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We review the current status of solution methods for nonlinear systems
arising from high-order discretization of steady compressible flow prob-
lems. In this context, many of the difficulties that one faces are similar
to, but more pronounced than, those that have always been present
in industrial-strength CFD computations. We highlight similarities and
differences between the high-order paradigm and the mature solver tech-
nology of lower oder discretization methods, such as second order finite-
volume schemes.

1. Introduction

Many have anticipated the arrival of high-order discretization as the CFD
method of choice for compressible fluid flow. However, for industrial ap-
plications in external aerodynamics lower order methods, such as finite-
volume schemes, are still far more popular. Numerical schemes of third
or higher spatial order are often not efficient enough for high-throughput
CFD computations to engineering levels of accuracy. Among the reasons for
this is the fact that for established CFD methodologies tailor-suited conver-
gence acceleration techniques have emerged over the past decades [Jameson
(1983); Jameson and Yoon (1987); Pierce and Giles (1997); Jameson and
Caughey (2001); Mavriplis (2002)]. High-order solvers thus compete with
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very mature technology, and consequently novel discretization techniques
have to be augmented by extremely efficient solution algorithms.

We present an overview of relaxation methods for steady compressible
flow problems. This is to be understood in the sense that by virtue of
spatial discretization the steady-state governing equations are converted
to a nonlinear algebraic system of equations, which has to be solved. No
time accuracy is required in this context, but time-accurate computations
may also fall under this relaxation paradigm. For instance when implicit
time discretization is employed, the solution of such an algebraic system of
equations is required at each time instance.

One may argue that, in principle, the same relaxation methods and the
same convergence theory may be applied to high-order discretization and
low-order discretization. After all, a nonlinear algebraic system of equations
is the result of spatial discretization in both cases. It is nevertheless true
that the circumstances change when the order of accuracy is increased. As
an example, consider two very popular paradigms in CFD computations
for compressible flow, namely nonlinear multigrid methods with explicit
multistage schemes, and implicit relaxation methods. Stability restrictions
become a major concern for multigrid methods using explicit multistage
relaxation, even on non-stretched meshes, as permissible CFL numbers of
high-order methods typically behave as CFL oc m~2, where m is the poly-
nomial degree of approximation [Hesthaven and Gottlieb (1999)]. Further-
more, the direct extension of multigrid methods to higher order schemes via
the multi—p approach is not entirely straight forward. On the other hand,
implicit relaxation methods, such as Newton-Krylov methods, suffer from
drawbacks as well, such as excessive storage requirements for high orders of
approximation. We present an overview of viable relaxation methods with
particular emphasis on constraints imposed by high-order spatial discretiza-
tion, emphasizing such methods that are applicable to general unstructured
grids.

2. Discretization Methods

The current state-of-the art in CFD focuses on solving the Euler or Navier-
Stokes equations, the latter with suitable turbulence modeling. We write
these equations generically as a system of conservation laws

ow
TV f(w) = Sw), (1)
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where w is the vector of conserved variables, f is the flux vector, including
inviscid and viscous contributions from the governing equations, and pos-
sibly a turbulence model. The right-hand side may include a source term
that often comes from a turbulence model.

For example, for the two-dimensional Euler equations for inviscid rota-
tional fluid flow, w and f are written as

p pu;
pUL pu;ur + péji )

w = , = , —1,2. 2
pu2 ; pU;uz + pdjo J @
E pu; H

Here p is the density, p is the pressure, E is the energy, and H = (E+p)/p
is the enthalpy. The fluid velocity vector is given by u = (u,uz)?. For
a thermally and calorically perfect gas, one closes the equations by the
equation of state

p=r=1) (B golll?) ®)

where 7 is the ratio of specific heats.

There are a wide variety of high-order discretization methods for con-
servation laws, such as high-order finite-volume schemes [Barth (1993)],
WENO schemes of finite difference or finite volume type [Shu (2003)],
residual-distribution schemes [Abgrall and Roe (2003)], or hp finite-element
methods [Karniadakis and Sherwin (2005)]. A very popular paradigm in
high-order discretization is given by schemes based on piecewise polynomial
representation, i.e. such schemes that, for a partition of the computational
domain 7, = {T'}, approximate the solution of (1) as w =~ wy, € V), where
VP is the space of functions that are polynomials of degree p in each element,
but are discontinuous across elements. Examples are the Discontinuous
Galerkin (DG) method [Cockburn and Shu (2001)] or the Spectral Differ-
ence method [Liu et al. (2006); Wang et al. (2007)]. Attempts have been
made to put some of these discretization approaches into a unified setting,
such as Huynh’s flux reconstruction approach [Huynh (2007)], the newly
established Lifting Collocation Penalty method [Wang and Gao (2009)], or
P, P,, schemes [Dumbser et al. (2008); Dumbser (2010)].

We shall not be overly concerned with discretization methods here, as
the focus is very much on relaxation methods for steady problems, which
is generally the task of solving the nonlinear algebraic set of equations
resulting from the spatial discretization. However, we do emphasize such
schemes that are based on local polynomial approximation on unstructured
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grids. For example, omitting any limiting or shock capturing terms, a
simple DG discretization for a steady hyperbolic conservation law of the
type (1) without source term leads to the problem of finding wy, € V¥ such
that

R(wp;vp) == Z {—/Tf(wh)Vvhdx—&—/aTg(w;,wh;n)v;ds} =0,

TeT,
(4)

for all v, € V). The function g is a numerical flux, which defines the flux
on element boundaries, where the solution is discontinuous, as a function
of the solution uz in element T, and wu, , the solution in its neighbor. See
e.g. [Roe (1981); Jameson (1995)] for the case of the Euler equations. While
usually the DG discretization is formulated using the semilinear form (4),
it is clear that once the basis and test functions are chosen, the residual is
a function of the solution coefficients for wj, only, and we may suppress the
test function vy, in the notation.

Another example is the Spectral Difference scheme for which one seeks

wp, € Vy, using a nodal (Lagrange) basis, such that
R(wh) = V . fh(wh) =0 s (5)

where fj, is a global interpolant of the nonlinear flux function f, which
is continuous in normal direction across element interfaces by virtue of
using numerical flux functions in the interpolation in a suitable manner,
see [Kopriva and Kolias (1996); Liu et al. (2006); Wang et al. (2007)].

Since we only deal with the numerical solution wy, we drop the sub-
script by default, and use it only when reference to a characteristic mesh
length h is deemed necessary. Note that in Eq. (4) and Eq. (5) we use wy,
to denote the assembled polynomial solution. Naturally, enforcing these
equations means solving for discrete degrees of freedom, such as the modal
coeflicients or the collocation values, that together with corresponding basis
functions define the numerical solution. In the following we shall associate
w with the vector of discrete degrees of freedom. Likewise R corresponds to
the pertaining residual evaluations. Thus we are left with a vector-valued
nonlinear system of algebraic equations

R(w) =0, (6)

where R(w) is the residual vector.
The core of the present exposition is a pseudo time-dependent relax-
ation, marching the field equations to a steady state in a method of lines
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approach. This means one considers the system of nonlinear ODE

dw + R(w)=0. (7)
dr
Obviously no time accuracy is required if one wishes to iterate toward the
steady state, allowing such convergence acceleration techniques as local
time stepping and multigrid methods. The advantage of this approach is
that a wide variety of methods may be formulated in this framework.

3. Explicit Multistage Methods

In the early development of DG methods, multistage time-stepping schemes
have been very popular. Early publications introduced the Runge-Kutta
Discontinuous Galerkin (RKDG) method [Cockburn and Shu (1988)], pre-
senting spatial discretization and multistage time stepping as a combined
scheme. While much of this classical work is devoted to presenting and
analyzing the method for time-dependent problems, Runge-Kutta methods
have since become popular for steady problems as well [Bassi and Rebay
(1997); May et al. (2010)]. Runge-Kutta methods are easy to implement
and parallelize, and have low memory requirements.

Consider the pseudo-time ODE Eq. (7). An M-stage multistage tem-
poral discretization may be written

w® =™ |
k—1
wh =3 {aklw(l) - ATﬁklR(l)} ,  k=1,...,M, (8)
=
,wnJrl _ ,w(M)

)

where w™ is the n*® iterate of the solution, and R := R(w®). Given a dis-
cretization that is TVD [Harten (1983)] with forward Euler time stepping,
Shu proposed high order multistage schemes [Shu and Osher (1988)], which
preserve the TVD property at high CFL numbers. These concepts have
since been generalized under the paradigm of strong stability preserving
(SSP) Runge-Kutta schemes [Gottlieb et al. (2001)]. TVD properties have
been shown for Discontinuous Galerkin and Spectral Difference Schemes
using standard limiting methods [Cockburn and Shu (1988); May (2006)].
The coefficients of the popular Shu RK3 scheme [Shu and Osher (1988)]
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may be written, arranged in matrix form, as

9)

W[ =
[N

2
3

It should be noted that this scheme allows preservation of TVD properties
only at the same CFL number as a forward Euler time stepping scheme [Shu
and Osher (1988)]. For time dependent problems this still may lead to su-
perior efficiency due to high order accuracy in time. For steady problems
however, temporal order of accuracy is immaterial, and the use of this
scheme is merely justified by the fact that simpler schemes, such as forward
Euler or the 2-stage TVD RK scheme [Shu and Osher (1988)] are not lin-
early stable with DG or Spectral Difference methods, which may lead to
overactive limiters in the TVD discretization, and hence to compromised
accuracy.

An alternative are low order but high-CFL number schemes, such as
TVD / SSP schmes [Shu (1988); Gottlieb et al. (2001)] or Jameson’s high-
CFL number multistage schemes [Jameson (1983, 1993, 2004)] , which have
been very popular in standard finite-volume CFD computations. These
latter schemes have been designed using Fourier analysis for a linear model
equation with the aim to maximize the stability region and at the same
time provide good high-frequency error damping properties, which improves
performance within multigrid algorithms.

The success of such multistage schemes for steady problems depends to
a large extent on convergence acceleration techniques. Certainly the use of
local time stepping methods is mandatory if no time accuracy is required.
Time steps are adjusted so that they are always close to the local stability
limit. If the mesh size increases, the time step, which is proportional to
the local characteristic mesh length, will also increase, producing an effect
comparable to that of an increasing wave speed. Furthermore, the combina-
tion of multistage schemes with multigrid, which we address in section 5.1,
is one of the classic paradigms in compressible flow simulation. It should
not be overlooked that the success of multistage methods in classical CFD
methods have also relied on other convergence acceleration methods, such
as implicit residual smoothing and related methods [Jameson (1988); Swan-
son et al. (2007)], which have not found a straight forward extension in the
realm of higher order discretization methods.

While explicit relaxation methods are attractive due to ease of imple-
mentation and parallelization, stability restrictions are a concern. Often
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spectra of the (linearized) discrete advection operators are investigated to
infer stability properties [Karniadakis and Sherwin (2005)]. In the con-
text of nodal DG schemes, or Spectral Difference schemes, such analysis
has revealed that the spectral radius is proportional to m?, where m is
the polynomial order of approximation [Hesthaven and Gottlieb (1999);
May (2006)], which suggests that stability for explicit methods necessitates
CFL ~ m™2. As an example, consider the one-dimensional linear advection
equation and Discontinuous Galerkin or Spectral Difference Discretization,
where permissible CFL numbers with respect to linear Lo stability have
been explicitly computed [May (2006)], see Table 1. The measure CFL -
DOF used in Table 1, where DOF is the number of local degrees of free-
dom, is appropriate when making comparison with standard finite difference
schemes using the same number of total degrees of freedom. The Spectral

Table 1. Linear stability limits for Spectral Difference and DG Schemes with the
Shu RK3 scheme, and Jameson’s four-stage scheme [Jameson (1983)].

SD / Jameson RK4 SD / Shu RK3 DG / Shu RK3
Pol. Order CFL CFL- -DOF CFL CFL:-DOF CFL CFL-DOF

0 0.696 1.392 0.595 1.190 0.409 0.818
1 0.363 1.089 0.322 0.966 0.209 0.627
2 0.226 0.904 0.201 0.804 0.130 0.520
3 0.156 0.780 0.139 0.695 0.089 0.445
4 0.115 0.690 0.103 0.618 0.066 0.396
5 0.089 0.623 0.079 0.559 0.051 0.357

Difference schemes in Table 1 use Gauss-Legendre quadrature points, aug-
mented with cell interval end-points, which has recently been confirmed to
be a stable choice by means of numerical eigenvalue analysis [Huynh (2007)]
as well as rigorous proof [Jameson (2009)].

The rapid asymptotic decrease of permissible CFL numbers poses a se-
vere challenge, certainly if the problem is exacerbated by numerical stiffness
induced by stretched meshes. It remains to be seen if explicit relaxation
methods will remain popular for practical high order viscous CFD compu-
tations. This depends to a large extent on whether convergence acceleration
techniques such as multigrid methods can be incorporated succesfully.

The popular focus on nonlinear TVD stability theory has to some extent
led to negligence of linear stability analysis for high-order schemes. It has
to be stressed that many combinations of explicit time integration methods
with higher order schemes, such as the Spectral Difference scheme, or stan-
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dard RKDG schemes [Cockburn and Shu (2001)] are not unconditionally
linearly stable [May (2006)]. While nonlinear stability results may still hold,
flux limiters or artificial viscosity techniques are needed for stabilization.
These may locally degrade the accuracy, even in smooth regions, if oscilla-
tions are generated by linear instability. For example, in the case of the 1D
Spectral Difference Scheme, the popular Chebyshev-Lobatto nodes are not
unconditionally stable [May (2006); Van den Abeele et al. (2008)] (and by
extension tensor-products thereof). Linear instability has also been shown
for the Spectral Difference scheme using different nodal sets for multivariate
interpolation on triangular meshes [Van den Abeele et al. (2008)], although
more recently a new formulation of the Spectral Difference scheme has been
proposed, based on interpolation in Raviart-Thomas spaces, which seems
to be linearly stable [May and Schéberl (2010)].

High-order DG or spectral methods for nonlinear equations can be sta-
bilized quite effectively with filtering methods [Hesthaven and Warburton
(2007)], meaning attenuation of higher order modes. While it has been
demonstrated that even for fixed (intermediate) order schemes such an ap-
proach may be viable without significantly degrading the accuracy [Hes-
thaven and Warburton (2007)], this has not been explored too much for
CFD applications.

Regardless of the stabilization method of choice, restrictive stability
conditions of the type shown in Tab. 1 always apply for explicit relaxation
methods, which makes it absolutely necessary to combine them with con-
vergence acceleration techniques for steady problems.

4. Implicit Relaxation Methods

A linearized backward Euler temporal discretization of Eq. (7) may be
written

(I 4+ ATA(W™)) Aw™ = —ATR(W") , (10)

where Aw" = w"*! — w™ and A is the Jacobian matrix of the residual
vector, i.e. the differentiation of the residual vector R with respect to the
state vector w. For AT — 00 one obtains a Newton iteration, while finite
time steps may be interpreted as damped Newton iterations. For simplicity
we shall often use the symbol M to denote the entire left-hand-side matrix
in Eq. (10).

The hallmark of implicit methods is that a large sparse linear system,
given by Eq. (10), has to be solved at each nonlinear iteration step n.
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For most practical applications direct solution of the system is out of the
question, so one has to resort to iterative methods. The key parameters in
the implementation are

e Approximation and assembly of the Jacobian matrix A
e The iterative solution method for the linear system
e Preconditioning of the system

Finding the best overall approach is not trivial if the time to solution is
to be minimized. A variety of different approaches have been proposed
even for standard low-order CFD methods. Nevertherless, two approaches
may be identified that are particularly popular: Newton-Krylov methods,
corresponding to infinite-time steps in Eq. (10), and finite-time-step im-
plicit methods using classical iterative solvers with convergence acceleration
methods.

4.1. Newton-Krylov Methods

The Newton iteration potentially achieves quadratic convergence, provided
the exact Jacobian matrix is available, and the linear systems arising at
each iteration are solved to high precision. Newton’s method is often com-
bined with Krylov methods to solve the linearized equations at each itera-
tion. Krylov methods (with a good preconditioner) are often advantageous
if solution of the linear system to high precision is desired, and the sys-
tem by itself is not necessarily well conditioned. This is usually the case
if the time step in Eq. (10) is increased to infinity. Methods that rely on
diagonal dominance, as many classical iteration methods do [Hackbusch
(1994)], may not be a good choice for this case. Among the Krylov meth-
ods for non-symmetric systems that arise in CFD applications the GMRES
method [Saad and Schultz (1986)] is quite popular. GMRES is very ro-
bust, in the sense that it cannot break down, unless the exact solution of
the linear system is reached, and furthermore guarantees that the (linear)
residual 2-norm is non-increasing. On the other hand, the method is quite
expensive due to long recurrences of Krylov vectors, and usually requires
good preconditioning to attain acceptable rates of convergence. We defer
the issue of preconditioning to section 4.4.

In practice it is very difficult, if not impossible, to quantify a priori
the region of attraction that must be reached, to attain convergence of the
Newton iteration. Therefore some kind of globalization must be added to
the method to allow convergence from an initial guess that may be far away
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from the converged solution. For CFD applications a simple time-step con-
trol of the implicit temporal discretization, based on the size of the residual
is usually fairly robust. As an example of a Newton-Krylov method applied
to a compressible flow problem consider the test case depicted in Fig. 1.
The convergence using a DG method with polynomials of degree m = 2

Fig. 1. Mach contours for inviscid flow around the NACAO0012 profile. Free-stream
Mach number M~ = 0.4, Angle of Attack @ = 5°.

and m = 4 in terms of the norm ||R(w)||s is shown in Fig. 2 and Fig. 3,
respectively. Here and in the following NDOF is the number of degrees of
freedom in the numerical approximation, i.e. NDOF = N, x N,, X Ny,
where N, is the number of mesh elements, N,, is the number of local de-
grees of freedom, and N,, is the number of equations. It can be seen that
very rapid convergence is attained, once the asymptotic region is reached.

To summarize, Newton-Krylov methods imply increased cost per itera-
tion by requiring

(1) A good approximation of the Jacobian

(2) Solution of the linear system to relatively high precision (at least in the
asymptotic region)

(3) A good preconditioner
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freedom: NDOF = 61,440. DG method with polynomial degree m = 4. Left: Conver-
gence of the residual against nonlinear iterations. Right: Adaptive CFL number against
nonlinear iterations.

4.2. Implicit Schemes with Finite Time Steps

Newton-Krylov methods imply a high cost per iteration, but at the same
time a very low nonlinear iteration count. The opposite approach may also
lead to success. One may use finite time steps in Eq. (10), resulting in a
linear system with (relatively) high diagonal dominance, so that classical
iteration techniques may be used. If a rather inexact solution of Eq. (10)
is accepted, i.e. solving the system to relatively high residual levels and
perhaps using a crude approximation of the Jacobian, the result is a sig-
nificantly higher nonlinear iteration count, but also a dramatically reduced
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cost per iteration. The viability of the concept depends on its successful
combination with convergence acceleration techniques, such as multigrid,
for which classical iterative linear solvers can be quite effective smoothers.

An example for this approach is given by relaxation methods of the
Gauss-Seidel type. Consider a splitting M = D + L 4+ U, where D is
the (block) diagonal, while L and U denote the strictly lower and upper
triangular submatrices, respectively. A standard Gauss-Seidel method may
be written upon setting Aw™? = 0,

(D" + L) Aw™ ! = —R(w") - U"Aw™* |, k=0,1,2,... . (11)

Very often symmetric Gauss Seidel methods are used, that basically con-
catenate a forward and backward solve:

(D™ + L") Aw™**3 = —R(w") — U"Aw™* | (12)
(D™ + U™ Aw™ ' = —R(w") — L"Aw™**3 . (13)

Particularly popular is the so-called LU-SGS method [Jameson and Yoon
(1987); Yoon and Jameson (1988)], which is basically a one-step symmetric
Gauss-Seidel method with zero initial guess. It is a matter of straight-
forward computation to show that this corresponds to a splitting

Aw™ = —(D" +U™)"*D"(D™ + L") ' R(w") . (14)

It is quite obvious that a small number of Gauss-Seidel sweeps does
not solve the linear system to high precision. Nevertheless, such schemes
have been applied to high-order discretizations by numerous reserachers
in combination with multilevel convergence acceleration techniques [Luo
et al. (2006); Nastase and Mavriplis (2006)], making this approach a good
example for the trade-off considered above: The cost per iteration is ex-
tremely low, so that a higher nonlinear iteration count may be tolerated.
Furthermore, the quality of the sweeps can be controlled by appropriately
selecting the ordering of the state vector. Many examples exist in the liter-
ature where for both classical CFD computations and higher order methods
such reorderings have been constructed to reflect lines of strong coupling
of the equations [Mavriplis (1998); Fidkowski et al. (2005)], while in re-
gions of generally weak coupling the relaxation may even be reduced to a
Jacobi iteration. In order to reduce memory overhead, a nonlinear variant
of the LU-SGS scheme, similar to that used by Jameson and Caughey in a
finite-volume context [Jameson and Caughey (2001)], is sometimes applied
to high-order discretization [Sun and Wang (2007); Premasuthan (2010);
Parsani et al. (2010)].
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Whether or not this approach is superior to a Newton iteration is highly
problem dependent, and often also depends on the measure of convergence:
Since the asymptotic quadratic convergence of Newton’s method is very
hard to beat, the solution of the nonlinear problem to machine accuracy
is often most efficiently done with a good Newton solver. On the other
hand, convergence of output functionals, such as lift or drag coefficients, is
often very efficiently achieved to engineering levels of accuracy by multigrid-
accelerated classical smoothing techniques.

4.3. Matriz-free Methods

For higher order methods based on local polynomial approximations, a
major difficulty may be already encountered in the assembly of the Jacobian
matrix. Let P™ be the space of polynomials of degree m. In 2D, dim(P™) x
m?, while in 3D one has dim(P™) o m?. Since all local degrees of freedom
are coupled in each cell, the overall storage requirements grow with the
fourth power of the polyomial order m in 2D, and with the sixth power in
3D.

Storing the Jacobian matrix may not be feasible in some cases, forcing
one either to resort to explicit relaxation methods, or to consider matrix-
free formulations of implicit methods. For the latter, Krylov methods are
particularly suited, since they require, neglecting preconditioning for the
moment, the system matrix M only in the action on Krylov vectors, i.e.
matrix-vector products of the form

z=Muv . (15)

Note that the nontrivial part of this operation involves the Jacobian of
the residual vector R(w™), namely in the computation of A(w™)v, which is
a projection of the derivative of the residual onto the Krylov vector v. One
may generate a numerical approximation to first order accuracy in a small
parameter € by writing

R(w™ + ev) — R(w™)

A(w™)v = . . (16)

Here the cost of applying the matrix-vector product is the same as one resid-
ual evaluation. There is some freedom in the choice of €. Several methods
have been proposed in the literature to estimate the step size [Knoll and
Keyes (2004)]. A simple choice, supposing normalized Krylov vectors, is:

e=+v14||w|lerer » (17)
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where the parameter €,; should roughly represent the square-root of ma-
chine accuracy.

4.4. Preconditioning

For Newton-Krylov methods it is usually the preconditioning that is most
problem-dependent, the rest being a rather generic procedure. In case
of the GMRES method, unfortunately the eigenvalue spectrum does not
completely specify convergence properties, complicating the process of en-
abling fast convergence through good preconditioning. Pathological exam-
ples with extremely benign spectrum of the matrix, yet extremely poor
GMRES convergence, may be constructed [Van der Vorst (2009)]. Precon-
ditioning methods that reflect the physics and numerics of certain prob-
lems are often proposed, CFD applications being no exception [Persson
and Peraire (2008)]. That being said, standard preconditioners based on
incomplete LU factorizations (ILU) [Saad (2003)] are also often used with
good results [May et al. (2010)].

If the preconditioner is explicitly assembled as a sparse matrix it is
normally independent of the Krylov iteration index, i.e. does not change
while the linear system is being solved. On the other hand, explicit storage
of the preconditioner may not always be possible any more than storage of
the matrix itself. For matrix-free preconditioners alternative formulations
of the GMRES method, such as the flexible GMRES method [Soulaimani
et al. (2002)] facilitate the implementation by allowing the preconditioner
to depend on the linear iteration index. One generates a preconditioned
Krylov vector by solving the linear system

Pj’lﬂj =2ZzZj, (18)

where z; = Av;. Since the preconditioning matrix is allowed to depend on
the GMRES iteration index, one may use iterative solvers as precondition-
ers. Noting that the preconditioning matrix P should approximate A one
may apply to equation Eq. (18) a few iteration steps with the same GM-
RES method that is used to solve Eq. (10), i.e. apply GMRES recursively.
In particular, this may be done using the same matrix-free approximation.
This method is denoted ”squared preconditioning”, due to the recursive
application of the linear GMRES solver [May et al. (2010)]. In principle
this algorithm could be recursively applied even further.

It should thus be pointed out that the method is completely matrix-
free. This means that storage requirements grow linearly in the degrees of
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freedom, as opposed to quadratically, which led to the extreme asymptotic
storage requirements outlined in section 4.3. For the matrix-free variant
memory requirements are now dominated by storage of the Krylov vectors,
which in 3D is certainly still considerable, but manageable with modern
computer architectures.

As an example of a computation using matrix-free implicit relaxation
with squared preconditioning, consider the flow depicted in Fig. 4. Figure 5

N
I
RN

o2/ W

Fig. 4. Mach contours for inviscid flow around a smooth bump. Free-stream Mach
number My, = 0.3.

shows the convergence in terms of the density residual for different orders of
approximation using a Spectral Difference method at constant CFL number
(CFL=550). It may be seen that the convergence in terms of linear itera-
tions, i.e. cumulative number of Krylov vectors (excluding preconditioning
iterations), deteriorates with higher polynomial orders. This is due to the
fact that the condition of the system matrix also deteriorates, and it is
usually not advisable to increase the number of preconditioning iterations
(inner iterations) too much as a countermeasure, since the matrix-free pre-
conditioner is not as effective as matrix-based ones, and thus net runtime
may increase despite fewer linear iterations.

5. Multilevel Methods

5.1. Geometric Multigrid

Multigrid is certainly one of the most popular paradigms within the applied
CFD community. One may distinguish between linear multigrid methods,
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Fig. 5. Convergence of the matrix-free method for smooth inviscid flow around a bump
at free-stream Mach number M, = 0.3. Spectral Difference computation with polyno-
mial degrees of 2,3, and 5. Left: Convergence against outer, nonlinear iterations. Right:
Convergence against linear iterations, i.e. number of generated Krylov vectors.

that may be used as preconditioners in the context of implicit relaxation
methods, and nonlinear methods, under the paradigm of the Full Approx-
imation Scheme (FAS) [Brandt (1977)]. The latter is very popular in the
combination with explicit multistage methods, following the (now classic)
approach in [Jameson (1983)].

The FAS approach has traditionally been associated with geometric
multigrid methods, which we consider first. Since it is standard practice to
use only first order accurate solution methods on coarse-grid approxima-
tions, we first consider the special case wy,|r € P for all mesh elements T,
and discuss the extension to higher order approximations afterwards.

Assume that the equations have been iterated n steps on a given
mesh of characteristic length A, the ”fine” mesh, by an explicit multistage
scheme, as in section 3. This results in an approximation wj, and residual
R} = Rp(w}). Using a suitable coarser mesh of characteristic length H,
and defining appropriate restriction operators for the solution and residual,
I ,’lq wy, and Iz ,f[ R}, respectively, one may advance the solution on a coarse
grid by the modified multistage scheme

k—1
wg;):Z{Oéklw%)—l—Atﬁkl (R%)-i-SH)} ) k=1,...,M, (19)
=0

where the additional defect correction term
Sy = IR, — RY (20)
appears on the right-hand side [Jameson (1983); Mavriplis (2002)]. After

hiordRel
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iterating on the coarse mesh for n. iterations the corrected solution on the
fine grid is computed as

wi = wjl + I (Wi —wiy) (21)

where I7 is an interpolation operator, and optionally additional smoothing
on the fine mesh may be applied, before the updated solution is declared
the new iterate at n + 1.

One uses recursive application of this concept to extend the method to
more than two meshes. Good results are usually obtained using W cycles,
following standard nomenclature, see e.g. [Jameson (2004)]. These are de-
fined by allowing transfer to the next higher level only if the solution has
been advanced twice on the current mesh. Figure 6 shows a schematic de-

WWiw/

Fig. 6. W-Cycle for a 4-mesh sequence. The letter A stands for advancing the flow
solution on a particular level, while the letter T' stands for transfer of the solution to the
next higher level.

piction of a 4-level W-cycle. This approach has proved particularly effective
when combined with a nonlinear variant of the LU-SGS scheme [Jameson
and Caughey (2001)].

The geometric approach introduces some overhead, since the availabil-
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ity of mesh sequences is implied. Often those are generated by auto-
matic coarsening procedures, such as agglomeration methods [Mavriplis
and Venkatakrishan (1995)].

5.2. Multi-p Methods

In direct analogy to geometric multigrid we may define multi-p methods
in broad terms as computing an approximation for the error of the current
solution, wy|r € P™, using a lower polynomial degree m.*. However, just
as for geometric multigrd methods the optimal mesh coarsening ratio is not
always a priori clear, with multi—p methods the same question applies to
the lower polynomial degree one ought to use. While some Fourier analysis
for linear model equations has been carried out to assess convergence fac-
tors for multi—p methods [Atkins and Helenbrook (2005); Fidkowski et al.
(2005)], the issue of how many polynomial levels one ought to include for
high m is still open in general, and likely problem and discretization depen-
dent. We shall simply assume that in a two-grid cycle we use polynomial
levels m and m, with 0 < m., < m.

One may use multi—p in a similar fashion as described in the previous
section for geometric multigrid methods. Assume that the equations have
been iterated n steps using a discretization of local polynomial degree m,
and mesh of characteristic length h, resulting in an approximation w;}, and
residual R(w]). Note that here the mesh index has been suppressed, as it
will not change in the multi—p iteration, and instead the subscript m has
been added. Defining appropriate transfer operators for the solution and
residual, I ewy,, and IN}]ZG R(w,), respectively, one may solve the equation

R(wm,) + Sm, =0 (22)
where the additional defect correction term
Sm. = I R(w},) — R(wf), ) (23)

appears on the right-hand side. After relaxing on the polynomial level m,
for n. iterations the corrected solution on the level m may be computed,
using the prolongation operator I} , as

wiy, = wy, + I (e —wy, ) (24)
which may be declared the next solution iterate, upon optionally applying
some further smoothing, as in the geometric multigrid case. Such an ap-

*In our nomenclature we prefer to use multi-p in place of the somewhat more popular,
but misleading, term p-multigrid.
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proach has been used, for example, in [Premasuthan (2010)] with Spectral
Difference discretization and a Runge-Kutta smoother, and in [Fidkowski
et al. (2005)] with DG discretization and implicit smoothers of the block
Jacobi and line relaxation type.

For multi—p methods it has been, however, at least as popular to use a
linear multilevel paradigm with implicit relaxation schemes, instead of the
FAS approach. Applying multilevel techniques when solving Eq. (10) al-
lows a straightforward interpretation as a preconditioner for linear systems.
Using a suitable smoother for Eq. (10), one transfers the residual

rm = —R(w]},) — M, Aw], (25)

to a lower order approximation, i.e. rp,, = Z]'°r,,. Subsequently one solves
the error equations directly, i.e.

IMImcernC = Tm, (26)

which may be done recursively using yet more levels. The corrected solution
is then obtained as w;}, = wy}, + I} e,,. In [Nastase and Mavriplis (2006)]
the linear approach applied to a DG discretization was found superior in
terms of runtime. A major advantage is certainly the reduced number of
nonlinear residual evaluations, which are particularly costly in a higher
order context. (Keep in mind that during a multi—p iteration the mesh
is fixed, so that the cost of evaluating the residual does not decrease as
dramatically as with geometric multgigrid.)

For best results one ought to combine multi—p and geometric multgrid.
Recall that for nonlinear convection-dominated problems geometric multi-
grid aids through two mechanisms: firstly, the elimination of high-frequency
error modes on successively coarser meshes; secondly, the propagation of
error modes, and expulsion from the computational domain [Pierce and
Giles (1997)]. While asymptotic convergence rates are dominated by high-
frequency smoothing, early convergence is dominated by convection. Often
one observes effectively converged output functionals, such as lift and drag
coeflicients at relatively high residual levels, before asymptotic convergence
rates are reached. In this phase, geometric multigrid may be viewed pri-
marily as an increase of the effective wave speed propagating error modes,
which is, however, dependent on global coarsening. Since multi—p meth-
ods do not provide such global coarsening, it is likely that best-practice
multilevel solvers will still have to include geometric multigrid.
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5.3. Hybrid Multilevel Schemes

It is certainly possible to use multigrid with different relaxation schemes
on different mesh levels or levels of polynomial approximation. This leads
to hybrid multilevel schemes. Depending on the constraints deemed im-
portant one may find very different ”optimal” combinations. For example,
in [Luo et al. (2006)] a multi—p DG scheme is proposed that combines Shu’s
three-stage Runge-Kutta method, cf. Eq. (9), for polynomial levels of ap-
proximation m > 0, with implicit LU-SGS solves, cf. Eq. (14), for m = 0,
with the primary concern being storage requirements.

A different method was proposed in [May et al. (2010)], where a damped
Newton/GMRES implicit method is used for the highest level of polyno-
mial approximation m > 0. Storage concerns are addressed with an op-
tional matrix-free formulation. A geometric multigrid method with explicit
multistage smoothing is used for the volume averages (i.e. for m = 0)
between Newton iterations to accelerate the convection of the volume-
averaged large-scale error modes. The smoothed volume averages replace
the volume averages of the high-order relaxation. The rationale behind
this is that experience indicates that error convection and expulsion is the
primary mode of convergence, when considering integrated quantities, such
as force coefficients. When using geometric multigrid methods, which ac-
celerate the effective wave speed for error convection and expulsion, force
coefficients are often essentially converged at rather high residual levels,
when high-frequency errors still persist.

The method in [May et al. (2010)] is completed by a full multigrid
(FMG) finite-volume start-up procedure. Algorithm 5.1 gives an example of
a practical implementation of the overall approach. Let RK MG (w;1,n) de-
note the application of n iterations of Runge-Kutta smoothing with [—level
geometric multigrid. The mesh levels are identified by an indexed charac-
teristic length h;, where the coarsest mesh is indexed with [ = 1, while the
finest available mesh is indexed | = L. For easy reference we have denoted
volume averages by an overbar, i.e. Wy, while wy, indicates the solution at
the current high-order polynomial level m. The implicit solves are denoted
by NK (w;m,n), where again, n is the number of iterations, and m is the
level of polynomial approximation.

The first loop over the meshes defines the startup procedure. The com-
putation starts on the coarsest grid using a finite-volume method with ex-
plicit multistage relaxation, and then proceeds up to the next finer grid
when a sufficiently good approximation to the solution has been achieved.
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Algorithm 5.1. Hybrid Multilevel with Full Multigrid

(1) Initialize W) with free stream conditions
(2) Forl=1,...,L, Do
3) Wy, = RKMG(@®@Y,;1,n)
4) if 1 =L) exit
—0 _ ghiti—n
E5§ whl+1 - hll+1whl
6) EndDo
(7) wpy, = Inject(wy, ;m)
(8) For n =0,..., Neye, Do
(9) w}TL = NK(wy, ;m,1)
(10) if (converged) exit
an @, = vt
(12) EZL 12 RKMG(@?LL s L, nRK)
(13) wZ: = w}TL — Inject(w), — EZL;m)
(14) EndDo

This is applied recursively, re-using all available coarser meshes with FAS
multigrid, until the finest mesh is reached. The number of multigrid cy-
cles n; should be enough to attain reasonable convergence of integrated
quantities, such as lift and drag, on each mesh level.

The result of the finite-volume relaxation procedure is used as ini-
tial guess for the damped Newton iteration acting on the high-order dis-
cretization in Algorithm 5.1, step 7. We define the injection operator
Inject(w;m), which injects the volume average for the current approxi-
mation order m. Obviously the definition of this operator depends on the
chosen basis and degrees of freedom. This operator is also used in the sub-
sequent multilevel relaxation procedure. Because of the good start value
provided by the initial full multigrid relaxation, only very mild damping for
a few iterations has to be used to avoid start-up problems in the Newton-
Krylov method on the highest level.

The main loop is over the combined Newton / GMRES and explicit
smoothing operators. First the implicit iterator N K (w;m,n) is applied.
Note that usually n = 1, as shown in Algorithm 5.1, step 9. Subsequently
the volume averages are extracted in step 11, where the operator is denoted
V. This is particularly easy for hierarchical bases that are often used with
DG methods, e.g. [Dubiner (1991)]. It is easily accomplished also for the
non-hierarchical Spectral Difference basis by (exact) numerical quadrature
based on the solution nodes. Finally the explicit multigrid iterations are
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performed for the volume averages, which produces updated values that
replace the previous ones. Typically around nrx = 20 iterations are used
for the additional RK M G smoothing between Newton iterations. Interme-
diate polynomial levels 0 < m, < m are not used in the nonlinear multigrid
cycles, but may be used within this framework under the linear multigrid
paradigm, i.e. as a preconditioner for the linear systems, although incom-
plete LU factorizations also work effectively.

As a computational example, consider the inviscid flow test case summa-
rized in Fig. 7 using the Spectral Difference Scheme with m = 2. Figure 8

Approximate.

Fig. 7. Mach contours for inviscid flow around the NACAO0012 profile. Free-stream
Mach number M~ = 0.3, Angle of Attack @ = 0°.

shows the convergence of the hybrid method, Algorithm 5.1, under mesh
refinement in terms of the drag coefficient. Here the CFL number has been
kept constant at CFL=550 to highlight the mesh independent convergence.
Both nonlinear iterations, and linear iterations are shown, where the latter
refers to the cumulative number of generated Krylov vectors. It can be seen
that convergence of both degrades very severely for the single-grid method,
while the convergence is nearly mesh independent for the hybrid mulitlevel
method. The mesh sequence used for these computations is shown in Ta-
ble 2 and Table 3 . More precisely, in Table 2 the three meshes used in
the refinement study are summarized, while in Table 3 the multilevel data
for the coarsest of these meshes is shown. For the finer meshes in Table 2
it should be understood that all previously defined coarser meshes are used
recursively (with finite volume approximation). Thus the medium mesh
uses a 4-level strategy, while the finest mesh uses 5 levels.

A similar test case has been computed for the flow conditions M., = 0.4
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Fig. 8. Inviscid flow around the NACAO0012 profile at free-stream Mach number
My = 0.3, angle-of-attack @ = 0°. Convergence of the single-grid method (SG), and
the hybrid multilevel method, Algorithm 5.1, using 20 finite-volume multigrid cycles
between Newton iterations. Krylov solver: GMRES(30) with ILU(2) preconditioning.
Left: Convergence against outer, nonlinear iterations. Right: Convergence against linear
iterations, i.e. number of generated Krylov vectors.

Table 2.
h-refinement study.

Meshes used in

Level NDOF  Elements
fine 983,040 40,960
medium 245,760 10,240
coarse 61,440 2,560

and o = 5°, i.e. the case depicted in Fig. 1. The convergence in terms of
the lift coefficient, plottet against CPU time, is shown in Fig. 9 for the
three different meshes in Table 2.

NACA012- M=04, 0=5° NACAQ012-M=04, 0=5° NACA0012-M=04, 0=5°
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Fig. 9. Mesh refinement study. Inviscid flow around the NACAO0012 profile at Mo =
0.4, o = 5°. Convergence of the lift coefficient. Degrees of freedom: NDOF = 61,440
(left) , NDOF = 245,760 (middle) , NDOF = 983,040 (right).

hiordRel



September 27, 2010 9:28 World Scientific Review Volume - 9in x 6in hiordRel

24 G. May and A. Jameson

Table 3. Meshes and Degrees of freedom used with
the hybrid multilevel method on the coarsest mesh
of Table 2.

Hybrid Multilevel

Level NDOF m Cells CFL Smoothing

4 61,440 2 2,560 550 Implicit
3 10,240 0 2,560 6 Explicit
2 2,560 0 640 6 Explicit
1 640 0 160 6 Explicit

6. Conclusion

We reviewed approaches to the solution of nonlinear systems arising from
high-order spatial discretization in a CFD context. It is not advisable to
end such a review with a clear recommendation on what method ought to
be generally preferred, as such a choice is always problem-dependent. Read-
ers familiar with best-practice low-order CFD methods will recognize the
same trade-offs that have always existed: Restrictive stability restrictions
with explicit methods that require fine-tuned convergence acceleration tech-
niques, high memory requirement with implicit relaxation methods, and the
problem of adequate preconditioning.

In the context of higher order discretization methods, however, these
trade-offs are often more pronounced. Efficient solution needs to be de-
fined in terms of available resources and objective of the calculation, which
may inform the decision as to what relaxation scheme should be used. For
example, solving the nonlinear equations to machine accuracy is a very
different task compared with high-throughput computations that focus on
convergence of output quantities to engineering levels of accuracy. Available
resources, such as computer memory, may just dictate the choice of relax-
ation method. For example, the enormous storage requirements of Newton-
Krylov methods for 3D computations may sometimes be prohibitive.

It must be said, that efficient solution of steady compressible flow prob-
lems to relatively modest levels of accuracy is still a domain dominated
by the mature technology of standard best-practice lower order methods.
However, solution methods that are well adapted to the unique environ-
ment of high-order discretization are an area of very active research, and
the transition from model problems to more realistic applications is well
underway. It is entirely possible that well designed hp-adaptive solvers will
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be able to challenge the current status-quo in the near future.
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