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High-order methods have the potential to efficiently generte accurate solutions to fluid dynamics problems
of practical interest. However, high-order methods are les robust than lower-order methods, as they are
less dissipative, making them more susceptible to spuriousscillations and aliasing driven instabilities that
arise during simulations of nonlinear phenomena. An effedte approach for addressing this issue comes from
noting that, for nonlinear problems, the stability of high-order nodal methods is significantly effected by the
locations of the nodal points. In fact, in 1D and 2D, it has bee shown that placing the nodal points at the
locations of quadrature points reduces aliasing errors andmproves the robustness of high-order schemes. In
this paper, the authors perform an investigation of a partiailar set of nodal points whose locations coincide
with quadrature points. Analysis is performed in order to determine the conditioning of these points and
their suitability for interpolation. Thereafter, numeric al experiments are performed on several canonical 3D
problems in order to show that this set of nodal points is effetive in reducing aliasing errors and promoting
nonlinear stability.

[. Introduction

High-order methods produce less numerical dissipatiom their low-order counterparts (for which the ordexi®),

and as a result, are well-suited for simulating vortex-dwated flows. In particular, high-order methods have been
successfully employed to simulate flows over flapping wffgsotorcraft, turbine blade and high-lift device8.
Despite their success in these settings, they have yet tddyged by a wide community of fluid-dynamicists. High-
order methods are not as robust or as intuitive as low-ordghaoas, and thus have yet to gain wide acceptance in
industry and academia.

Recently, a number of efforts have been focused on addgegsrshortcomings of high-order methods. In particular,
significant effort has gone toward improving the ‘ease oflenpentation’ associated with these methods. Initially,
the most popular high-order methods, (the discontinuoderida (DG) methods) made use of complex quadrature
procedures and primarily employed modal representatibim@solution in each elemefi?. However, recently, nodal
DG methods that make use of pre-integrated quadraturesrandrgy employ nodal representations of the solution
have gained recognition. For further details, one may dbtiseibook by Hesthaven and Warburt8ywhich provides

a review of these methods. Furthermore, other high-ordéainmethods, including the Spectral Difference (5B
method have risen in prominence. In addition, the Flux Retrantion (FR) approach due to Huyt#has emerged as

a single framework which unifies a number of well-known hider methods including the nodal DG method along
with several SD methods (at least for linear problems). Y#iis framework, Jameséhidentified an SD scheme that
was stable for linear advection in 1D and, thereafter Viho8astonguay, and James8identified a class of energy-
stable FR schemes referred to as the VCJH (Vincent-Caségnrdameson-Huynh) schemes. The VCJH schemes have
been shown to be stable for linear advection-diffusion f@wis in multiple dimension$8. Thus, it can be said that
the linear stability of the schemes has been well estaldlishe
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There are, however, concerns regarding tioalinear stability of high-order nodal schemes, including the VCJH
schemes. High-order nodal methods generally approxirhatiiix using a collocation projection of the flux onto the
polynomial space of degrge When the flux is highly nonlinear, this approach tends toouhtice aliasing errors that
have the potential to destabilize the solufirespecially in the absence of the excess numerical digsipttat is
often provided by 1st or 2nd-order methods. Recent effat® ibeen devoted towards choosing nodal sets that tend
to reduce these aliasing errors. In particular, prelimjirmrasults in 1D and 2D indicate that choosing to locate the
nodal points at the locations of quadrature points tendamopn aliasing driven instabiliti€¥?°. This paper extends
these efforts to 3D and attempts to find nodal sets that realiasing errors on tetrahedral elements. In particular, th
majority of attention is focused on the recently discovegaeddrature points due to Shunn, Ham, and Willig#s
These points, along with more traditional sets of nodal fsadne td°%2? are evaluated and their suitability for nonlinear
problems is assessed.

The structure of the paper is as follows. In section Il, a Fogtier nodal method (the FR method) for treating a
nonlinear advection-diffusion problem will be presentéithereafter, in section lll, the link between the locations
of the nodal points and the nonlinear stability of high-erdedal methods (and in particular the energy stable FR
methods (VCJH schemes)) will be examined. Next, in sectigrtHe conditioning of various nodal sets will be
examined. Finally, section V will present the results of muival experiments comparing the performance of nodal
sets on a succession of nonlinear advection-diffusionlpros.

[l.  Flux Reconstruction Schemes for Nonlinear Advection-D¥ffusion

The particulars of high-order nodal schemes (such as thechBnses) can be best understood by examining the
application of these schemes to a model problem. Toward®tid, consider the application of an FR scheme to the
following nonlinear advection-diffusion equation

%—FV-f(u,VU):O, 1)
whereu (x, t) is a scalar solutionf = f (u, Vu) is a vector-valued flux; is time,x = (z,y,2) = (z1,22,23) IS a

vector of spatial coordinates defined on the donfawith boundant’, andV = (%, 6%, %) is a gradient operator.

In general, upon expanding the second term on the left hatedagiequationX), one obtains second derivatives of
the solutionu. These second derivatives are difficult to discretize, &edefore equationlj is usually rewritten as
a system of two equations each of which contain first dexieati In order to transform equatiob) (nto a system of
two first-order equations, one may introduce a new varighfeplace ofVu as follows

@—Fv-f(u,q)zo, 2

ot
q—Vu=0. 3)

In what follows, the variabley will be referred to as the ‘auxiliary variable.” Now, havingwritten the advection-
diffusion equation in a more convenient form (equatid?)sahd @)), one may attempt to find an approximate solution
on the domaif2. Towards this end, one may divide the dom&iinto N non-overlapping, conforming, straight-sided
tetrahedron elemen§?;, as follows

N
Q=[] %, (4)
k=1
QN =0 Vi#j )

One may now obtain approximate formulations of equati@dsiqd @) on thekt” elementf2,. Towards this end,
consider defining.”, a degree polynomial approximation to the solution that takes théofeing form

Np

uP =" (W) i (%), 6)

i=1
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where eaci’(ukD)l is the value of the solution at each nodal solution painteach?; (x) is a nodal basis function
which assumes the value of 1 at each nodal solution pgiand the value of O at all other nodal solution points, and
N, is the number of nodal solution points defined such ffiat= (p + 1)(p + 2)(p + 3)/3!. Note that the superscript
D onu? refers to the fact that (in general}’ is discontinuous at the boundary between neighboring efesi§#;,
andQy1.

An approximate formulation of the auxiliary variable can dmnstructed in a similar manner. In particular, each
component of the auxiliary variable can be representedyusipolynomial of degreg as follows

D D D D
qr = (qu7qyk7qzk)7
NT—’
ah, = (ah,) ti(x) ¥ m=123, )

i=1

where eacmqgk)i is the value of the % component of the auxiliary variable at each nodal solutioinix;. Finally,
one may construct an approximate formulation of the flux v@#ocation projection’ at theV, nodal solution points
as follows

£ = (fo funr 20

Np

£k :Z( nll)k)ifi (X) V.om =123, (8)
=1

where eacl{f}) )" is the value of the i component of the flux at each nodal solution poiptomputed from the

value of the solution(u?)" and the auxiliary variabléq?)" at each nodal solution point. The form of the flux in
equation 8) is referred to as a ‘collocation projection form’ becausprojects the flux, which is usually nonlinear
and of degree- p, unto a polynomial basis of degrpe

One may now substitute the approximate quantitifsq?, andf? into equations2) and @) in place ofu, q, andf
in order to obtain the following

Quy D
=tV =0, 9)
ar — Vuy =0. (10)

In their current form, equation8)and (L0) do not represent a valid numerical scheme, as the soluffas influenced
only by information that is local to thet" element. In order to resolve this problem, the FR approaciples the
approximate solutiom? in the k'* element to the solutions in neighboring elements by reptattie discontinuous
flux £ in equation 9) with a continuous flux;, of degreep + 1. The fluxf; is continuous in the sense that the
normal component; - n andfy,,; - n are required to be equal to one another on the boundary befeand€2y ;.
Furthermore, the FR approach replaces the discontinudutsosou?” in equation £0) with a continuous solution;,

of degreep + 1, whereu;, anduy1 are required to be equal to one another on the boundary befgand Q.
The resulting FR formulation of equatior®) @nd (0) becomes

aukD

= 11
o TV =0, (11)
qf — Vug = 0. (12)

The continuous fluxy, is constructed from the sum of the deggediscontinuous flux;” and a degree + 1 flux
correctionf{. Similarly, the continuous solutioy, is constructed from the sum of the degpetiscontinuous solution
u? and a degreg + 1 solution correction:{’. As a result, equationd 1) and (L2) can be rewritten as follows
) D
%+V-f£+v-f,§:0, (13)
ay — Vuf —vVu{ =0. (14)
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Prior to solving equationsl@) and (L4), it is convenient to first transform them from the physidaheent(2;, to the
reference (or standard) tetrahedral elenf@gt The reference element and an example of the nodal solutiorisp
(x;) that reside in the interior of the reference element arevgtio Figure ().

A mapping®;, between the physical coordinatesn €2, and the reference coordinates= (&, 7, 2) in 25 can be
constructed as follows

- T+y+2+1 T+1 y+1 zZ+1
x =0 (x) = — y2 Vik + 5 Vz,k+y2 V3. + 2

V4 k, (15)

wherev, 1, va i, v3 i, andvy i are the vertices d2;,. Once the mapping is established, it is possible to trarrsi(ﬂ

P, £C, qP, andul that reside 2, into a”, £2, £¢, P, andaC that reside inf2 via the following transformations
due to Viviand™ and Vinokur*

= Jkul?(Qk(&)a t)v ,aC = Jkukc(Gk()A()vt)a (16)
P fD 5 e G0 .
. BD} S P TN g BC] — RIS, qP = [gﬂg,] —Vi=J I g0, (Q7)
)
where
D fC I qD
-] =[] =t -, 18)
9 9i; Qys,
and
2 ox T
V= ﬁ] s Ji = l% B_Z] s Jk:de(.]k). (19)
Oy oz 97y
Using these transformations, equatiob3)(@nd (L4) can be reformulated as follows
ouP <D “o
Bt + V- P4V .19 =0, (20)
—vaP —vac =o, (21)
where
N, _
aP =" (aP) i (%), (22)
i=1
a” = (67, 4).4dY),
NP
ah=>") (%) ¥ m=1,23, (23)
1=1
= (72.00.7).
NT—’
1=1

and where® anda© can be defined via several different approa¢h&s®. One such approach due to Williams and
Jamesot? utilizes the following expressions for computikg: f¢ andVa©

4 Nyp
=2 ((f?l - ffl?l) ' flf,z) 1, (25)

f=11=1

R 4 Nyp
wo:ZZ 4= ) B s, (26)

f=11=1
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whereNy, is the number of nodal flux points located on each offhe 1, ..., 4 faces of the reference tetrahedron
(where an example of th¥;, = (p+ 1)(p + 2) /2! points on each face is shown in Figug)( f;yl is the value of the
numerical flux at nodal flux poiriton facef (denoted by ;), ADI is the value of the discontinuous fluxzag ;, iy ; is

the value of the normal &, @} , is the value of the numerical solutionzaf;, i), is the value of the discontinuous
solution atxy;, and¢; andiy, are the VCJIH correction fields or ‘lifting operators’ assded withxy;. The
purpose of the correction fields is to take information attbendaries of the element and propagate it into the interior
of the element. Note that this approach for constructingf® andVaC is a variant of the VCJH approaches in 1D
and 2D that were referred to previou§®. An important characteristic of this approach is that ibner's an infinite
range of energy stable FR schemes (‘VCJH schemes’) thatavalgy stable for linear advection-diffusion problems
on tetrahedral elemeris

[ll.  Nonlinear Stability of Flux Reconstruction Schemes

Although the linear stability of certain FR schemes (in jgaitr the VCJH schemes) has been established, the non-
linear stability of these schemes is still under review. Mesently, the nonlinear stability of the VCJIH schemes was
evaluated by William& for the following nonlinear advection-diffusion problem

@ + V. (fadu (u) + fdif (u, q)) =0, (27)

ot
q—Vu=0, (28)
wheref, 4, andfy;  are nonlinear advective and diffusive fluxes, respectjaiy where in particular

fdif (u, q) = —b (u) q. (29)

Here,b (u) is a non-negative, nonlinear diffusivity coefficient¥nit was shown that if a VCJH scheme is applied to
this nonlinear advection-diffusion problem, the time raitehange of a matrix-based norm of the approximate solution
is governed by the following equation

1 N N

d ~ _ -
5 <&|Uk|21\‘/i> + Z ( gBkMk Qk) = Zinter faces + Zalias, (30)
1

2
k= k=1

whereUy, = [(uP)! ... (uP)™»]" is avector containing the solution valu€, = [Q., Q,, Q-,]" = [Q1,Q2, Qs,]"

(whereQ,,,, = [(¢h )" ... (qgk)NP]T) is a vector containing the auxiliary variable valud&® and M* are sym-
metric, positive-definite, augmented mass matrices,
1/2

Ukl = (UT M* Uk) (31)
is a matrix-based nornj, = diag[B By, B;] (whereB;, = diag[b ((uf)") ...b ((uf)")] ) is a matrix of nonlin-
ear diffusion coefficientEl;,ter faces IS @ SUmmation of interface contributions, afgl;,s is @ summation of aliasing
errors introduced by the collocation projection of the flitke sign of=,;;.s is generally unknown, and as a result, it
may cause the time rate of change of the solution to becomigvecsnd for the scheme to become unstable. There-
fore, in order to promote stability of the scheme, it is nseeg to minimize or eliminate this term. To see how this
can be accomplished, it is useful to examine the followirecfge definition of the aliasing error term

N

Ealias = Z (aﬂk + 51“k) ’ (32)
k=1
where

cq, = A Vul - (f,fadv — fodv (u,?)) dSdy, (33)

k
er, = /F [(u —u*) (B2 gip — faiy (u,ar’))] - mdTy. (34)

k
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Herecq, ander, are measures of the effective ‘distances’ between the éxadtnctions €,q. (uf’) andfsi (v, qf))
and the approximate fluxe§{,,, andf/’ ;). It turns out thatq, ander, can be eliminated if exact ‘L2 projec-

tions’ are utilized to construct the fluxés, ,, andf/’ ;. ; on €2, andT';, respectively. This will be shown via a brief
examination of these L2 projections.

Consider the exact L2 projection of a flX on €2, which can be defined such that

vi / (£ — £ (uP)) L3P sy, =0, (35)
Q
where eacl}”} = L}”) (x) is a member of a 3D orthonormal polynomial basis of degreel on €2;.. Furthermore,
the exact L2 projection of a flug” onT';, can be defined such that for each of the- 1, ..., 4 faces of the element
boundary
v /r (£2 — £ (u?)) -my L7, dTy =0, (36)
!

where eacti;’; ; = L'}, (x) is a member of a 2D orthonormal polynomial basis of degree T .

Setting equations3g) and @6) aside for the moment, consider represenfing? on 2, and (u,? — u*) onT; in
terms of the orthonormal basis functiohd’, andLi 7., as follows

vuk ZCkszkz )a for m:1’2’3’ (37)
pr

(uf =) = > i L (0. %9
=1

where . ;. andyy ¢, are constant coefficients, am@ is the number of points required to define a polynomial of
degreep — 1in 3D, i.e. N, = p(p+1)(p+2) /3. Upon multiplying equation35) by each coefficienty ; ..
substitutingf, 4, in place off, and summing the result over andi, one obtains

Vup - (68 ago — fado (uf)) dU% = eq, = 0. (39)
Qp
Similarly, on multiplying equation3g) by each coefficienpy, ¢, substitutingfy; ; in place off, and summing the
result overl and f, one obtains

/1* [(UkD —u*) (flf,)dif — far (UkD,QkD))} -ndl'y =er, =0. (40)
From equations39), (40), and @2), it immediately follows thaE,;;.s = 0.

It is important to note, that one is frequently unable to categexact L2 projections of high dimensional or infinite
dimensional nonlinear fluxes 4, (uk ) andfy; ¢ (uk s ) in problems of practical interest. However, if numerical
qguadrature rules of sufficiently high-order are employeedqnations35) and 36), the L2 projections can ensure that
Zalias 1S Of the order of machine zero. Nevertheless, in this césel 2 projection procedures will be substantially
more expensive, from a computational standpoint, thandheaation projection utilized previously to defifig’ (in
equation 8)).

It turns out that one may utilize collocation projection gedures to form the fluxes while simultaneously reducing

aliasing errors, if the nodal solution poinésand nodal flux points s ; are placed at the locations of quadrature points.

This can be shown via further examination of the aliasingrserg, ander, . Towards this end, consider transforming
«, ander, from the physical space to the reference space as follows

_fas 1 &.D (#D ¢
ng = Jk = Jk Vu (fadu fadv ( )) dﬂs, (41)
é 1 . o (B A "D R
€Ty, = ;: = J_k |:(UD — U ) (delf - fdzj (uquD))] : ndI‘Sv (42)
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whereZq andér, are measures of the aliasing errors in the reference spdote that the transformation to reference
space has been performed in order to simplify the subseqneaihsis).

Next, one may defin&a” in equation 41) and (a” — @*) in equation 42) as follows

N,

(WD) =3 Gm I (%),  for m=123, (43)
m —1
N¢p

(@ —a), = ¢r Ll (%), (44)
=1

Where{}-_,m andyy, are constant coefficients3? = L3P (x) is a member of the 3D orthonormal polynomial basis of
degreep — 1 inside the reference element, ab?;ifl) = LQ, (x) is a member of the 2D orthonormal polynomial basis
of degreep on facef of the reference element. Upon substituting equatidBsgnd @4) into the expressions f@iq .
andér, in equations41) and @2), one obtains

ZZam / (2 s ~ Foraas (7)) L3P a2, (45)

m=1 =1
4 Npp ) )
ZZQOH/ [(fd[;f—fdif (ﬁD’qD)) .ﬁf} Li.ﬁ)drf
f=11=1
3 4 Nyp ) )
=355 bsirn [ (38 gas — Fonss (aF0)) 138 T, (46)
m=1f=11=1 Ty
or equivalently,
3 N,
Z Z 1 ,m? (47)
; 4 Npgp
ZZZ Pri Npm (Ers) fim s (48)
m=1 f=11=1
where
(éﬂs)i,m - / ( A#i adv — fm adv ( )) LSD dQS, (49)
Qs
(ér) fam = /F (£5 i = Fonsais (a7,6F)) L3R dTy. (50)
f

It should be noted that equatiord and 60) are analogous to equatior85] and (36) that define the L2 projections
in physical space. In fact, equatior8) and 60) simply define the component-wise L2 projections of the ative
and diffusive fluxes in reference space. Thus, if exact L3gotmns of the fluxes are performed thgiy, ), ,,, and
(éps)f_’lym vanish as expected. However, for collocation projectidithe flux, this is not necessarily the case. In
order to illustrate this point, one may consider formindamdtion projections of the fluxes as follows

m, adv me adv ( ) gng ()A() = % (frg, adv)j éng? (51)
j=1
fp Nyp r
FB g.ais = Z Fonsais (87" (@7)") 632 (%) = 5 (F2 1.ais) 32, (52)
r=1 —

where@f’D is the 3D nodal polynomial of degreethat assumes the value of 1 at nodal solution ppiad the value
of zero at all neighboring nodal solution poinf%f’ is the 2D nodal polynomial of degreethat assumes the value
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of 1 at nodal flux pointf,r and the value of zero at all neighboring nodal flux points, wimére( el adv) and

(ff,:l’ 7 dif) are the M* components of the pointwise values of the advective andglifé fluxes in reference space

((ftfiv) and (fﬁ’dif)r) that are the reference space equivalents of the pointveikees of the fluxes in physical

space <f,C adv) = £ adv (( ) ) and( 2 dlf) =i aif ((u?)r, (q?)r)). Upon substituting equation$1)
and 62) into equations49) and 60), one obtains

N, .
~ J ~
(Eas)im =D ( f adv) / BPLP Qg — | finyaa (@) LEP dS2s, (53)
o Qs Qs
pr .
(él_‘s)f,l,m = m j d’Lf / [ de - /1" fm7dif (ﬁ/?v (Al?) L?‘,[l) de (54)
7*1 f

The terms/ spp3b andéQDLQD that appear in equationS3) and 64) are polynomials of degre@ — 1 in 3D and
degree2p |n 2D, respectlvely Thus, the integrals of these terms @awedmputed exactly via quadrature rules of
degree2p — 1 in 3D and degre@p in 2D. More generally, a 3D quadrature rule (or equivaleatlyubature rule) of
arbitrary degree can approximate the integra&fd? L3P on Qg as follows

N3P
3L Qs anéw (60) LEP (s0) + 2P, (55)
Qs

where N3P is the number of quadrature points,’s are the point locationsy,,’s are the weights, ane” is the
quadrature error that vanishes for quadrature rules ofegegr2p — 1. Similarly, a 2D quadrature rule of arbitrary
degree can approximate the integralf}%fr)LQD onI'; as follows
N2D
/r (FPLF ATy = > " w £F2 (00) L3 (9s) + €2P, (56)
! s=1

where N2" is the number of quadrature point$,’s are the point locations,,’s are the weights, and2” is the

quadrature error that vanishes for quadrature rules ofedgegep.

Upon substituting equations%) and 66) into equations§3) and 64), one obtains

3D
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NP . q
A~ J ~
Cocdin =2 (Faan) Do wn P ) I () = | fonsaan (aP) L3P a5 + B, (57)
j=1 n=1 S
pr N2D
Era) i = 3 (F2asr) zwse 00 = [ oo (07,7 L3R+ B2, (58)
r=1 f
where
Ny j Ngp r
ESD = Z ( £7 adv) egDv Eq2D - Z (fg,f, dif) egD' (59)
7j=1 r=1

Now, if the quadrature rules are required to have a particulanber of pointsNgD =N, anqu2D = Nyp, and
the nodal solution point&; (or equivalentlyx;) and nodal flux pointscs; (or equivalentlyx;,) are placed at the
locations of the quadrature pointsandd,, one obtains

EQS me adv an 5771[/ ) fm adv ( D) LBD dﬂ + EBD (60)
Sin=1 Qs
pr Nyp
(El"s filom — me dif Ufan ZWS(ST‘SL s)_ - fm,dif (ﬁ?7Q?) L?ﬂ[[)dlﬂf'i‘EgDa (61)
I s=1 !
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or equivalently,

L2 ()= | fonaaw (a7) LEP dQs + E37, (62)

Sj Qs

Np
(éﬂs)i,m - ij ,fm,adv (ﬁD)
i=1

pr
(rs) fim = O wr fm.air (07, 4F) | L37 (9) — | Jmaiy (af,af) L3 dry + E3P. (63)
r=1 f

.

The sums in equation$?) and ©3) act as numerical quadrature approximations of the intégnas in each of the
equations, and evidently, for quadrature rules of sufficsénrength, the integral terms and their numerical appraxim
tions will effectively cancel one another. In addition, (asntioned previously) for quadrature rules of orge2p — 1

in 3D and> 2pin 2D, the termsEf;’D andEgD will vanish. Thus, for quadrature rules of sufficient sttmgcq, ), ,,,
and (é]_"s)ﬁl,m approximately vanishiq, andér, approximately vanish, and in tuety,, ander, approximately
vanish. However, it is important to note that a quadratule ofia very high degree maybe required for this to occur,
and that there will frequently not be enough nodal solutiom{s or nodal flux points to allow for this. Therefore, in
practice, one should consider the act of placing the nodatisa pointsx; and nodal flux points; at the locations
of quadrature points as a procedure for reducing (but miaslylinot eliminating) aliasing errors. This procedure re-
sults in an effective compromise between the extremes wiirgditing all aliasing errors via expensive L2 projections
and creating large aliasing errors via inexpensive cotlongprojections that employ nodal solution and nodal flux
point locations that differ from quadrature point locatson

Finding suitable quadrature rules on which to base the nemlation and nodal flux point locations is a challenging
task because of the following requirements:

1. The quadrature rules must have the correct numbers ofspdjf’ = Ny, and N2 = N, (as mentioned
previously). In 2D, the quadrature rules must haVg, points because the nodal set must be able to exactly
represent a polynomial of degrpeusingNs, = 1, 3, 6, 10, 15, or 21 points fgr = 0 top = 5. In 3D, the
quadrature rules must haye, points because the nodal set must be able to exactly reprgetynomial of
degreep usingN,, = 1, 4, 10, 20, 35, or 56 points for = 0 to p = 5. This requirement is perhaps the most
difficult to satisfy, as the vast majority of existing quatdrra rules do not have the desired number of points.

2. The quadrature rules must be symmetric under affine wemstions of the triangle unto itself and affine trans-
formations of the tetrahedron unto itself. The locationshef nodal points must not introduce artificial asym-
metries into the simulation of physical phenomena.

3. The quadrature rules must utilize points which residéiwithe interior or (at most) on the boundary of the
triangle and tetrahedron.

4. The quadrature rules must result in a well-conditioneéd$@odal basis functions. The associated nodal set
must be well-conditioned in the sense that the Lebesguearns of the nodal basis functions must not be
excessively large.

Recently, Shunn, Ham, and Williarf! identified a set of quadrature rules for the triangle anckbetdron that have
the potential to satisfy these requirements. The quadratues are inspired by Sphere-Closed-Packed (SCP) lattice
arrangements of points within the triangle and tetrahedfof Figure @) for examples of the SCP lattices on the
equilateral triangle and tetrahedron). The quadratuesrahd the degree of the highest polynomial that they exactly
integrate are provided in TableB @nd @). The rules have the correct numbers of poiffs,(in 2D andN,, in 3D) and
possess symmetric structures which mimic those of the Stiielsin 2D and 3D. In addition, all quadrature points
reside (strictly) within the interiors of the triangle aretrahedron. However, the conditioning of these quadrature
points has yet to be determined. Furthermore, the points hieivto be extensively used as nodal points on practical
problems, thus it is unclear whether they have a substamigct on the nonlinear aliasing errors of high-order nodal
schemes such as the VCJH schemes.

In order to evaluate the quadrature points of Shunn, Ham Wdilichms and to determine if they can be effectively
utilized as nodal points, the authors will compare thesatgdb the well-known&-optimized’ points of Hesthaven
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and Warburtof, and Chen and Babush®a The a-optimized sets of points were developed to be utilized akho
points and are known to produce well conditioned interpofet and small Lebesgue constants. However, it is not
yet clear whether these benefits outweigh their potentaility to act as good quadrature points and to attenuate
aliasing error (by minimizingg, ander,). However, as discussed previously, the quadrature pofr&unn, Ham,
and Williams may not necessarily represent a viable alteaas they may produce ill-conditioned interpolations
which may outweigh any potential benefits from their abitiyreduce aliasing errors. In what follows, a thorough
comparison of the aforementioned sets of nodal points ietakien in order to obtain clarity regarding which points
are more suitable for unsteady, nonlinear, flow problems.

IV. Conditioning of Nodal Sets

Calculations were performed in order to evaluate the c@wditg of the nodal sets. In particular, the Lebesgue
constantA was computed for each of the nodal sets in 2D and 3D. In 2D daraglie, the Lebesgue constant takes the
following form
Nip
Agp =sup ¥ 6P (1)), (64)

T oi=1
and, similarly, in 3D on a tetrahedron it takes the followfogm

N:D
Asp =sup > |[E2P(&)]. (65)

Toi=1

The constant can be interpreted as a measure of how far awdyan venture from the best degre@olynomial
approximation of the exact solutian Alternatively,A can be interpreted as a condition number on the interpolatio
In particular, if the vector of solution coefficient$;, is perturbed by a certain amount, th&rcharacterizes how far
the polynomial approximation can venture from its origiftain. Evidently, a smaller value af is preferred.

In order to evaluate the conditioning of each of the pointriigtions, the Lebesgue constants were computed for
p = 1top = 5 for the nodal points of Hesthaven and Warbuf§rChen and Babushk3 and Shunn, Ham, and
Williams!82L, In addition, in order to establish a reference (or basglie Lebesgue constants were computed for
nodal sets with points located at the centers of the 2D andoBrss in the 2D and 3D SCP lattices. The results are
shown in Tables3) and @).

The best results are obtained by theptimized points from® and??. This is not unexpected, as theoptimized points
have been generated with the primary purpose of optimizsiggle parameter’ (which controls the distribution of
nodal points) with the purpose of minimizirng

Note that the SCP-based quadrature points of Shunn, Hamalams!82! produce values foA which are larger
than those of the:-optimized points. However, the values/dfare still seen to be much smaller than those associated
with the naive choice of placing points at the centers of fifeeses in the SCP lattices. Thus, the SCP-based quadra-
ture points appear to produce valuesiofvhich are a reasonable compromise between those of the restast
distributions of points that were tested.

V. Aliasing Errors of Nodal Sets

In order to evaluate the aliasing errors associated witmtual sets, they were employed, in conjunction with the
VCJH schemes, to solve the nonlinear Navier-Stokes (NSateaps. The NS equations in 3D can be written as
follows

ou

5+ V- F(U,VU) =0, (66)
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whereU represents the conserved variables (which are scalard aggresents the flux vector that is composed from
inviscid and viscous part® = F;,,, (U) — F.;s. (U, VU). In 3D, the conserved variables are defined as follows

U=4qpv;p, (67)
pw

wherep = p(xz,y, z,t) is the densityy = u(x,y,z2,t), v = v (x,y,z2,t), andw = w (z,y, z,t) are the velocity
componentsf = p/ (y — 1) + (1/2)p (u? + v* + w?) is the total energyy = p (z,y, z, t) is the pressure, angdis

the ratio of specific heats. In addition, the inviscid andwiss fluxes in 3D can be defined in terms of their components
along thez, y, andz coordinate directions, i.eF;,,, = (finvs Jinv, Rine) ANAF yise = (fvises Guise, Nvisc). Here,

the inviscid flux components are defined such that

U pU pw
pu2 +p puv puw
finv = pUvY ) Ginv = PUQ +p ) hinv = pLvw ; (68)
pUW pPUW pw2 +p
u(E +p) v(E + p) w(E + p)
and the viscous flux components are defined such that
0
2uy + Mug + vy +w5)
fvisc = u Vg + Uy ,
Wy + Uy
u[2ug + AMug + vy + w2)] + v(vz + uy) + w(wy +uz) + %Tz
0
Vg + Uy
Guise = 1 2Uy + )\(UI + Vy + wz) 5
Wy + VU,
V[20y + AM(ug + vy + w,)] + u(vy + uy) + w(wy, +v,) + C—iTy
0
Wy + Uy
hvisc =M Wy + vz ) (69)
2w, + Mug + vy + w;)
w2w, + Mug + vy + w,)] + u(wy + us) + v(wy +v,) + %TZ

wherey is the dynamic viscosity) is the bulk viscosity coefficienfl’ = p/ (pR) is the temperature? is the gas
constant(,, is the specific heat capacity at constant pressure Fanid the Prandtl number. It should be noted that
the terms with subscripts, y, andz in equation §9) signify first derivatives inz, y, andz (for examplel’, = ‘g—f .
Before proceeding further, it should be noted that equgBéhcontains second derivatives of the conservative vari-
ables and can therefore be classified as a ‘2nd-order’ sysftBRES. However, this system can easily be reformulated
as a 1st-order system by eliminatiRg/ from equation §6) and replacing it with the auxiliary variable denoted®y
as follows

ou

E%—V-F(U,Q):O, (70)

Q—-VU=0. (71)

This operation transforms equatiddt] into a form that is more amenable to treatment by the VCJl¢ses.

Experiments on equationg@) and (1) were performed with the VCJH schemes in conjunction with tvepresen-
tative’ nodal sets: the nodal set based on the SCP-quadfatdimts of Shunn, Ham, and Williarf&?, and the nodal
set based on the-optimized points of Hesthaven and Warburt&inFigure @) illustrates the locations of the nodal
solution points and nodal flux points for each nodal set, erréfierence tetrahedron, for the case of 3.
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A. Propagation of an Isentropic Vortex

In what follows, a VCJH scheme and the aforementioned noetal &re employed to simulate the propagation of
an inviscid, isentropic vortex. The propagation of an inidsisentropic vortex in a quiescent fluid is a well-known
solution to the NS equations wifh= 0 (i.e., the Euler equations). In this scenario, the vort@ppgates indefinitely,
and the exact solution can be straightforwardly computeahfthe initial conditions. In 3D, the exact solution of this
problem takes the following form

1 T
p=po <1 - 7TH?) : (72)
pu = p (ug + rycoll), (73)
pv = p(vg + rycoII) (74)
pw = p (wo + r.co 1), (75)
Po Y =1L\ L
E_7—1<1_TH2> +§(u2—|—v2—|—w2), (76)
where
co =2, (77)
Po
()

IT = Iinax exp + ) (78)
I':f'X(X—XQ—UQt), (79)

and wherec is the speed of sound] characterizes the strength of the vortey,is the radius of the vortex, and
r = (rq,ry, 7)) @ndr = (7,,7,,7,) are the orthogonal orientation vectors for the vortex. Hiéshould be noted that
all quantities subscripted by 0 denote values at initiaktim

Approximate solutions to the vortex propagation problenrevsought on the cubic domaf? = [—10,10] x
[—10,10] x [~10, 10]. The cubic domain was discretized by formiNgx N x N regular hexahedral meshes and then
splitting these meshes into grids wiffi = 6N tetrahedron elements. In this manner, structured tetrahgdds
with N = 16 and 32 were formed. Figurg)(shows the tetrahedral grid withi = 16.

Periodic boundary conditions were imposed on the bounslafi¢the cubic domain. The flow on the domain was
initialized with pg = 1, v = 1.4, pg = 71, Iax = 0.4, ug = (0,1,0), 79 = 1, 7o = (0,0, 1), andxy = (0,0,0).
Figure @) shows density contours of the initial flow.

The explicit 5-stage, 4th-order Runge-Kutta scheme of @atgr and Kennedy (denoted by RK54) was used to
advance the approximate solution in time (starting frgm= 0) and, at each time-step, the inviscid and viscous
numerical fluxes were computed using the Rusanov appféacid the LDG approad, respectively. Results were
obtained on the aforementioned cubic domains Wth= 32 and 16 for polynomial orders = 3 and 4. In order to
highlight the effects of aliasing errors, the approximatkigsons were computed for long times (until time= 80)
using the VCJH scheme with= ¢4, ands = k44, Where it is important to note that the constarasidx parameterize
the VCJH scheme as describeddnThis scheme is of particular interest because it is ecenmtab the well-known,
collocation-based, nodal DG schetfieFor this scheme, and for each set of nodal points, L2 emdissi energy® are
shown in Table§). In addition, contours of the density obtained with theptimized points for the case &f = 32
andp = 3 are shown in Figure7). Note that the aliasing errors that frequently arose irheddhe simulations are
exemplified by the oscillations that distort the contourEiigure (7).

The data in Table5) demonstrates that the simulations that utilize the quadggoints produce significantly less
total error than the simulations that utilize theoptimized points. It is reasonable to assume that thesectieds in
the total error are due to successful reductions in theiatjasror.
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B. Flow Generated by a Time-Dependent Source Term

In what follows, a VCJH scheme and the aforementioned naztalare employed to solve the NS equations with a
time-dependent source ter$h In general, the terny is incorporated into the NS equations as follows

ou +V-FU,Q) =25, (80)

ot
Q- VU =0. (81)

It turns out that for certain choices 6f the NS equations have well-known exact solutions. In paldr, if the source
term is defined in 3D as follows

s1
52
S = S3 N
S4
S5
=Bk —w)cos(k(x+y+2z)—wt),
1
:5005(k(x+y—|—z)—wt)

[0+ 4a(y — 1) = 37) k — 2w +4 (v — 1) ksin (k (2 +y + 2) —wt)] .

:%mqk@+y+@—ww

[0+ 4a(y — 1) = 37) k — 2w +4 (v — 1) ksin (k (z +y + 2) —wt)] .

zlcos kE(x+y+z)—wt)
(v

[(9+4a —1)=3y)k—-2w+4(y—1Dksin(k(z+y+2) —wt)],

k2 1
S5 = <37PTM> sin(kz(a:+y+z)—wt)+§cos(k(x+y+z)—wt)
[B3(3—=3y+4davy)k —daw + 4 (3vk —w)sin(k (z +y + 2) — wt)], (82)

the following exact solution can be obtained

sin (k (z +y) — wt) +
sin (k (z +y) —wt) +

U={ sin(k(z+y)—wt)+ ) (83)
sin (k (z +y) — wt) +

(sin(k (z +vy) — wt) + a)

Approximate solutions to equation8Q) and @1) were sought on a cubic domad = [—1,1] x [-1,1] x [~1,1].

The cubic domain was discretized by formiigx N x N regular hexahedral meshes and then spllttmg these meshes
into grids withV = 6.V tetrahedron elements. In this manner, structured tetrahgdds with N = 4, 6, 8, and 12
were formed.

Periodic boundary conditions were imposed on the bounslafithe cubic domain. At time = 0, the flow on the
domain was initialized with source term parametBrs= 0.72, v = 1.4,k = m,w = m, a = 3.0, andy = 0.001.
Figure @) shows density contours of the initial flow.

The solution was marched forward in time using the RK54 apginy and, at each time-step, the inviscid and viscous
numerical fluxes were computed using the Rusanov appféaciu the LDG approadt, respectively. Results were
obtained on the aforementioned cubic domains \i\th= 12, 8, 6, and 4 for polynomial ordegs = 2, 3, 4, and 5.
The approximate solutions were computed for long timesil(tinte ¢ = 10) using the VCJH scheme with= ¢,
andx = k. This scheme is of particular interest because (in somestésgelds explicit time-step limits which
are more than 2x larger than those of the collocation-basddIrDG schem®. For this scheme, and for each set of
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nodal points, L2 errors in the energyare shown in Tableg). In addition, contours of the density obtained with the
a-optimized points for the case &f = 8 andp = 3 are shown in Figured).

The results of the simulations are consistent with the tegilthe previous section, as the data in TaB)edemon-
strates that the simulations that utilize the quadratuietp@roduce less error than the simulations that utilize th
a-optimized points. The reduction in error can be seen motsthiy for odd polynomial orders = 3 andp = 5,
where the error is reduced by roughly 25 — 50 percent. Thigestg the existence of a diffusive phenomenathat tends
to dampen aliasing errors for even polynomial orgets 2 andp = 4. More importantly, the tabulated data suggests
that (regardless of whether the order is even or odd), thdrgtlre points are effective in reducing the aliasing eiror
and in turn, reducing the total errors.

VI. Conclusion

It has been shown that placing nodal points at the locatiérgiadrature points reduces aliasing errors and results
in moderately well-conditioned interpolations. Thesautisshas been demonstrated theoretically and empiricatly f

a particular set of nodal points on tetrahedral element®ciBipally, a particular set of quadrature points has been
shown to possess moderate values of the Lebesgue constaptdyfinomial orders = 1 top = 5. In addition, these
points have been successfully employed to reduce aliasingsén a number of experiments involving the nonlinear
NS equations. It is hoped that the favorable performanckesfe points will result in their increasingly wide-spread
utilization for nonlinear problems in the field of computatal fluid dynamics.
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Tables

pr

Polynomial Integrated

1
3
6
10
15
21

co~NohDNR

Table 1. Strength of integration rules on the triangle due towilliams and Shunn?8.

N, Polynomial Integrated

1
4
10
20
35
56

o oUwNE

Table 2. Strength of integration rules on the tetrahedron dwe to Shunn and Han?L.

Azp Azp Azp
p «a* SCPquadraturé SCP
1 1.00 2.33 3.31
2 1.67 3.55 8.29
3 211 4.52 18.75
4 2.66 5.12 40.49
5 312 6.53 85.32

Table 3. Lebesgue constants for nodal sets on the referenagangle.
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ABD A3D A3D ABD
p o «a?® SCPquadratu®@  SCP
1 1.00 1.00 2.85 4.67
2 2.00 2.00 4.39 15.10
3 293 2093 6.14 41.76
4 4.07 4.11 8.28 106.26
5 532 5.62 29.59 256.84

Table 4. Lebesgue constants for nodal sets on the referencatriahedron.
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p ‘ N ‘ Lo err. (quad-points)‘ L, err. (a-points) ‘ % difference
3| 32| 2.24e-03 1.20e-02 438.19
4 | 16 | 6.04e-03 2.63e-02 335.11

Table 5. Comparison of errors produced by experiments with he quadrature points and thea-optimized points for the VCJH scheme with
¢ = cqg @nd K = kqg, for the problem involving inviscid, isentropic vortex propagation on tetrahedral grids, for the cases op = 3 and
p=4.

p ‘ N ‘ L, err. (quad-points)| L. err. (-points) | % difference
2 | 12 | 5.42e-01 5.45e-01 0.52
3|8 1.82e-01 2.28e-01 25.47
416 1.47e-01 1.51e-01 2.21
514 3.07e-01 4.63e-01 50.86

Table 6. Comparison of errors produced by experiments with he quadrature points and thea-optimized points for the VCJH scheme with
¢ = ¢y and k = k4, for the problem with flow driven by a time-dependent source &rm on tetrahedral grids, for the cases ofp = 2 to
p=5.

Figures

(-1,-1,1)

(1,-1,-1)

Figure 1. Example of thelV;, = 10 solution point locations (denoted by circles) in the refieeeelement for the case pf= 2.
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./Figures/Fig1_tet.eps

o f =2 (back)
f = 3 (back)

~a f=1 (front)

f = 4 (bottom)

(a) Numbering convention on the faces of the reference eleme (b) Numbering convention for the flux points on a face of tHfenence
element.

Figure 2. Example of the numbering convention for the flux points onriference element for the casef= 2. The flux points (denoted by
squares) are shown for the fage= 1.
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(@) Ny, = 10 (b) N, = 20

Figure 3. Sphere closed packed (SCP) configurations With, = 10 points on the triangle ant/;, = 20 points on the tetrahedron.
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./Figures/Fig2_tet.eps
./Figures/Fig3_tet.eps
./Figures/Tri_ccp_3.eps
./Figures/Tet_ccp_3.eps

(a) Point arrangement based on quadrature points (b) Point arrangement based aroptimized points

Figure 4. Placement of the solution points (circles) and flux pointiéses) at the locations of the quadrature points andvbptimized points
for the case op = 3.
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Figure 5. Structured tetrahedral grid for the caseMof= 16.
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./Figures/tet_p3_alpha.eps
./Figures/tet_p3_beta.eps
./Figures/manu_tet_mesh.eps

0.9992
0.9982
0.9971
0.9961
0.9950

Figure 6. Contours of the density of the initial condition for the iseid, isentropic vortex.
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Figure 7. Contours of the density obtained via the VCJH scheme withcy,, k = K44, and the solution and flux points placed at the locations
of the a-optimized points, on the tetrahedral grid with = 32 for the case op = 3.
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./Figures/vort_init.eps
./Figures/vort_alias_tet.eps

Figure 8. Contours of the density of the initial condition for the flowwven by a time-dependent forcing term.
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Figure 9. Contours of the density obtained via the VCJH scheme withct, k = k-, and the solution and flux points placed at the locations of
the a-optimized points, on the tetrahedral grid with = 8 for the case op = 3.
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./Figures/manu_init.eps
./Figures/source_alias_tet.eps
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