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Structural LES modeling with high-order spectral
difference schemes

By G. Lodato, P. Castonguay AND A. Jameson

1. Motivation and objectives

Notwithstanding the considerable effort which has been devoted to the development of
accurate and relatively reliable sub-grid scale (SGS) models for LES, in most cases, the
underlying numerical methods, which are available within the framework of industrial
CFD applications, generally rely upon highly dissipative schemes. The inherent numer-
ical dissipation introduced by such numerical schemes limits their ability to correctly
represent the high-frequency end of the spectrum resolved in LES.

Hence it is necessary to combine high-order numerical schemes with advanced SGS
modeling techniques in order for LES to become a valuable and reliable tool for fun-
damental flow physics and industrial applications. Unfortunately, most of the available
high-order numerical schemes are designed to be used on cartesian or very smooth struc-
tured curvilinear meshes and therefore they are inadequate to simulate turbulent flows
over complex geometries. In the current work, a high-order unstructured solver is com-
bined with an explicit filtering LES method, thus allowing highly accurate turbulent flow
computations on realistic geometries that were previously possible only with low-order
schemes.

High-order numerical schemes for solving the compressible Navier-Stokes equations on
unstructured grids have been widely studied during the last decade. By far the most
mature and widely used of these schemes are based on the Discontinuous Galerkin (DG)
method (Hesthaven & Warburton 2007; Karniadakis & Sherwin 1999). However, several
alternative high-order methods have recently been proposed, including Spectral Differ-
ence (SD) type schemes (Kopriva & Kolias 1996; Huynh 2007; Liu et al. 2006; May &
Jameson 2006; Sun et al. 2007; Wang et al. 2007; Liang et al. 2009a), which potentially
offer increased efficiency compared with DG methods (as well as being simpler to imple-
ment). The SD method has been successfully applied to viscous compressible flows with
shocks (Premasuthan et al. 2009), implicit LES of turbulent channel flow (Liang et al.
2009c) and flow around circular cylinders (Liang et al. 2009b; Mohammad et al. 2010; Ou
et al. 2009), as well as transitional flows over an SD7003 airfoil (Castonguay et al. 2010).
The combination of the SD method with SGS modeling techniques for explicit LES, on
the other hand, has not been widely studied. Parsani et al. (2010) obtained encouraging
results using the WALE (Nicoud & Ducros 1999) eddy-viscosity model but their analysis
was restricted to two-dimensional flows, and thus was not fully physically relevant.

Within the framework of the SD method for three-dimensional unstructured hexahe-
dral grids, the present study addresses the implementation of a structural SGS model
based on the scale similarity assumption (Bardina et al. 1980), namely the WALE Sim-
ilarity Mixed model proposed by Lodato et al. (2009). To the authors’ knowledge, this
represents the first implementation of a structural SGS model in a three-dimensional
solver that uses the SD method. Moreover, the proposed implementation of a constrained
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discrete filter of arbitrary order for the SD method will be suitable for any other explicit
filtering SGS approach.

2. Mathematical formulation

2.1. The numerical scheme
In the present work, the Navier-Stokes equations are solved using the high-order un-
structured SD method for spatial discretization. The formulation of the equations on
hexahedral grids is similar to the formulation by Sun et al. (2007), which will be summa-
rized below for completeness. After introducing the bar filter operator and the density-
weighted Favre filter operator tilde, the unsteady compressible Navier-Stokes equations
in conservative form are written as

∂U

∂t
+

∂F
k

∂xk
= 0, (2.1)

where U =
(
ρ ρu1 ρu2 ρu3 ρe
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k
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k
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where ρ is the fluid’s density, uk is the velocity vector, e is the total energy (internal
+ kinetic), µ is the dynamic viscosity, Aij is the deviator of the deformation tensor,
cp is the specific heat capacity at constant pressure and Pr is the Prandtl number. In
particular, $ and ϑ̃ are the filtered macro-pressure and macro-temperature, and these
quantities are related by the usual equation of state, i.e., $ = ρRϑ̃ (see Lesieur et al.
2005; Lodato et al. 2009 for a details about the underlying hypotheses). τij and qk in
Eq. (2.2) represent the usual unclosed SGS terms (note that the superscript ‘d’ refers to
the deviatoric part of the relevant tensor).

To achieve an efficient implementation, all elements in the physical domain are trans-
formed to a standard cubic element described by local coordinates ξ = (ξ1, ξ2, ξ3), with
ξ ∈ [0 : 1]3. The governing equations in the physical domain are then transferred into
the computational domain, and they take the form

∂U
∂t

+
∂Fk

∂ξk
= 0, (2.3)

where

U = |det(J)|U and Fk
= |det(J)|∂ξk

∂xj
F

j
, (2.4)

and det(J) represents the determinant of the Jacobian matrix Jij = ∂xi/∂ξj .
Within each standard element, two sets of points are defined, namely, the solution

points and the flux points, as schematically illustrated in Figure 1 for a one-dimensional
element. In order to construct a degree (N −1) polynomial for each coordinate direction,
the solution at N points is required. These N points in 1D are chosen to be the Gauss-
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Figure 1. Schematic representation of the one dimensional distribution of solution and flux
points within the SD element for N = 4.

Legendre quadrature points, whereas the flux points were selected to be the Gauss-
Legendre quadrature points of order N −1 plus the two end points 0 and 1. Using the N
solution points and the N+1 flux points, polynomials of degree N−1 and N , respectively,
can be built using Lagrange bases defined as

hi(ξ) =
N∏

s=1,s 6=i

(
ξ − ξs

ξi − ξs

)
, and li+1/2(ξ) =

N∏
s=0,s 6=i

(
ξ − ξs+1/2

ξi+1/2 − ξs+1/2

)
. (2.5)

The reconstructed solution for the conserved variables in the standard element is then
obtained as the tensor product of the three one-dimensional polynomials,

U(ξ) =
N∑

k=1

N∑
j=1

N∑
i=1

U i,j,k

|Ji,j,k|
hi(ξ1)hj(ξ2)hk(ξ3), (2.6)

where i, j and k are the indices of the solution points within each standard element. A
similar reconstruction is adopted for the resolved fluxes Fk

.
The reconstructed fluxes are only element-wise continuous, but discontinuous across

cell interfaces. For the inviscid flux, a Riemann solver is employed to compute a common
flux at cell interfaces to ensure conservation and stability. In the current implementation,
the Roe solver (Roe 1981) with entropy fix (Harten 1983) was used. The left and right
states here represent the solution on both sides of the shared edge flux point. The viscous
flux is a function of both the conserved variables and their gradients, and therefore
the solution gradients have to be calculated at the flux points. The average approach
described by Sun et al. (2007) is used to compute the viscous fluxes.

2.2. LES modeling approach
In order to close the SGS terms a structural model based on the scale similarity as-
sumption (Bardina et al. 1980; Liu et al. 1994; Akhavan et al. 2000) is adopted. In the
perspective of developing a similarity mixed formulation (Akhavan et al. 2000; Salvetti
& Banerjee 1995; Anderson & Meneveau 1999; Zang et al. 1992, 1993; Erlebacher et al.
1992; Speziale 1985; Speziale et al. 1988) with correct near-wall scaling, a Wall-Adapting
Local Eddy-viscosity (WALE) formulation (Nicoud & Ducros 1999) for the eddy-viscosity
term was recently proposed by Lodato et al. (2009):

τd
ij = 2ρνsgsÃij − ρ

(̂̃uiũj − ̂̃ui
̂̃uj

)d
, (2.7)

qk = γρκsgs
∂ẽI

∂xk
− γρ

(̂̃eI ũk − ̂̃eI
̂̃uk

)
, (2.8)

where ẽI is the resolved internal energy and the hat operator represents filtering at cutoff
length α∆, with α ≥ 1 and sufficient localization in physical space (Liu et al. 1994). The
SGS kinematic viscosity, νsgs, and thermal diffusivity, κsgs, are computed as (Nicoud &
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Ducros 1999)

νsgs = C2
w∆2

(s̃d
ij s̃

d
ij)

3/2

(S̃ijS̃ij)5/2 + (s̃d
ij s̃

d
ij)5/4

, and κsgs =
νsgs

Pr sgs
, (2.9)

where Cw = 0.5, ∆ is a measure of the grid cutoff length-scale, which is here evaluated
following the same procedure as that suggested by Parsani et al. (2010), namely,

∆(ξ) ∼
[
|det(J(ξ))|

N3

]1/3

, (2.10)

S̃ij = 1
2 (∂ũi/∂xj + ∂ũj/∂xi) is the strain rate tensor of the resolved field and s̃d

ij is
the traceless symmetric part of the square of the resolved velocity gradient tensor g̃ij =
∂ũi/∂xj . The sub-grid scale Prandtl number, Pr sgs, is assumed constant and equal to
0.5 (Erlebacher et al. 1992; Speziale et al. 1988).

2.3. Constrained discrete filters for the SD method

Within the framework of similarity mixed SGS models, such as the WSM model used
in this study, explicit filtering represents a key ingredient to approximate sub-grid scale
interactions. This is done by assuming similarity within a narrow band of frequencies in
the vicinity of the cutoff frequency kc. As already mentioned in Section 2.2, similarity is
assumed between the SGS scales and the smallest resolved scales, which are evaluated as
the difference between the filtered and the twice-filtered field. Hence, the explicit filter
should be designed (a) to have sufficient localization in physical space; (b) to ensure
a certain selected cutoff length-scale. For instance, the box filter in physical space is
generally used due to its locality and ease of implementation (Zang et al. 1993; Lodato
et al. 2009). Lodato et al., in particular, used a discrete approximation with cutoff length-
scale ∆̂ = 4/3∆ according to what was proposed by Akhavan et al. (2000), as this filter
width is an optimal size in order to sufficiently isolate the smallest resolved scales.

In order to develop a mixed similarity formulation to be applied with the SD method,
the above ideas need to be generalized in a way which is numerically consistent with the
use of SD elements. In particular, since the SGS model terms are evaluated at the flux
points, the filtered quantities need to be evaluated at the same flux points starting from
the discrete solution at the solution points. This can be achieved by filtering the solution
at the solution points first, and then extrapolating the filtered quantities at the flux points
using the same Lagrange polynomials used to reconstruct the fluxes [see Eq. (2.5)].

Considering for simplicity the one-dimensional SD element depicted schematically in
Figure 1, a particularly desirable feature in building discrete filters is that the filter
stencil does not lie across elements. Moreover, the non-uniform spacing of the solution
points should be taken into account. The above considerations lead to the particularly
challenging task of designing asymmetric non-uniform discrete filters with a fixed cutoff
length-scale.

With regard to the SD element depicted in Figure 1, the discrete filtering operator for
a generic quantity φ is defined as (Vasilyev et al. 1998)

φs =
N∑

i=1

ws
i φi, (s = 1, . . . , N), (2.11)

where the s index refers to a quantity at the N solution points. For the case of hexa-
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hedral elements as in the present study, the generalization to three dimensions follows
immediately by the tensor product of 1D filtering operators.

The spectral signature of the above discrete filter is characterized by its associated
transfer function in Fourier space (Berland et al. 2007), which is readily obtained as

Ĝs(k) =
N∑

i=1

ws
i exp(−jβs

i k∆), with βs
i =

ξi − ξs

∆
, (2.12)

where k is the wavenumber and j =
√
−1; ξs represents the location of the solution

points, whereas ∆ = 1/N is assumed to be the actual resolution within the SD element
[see Eq. (2.10)].

A possible strategy to build discrete filters can be devised by exploiting the resolution
properties of polynomials of different order, thus performing the explicit filtering oper-
ation by applying the Restriction-Prolongation (RP) technique in each computational
cell (Blackburn & Schmidt 2003; Premasuthan et al. 2009). Based on Eq. (2.12), for in-
stance, the real part of the Fourier transform of the discrete filters constructed using the
Restriction-Prolongation (RP) technique (Premasuthan et al. 2009) for N = 3 and 4 is
plotted in Figure 2(a, b), where the box filter in physical space, with cutoff length equal
to 4/3∆, is also represented for reference. As is immediately evident, the cutoff frequency,
namely, the frequency at which Ĝs(k) ' 0.5, for each solution point is different and thus
the overall effective cutoff frequency is unpredictable. Furthermore, for N = 4, the most
asymmetric filters, i.e., those represented with solid lines, have a relatively pronounced
over-shoot in the low-frequency range, a feature which may lead to non-physical growth
of energy (Vasilyev et al. 1998).

In order to overcome these problems, a Constrained Discrete (CD) filter satisfying a
selected set of conditions, was developed for the SD method. The method used to derive
these CD filters is based on the work of Vasilyev et al. (1998). In particular, starting
from Eq. (2.12), the N filter weights ws

i for the s-th solution point can be determined
by providing N constraints. More precisely, a first obvious condition is related to the
preservation of a constant variable, namely

∑N
i=1 ws

i = 1. Then, starting from the idea
of building filters whose kernels are as close as possible to that characterizing the box
filter in physical space of width ∆c = α∆, the condition

Re[Ĝs(kc)] =
N∑

i=1

ws
i cos(βs

i kc∆) =
sin(k∆c/2)

k∆c/2

∣∣∣∣
k=kc

=
2
π

(2.13)

is enforced with kc = π/∆c, which therefore constrains the relevant cutoff length-scale.
The remaining conditions are obtained by constraining the discrete filter to have N − 2
vanishing moments, thus achieving formal commutation with difference operators (Vasi-
lyev et al. 1998).

The real part of the kernels of these CD filters for SD elements of order 3 and 4 are
plotted in Figure 2(c, d).

As can be observed, these CD filters approximate the reference filter—the sharp cutoff
in physical space—much more accurately than the RP filters in the low-frequency range,
showing more pronounced deviations only at length-scales smaller than ∆ (i.e. k∆/π >
1). However, recalling that ∆ ∼ O(1/N), these small scales are not expected to play
a significant role as they are supposedly not supported by the actual resolution of the
SD element. The actual cutoff frequency is also more predictable throughout the SD
element. Moreover, the over-shoots observed in the asymmetric filters constructed by the
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Figure 2. Real part of the transfer function bG(k∆/π) of RP (Premasuthan et al. 2009) and CD
filters for different SD discretization orders N ( , analytical box filter in physical space).
The vertical line indicates the cutoff length-scale at 4/3∆.

RP method are now completely suppressed, hence a better numerical behavior in terms
of stability is expected.

3. Results and discussion

In this section, the results obtained with the actual implementation WSM model are
presented. Computations on two different geometries are reported: (a) channel flow at
Reynolds numbers of 180 (based on the friction velocity and channel half-width); (b) flow
past a confined circular cylinder at Reynolds number 2 580 (based on the upstream bulk
velocity and cylinder diameter). For comparison, implicit LES computations without the
SGS model were performed as well.

3.1. Turbulent channel flow
Two channel flow computations were performed at different orders (N = 4 and 5) at a
Reynolds number Reτ = 180 (based on the friction velocity uτ and channel half-width δ),
and Mach number 0.3. The grid was 4πδ long and 2πδ wide and subdivided in 153 and 123

elements (uniformly spaced in the streamwise and spanwise directions and stretched with
a hyperbolic tangent function in the vertical direction) for the computations with N = 4
and N = 5, respectively. The total number of Degrees of Freedom (DoF) was 216 000,
and the grid resolution in wall units (namely, normalized by viscous length `τ = ν/uτ )
was ∆+

x ' 38, ∆+
y ' 2.0–10 (wall to centerline) and ∆+

z ' 19 in the streamwise, vertical,
and spanwise directions, respectively. Note that the resolution of the computation was
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Figure 3. Mean streamwise velocity profile U+: , WSM model; , no SGS model;
◦ , DNS data (Moser et al. 1999).
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Figure 4. RMS of velocity fluctuations: , WSM model; , no SGS model; symbols,
DNS data (Moser et al. 1999). ◦ , u+

rms; , v+
rms; 4 , w+

rms.

estimated as the actual element size divided by the number of solution points used within
the element; in a Finite Volume (FV) context, this is equivalent to assuming that each
element is filled with N3 control volumes.

All the computations were performed with periodic boundary conditions in the stream-
wise and spanwise directions and no-slip isothermal walls were used on the top and bot-
tom planes. In order to drive the flow, a source term S was added to the x1 component of
momentum. Given the compressible nature of the solver, in particular, S was determined
at each time-step in order to equilibrate the instantaneous resultant shear at the wall,
plus a relaxation term toward the expected mass flow rate to accelerate convergence.
For consistency, another source term, computed using the bulk velocity as ubS, was also
added to the energy equation (isothermal walls were used to prevent the energy from
increasing without bounds).

The computations were initialized with a uniform streamwise 4th-order velocity profile
u1(x) = 15

8 u0

[
1− (x2/δ)2

]2 (u0 is the reference velocity) and a perturbed vertical veloc-
ity component (Rossi 2009). After the flow field was fully developed and established, time
averaging was performed for a period corresponding to about 18 flow-through times; fur-
ther ensemble averaging in the streamwise and spanwise directions was also performed.
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Figure 5. Reynolds shear stresses: , WSM model; , no SGS model; , 〈τ12〉
from LES; global shear stress from LES (resolved + SGS); symbols, DNS data (Moser
et al. 1999). ◦ , −〈u+v+〉; , −〈u+w+〉; 4 , −〈v+w+〉.

First- and second-order statistical moments are plotted in Figures 3–5, where the
results from the explicit LES with the WSM model and the implicit LES are compared
to the results from the Direct Numerical Simulations (DNS) performed by Moser et al.
(1999). Note that the extremely small density variation (∼ 1.4% increase from centerline
to the wall) did not make it necessary to use the Van Driest correction.

The behavior of the WSM model in reproducing the statistical features of the flow is
quite satisfactory for each test case. With regards to the mean velocity profiles, the slope
of the log law is correctly represented, whereas its intercept is slightly overestimated with
respect to the DNS value. The higher order computation gives results in better agreement
with the DNS data, even if the DoF and spatial resolution are the same. Overall, the
use of the SGS model determines an improvement in the results obtained by implicit
LES, which is more evident for the computations with four solution points per element.
Reynolds stresses (see Figure 4) are more sensitive to the use of the SGS model, and
implicit LES shows a marked tendency to overestimate velocity RMS fluctuations.

With regards to the root mean square (RMS) of the resolved velocity fluctuations, in
particular, the profiles obtained with the use of the WSM model are in good agreement
with the DNS data, regardless of the spatial discretization order. The location and in-
tensity of the peak of streamwise velocity fluctuation is correctly captured. Spanwise and
vertical fluctuations tend to be slightly underestimated.

The resolved turbulent shear stresses from the LES are always below the DNS curves,
whereas the results from implicit LES are much closer (see Figure 5). Given the close
connection between the mean streamwise velocity profile and the turbulent shear stress
across the channel—the two quantities are strictly related through the steady Reynolds
averaged x1 momentum equation—and given the good agreement observed for the former
quantity, it is here argued that the actual global turbulent shear from LES, namely,
resolved + SGS modeled contribution, is in good agreement with its DNS counterpart.
This is readily confirmed for test cases CHN1 by collecting the mean SGS shear stress
〈τ12〉 during the computation and by comparing the exact turbulent shear from DNS
〈u′e

1 u′e
2 〉 with the approximate global (resolved + SGS) turbulent shear from LES, i.e.,

〈u′
1u

′
2〉+ 〈τ12〉 (Sagaut 2001). As can be observed in Figure 5 (CHN1), the approximate

global turbulent shear matches the DNS data almost perfectly.
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Figure 6. First- and second-order statistical moments of the resolved velocity field at differ-
ent locations downstream of the cylinder: , WSM model; , no SGS model; ◦ ,
experimental PIV measurements by Konstantinidis et al. (2003, 2005) (every three points are
represented).

3.2. Flow past a circular cylinder

The equations were integrated over an unstructured computational mesh of dimension
48D×10D×3.2D (L×H×W) with 47 976 hexahedral elements. Third-order (i.e., N = 3)
accuracy was set. The simulations, an implicit LES and an explicit LES with the WSM
model, were performed at Reynolds and Mach numbers of 2 580 and 0.25, respectively,
based on the bulk velocity at the inlet Ub and the cylinder diameter D. The boundary
conditions were periodic in the spanwise direction and no-slip adiabatic conditions were
used on the top and bottom planes; the cylinder wall was set as no-slip adiabatic as
well and the inflow/outflow conditions were imposed fixing the inlet density and velocity
and the outlet pressure, respectively. The total number of DoF for each equation was
about 1.3 × 106. Note that, compared to the resolution of the structured coarse mesh
used by Mohammad et al. (2010) for a similar implicit LES computation, the resolution
adopted here is about two times lower.

After the flow field was fully developed and established, statistics were performed aver-
aging in time for 50–60 shedding periods; in view of the statistical two-dimensionality of
the flow field, further ensemble averaging in the spanwise direction was also performed.
Results were compared against Particle Image Velocimetry (PIV) experimental measure-
ments (Konstantinidis et al. 2003, 2005).
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Figure 7. Streamwise and vertical mean (a) and fluctuations (b) of the resolved velocity mea-
sured along the wake of the cylinder at y/D = 0: , WSM model; , no SGS model;
symbols (◦ , streamwise; 4 , vertical), experimental PIV measurements. (Konstantinidis et al.
2003, 2005)

First- and second-order statistical moments at different locations behind the cylinder
and along the wake are plotted in Figures 6–7. The use of the SGS model produces, in
general, better results mostly in terms of second-order statistical moments, as already
observed for the channel flow computation.

4. Concluding remarks

Overall, the performances of the actual WSM model implementation in conjunction
with the SD method are extremely satisfactory. Statistical moments are generally im-
proved when the SGS model is used; the main benefit is a better representation of the
Reynolds stresses. The proposed constrained discrete filter of arbitrary order proved to
be numerically stable at any tested order (up to N = 7 in other tests not included here)
and allows a relatively straightforward implementation into high-order SD schemes of any
SGS model which relies upon the use of explicit filtering or dynamic procedures (Ger-
mano et al. 1991; Moin et al. 1991). Further development of wall modeling procedures and
the unstructured nature of the high-order SD scheme will also allow relatively affordable
high-fidelity LES computations in complex geometries.
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