district, it is difficult to precisely estimate the spatial 

distribution of PM2.5 concentration using multiple 

geographic data sources. Only geographic data are 

analyzed in this study, and other data including 

pollution emission of industrial factories and climate 

data, would be considered in further study. 
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