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High-order methods have the potential to efficiently generate accurate solutions to fluid dynamics problems
of practical interest. However, high-order methods are less robust than lower-order methods, as they are
less dissipative, making them more susceptible to spuriousoscillations and aliasing driven instabilities that
arise during simulations of nonlinear phenomena. An effective approach for addressing this issue comes from
noting that, for nonlinear problems, the stability of high-order nodal methods is significantly effected by the
locations of the nodal points. In fact, in 1D and 2D, it has been shown that placing the nodal points at the
locations of quadrature points reduces aliasing errors andimproves the robustness of high-order schemes. In
this paper, the authors perform an investigation of a particular set of nodal points whose locations coincide
with quadrature points. Analysis is performed in order to determine the conditioning of these points and
their suitability for interpolation. Thereafter, numeric al experiments are performed on several canonical 3D
problems in order to show that this set of nodal points is effective in reducing aliasing errors and promoting
nonlinear stability.

I. Introduction

High-order methods produce less numerical dissipation than their low-order counterparts (for which the order is≤ 2),
and as a result, are well-suited for simulating vortex-dominated flows1. In particular, high-order methods have been
successfully employed to simulate flows over flapping wings2,3, rotorcraft4, turbine blades5, and high-lift devices6.
Despite their success in these settings, they have yet to be adopted by a wide community of fluid-dynamicists. High-
order methods are not as robust or as intuitive as low-order methods, and thus have yet to gain wide acceptance in
industry and academia.

Recently, a number of efforts have been focused on addressing the shortcomings of high-order methods. In particular,
significant effort has gone toward improving the ‘ease of implementation’ associated with these methods. Initially,
the most popular high-order methods, (the discontinuous Galerkin (DG) methods) made use of complex quadrature
procedures and primarily employed modal representations of the solution in each element7–9. However, recently, nodal
DG methods that make use of pre-integrated quadratures and primarily employ nodal representations of the solution
have gained recognition. For further details, one may consult the book by Hesthaven and Warburton10, which provides
a review of these methods. Furthermore, other high-order nodal methods, including the Spectral Difference (SD)11,12

method have risen in prominence. In addition, the Flux Reconstruction (FR) approach due to Huynh13 has emerged as
a single framework which unifies a number of well-known high-order methods including the nodal DG method along
with several SD methods (at least for linear problems). Using this framework, Jameson14 identified an SD scheme that
was stable for linear advection in 1D and, thereafter Vincent, Castonguay, and Jameson15 identified a class of energy-
stable FR schemes referred to as the VCJH (Vincent-Castonguay-Jameson-Huynh)schemes. The VCJH schemes have
been shown to be stable for linear advection-diffusion problems in multiple dimensions16–18. Thus, it can be said that
the linear stability of the schemes has been well established.
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There are, however, concerns regarding thenonlinear stability of high-order nodal schemes, including the VCJH
schemes. High-order nodal methods generally approximate the flux using a collocation projection of the flux onto the
polynomial space of degreep. When the flux is highly nonlinear, this approach tends to introduce aliasing errors that
have the potential to destabilize the solution10, especially in the absence of the excess numerical dissipation that is
often provided by 1st or 2nd-order methods. Recent efforts have been devoted towards choosing nodal sets that tend
to reduce these aliasing errors. In particular, preliminary results in 1D and 2D indicate that choosing to locate the
nodal points at the locations of quadrature points tends to dampen aliasing driven instabilities19,20. This paper extends
these efforts to 3D and attempts to find nodal sets that reducealiasing errors on tetrahedral elements. In particular, the
majority of attention is focused on the recently discoveredquadrature points due to Shunn, Ham, and Williams18,21.
These points, along with more traditional sets of nodal points due to10,22 are evaluated and their suitability for nonlinear
problems is assessed.

The structure of the paper is as follows. In section II, a high-order nodal method (the FR method) for treating a
nonlinear advection-diffusion problem will be presented.Thereafter, in section III, the link between the locations
of the nodal points and the nonlinear stability of high-order nodal methods (and in particular the energy stable FR
methods (VCJH schemes)) will be examined. Next, in section IV, the conditioning of various nodal sets will be
examined. Finally, section V will present the results of numerical experiments comparing the performance of nodal
sets on a succession of nonlinear advection-diffusion problems.

II. Flux Reconstruction Schemes for Nonlinear Advection-Diffusion

The particulars of high-order nodal schemes (such as the FR schemes) can be best understood by examining the
application of these schemes to a model problem. Towards this end, consider the application of an FR scheme to the
following nonlinear advection-diffusion equation

∂u

∂t
+∇ · f (u,∇u) = 0, (1)

whereu (x, t) is a scalar solution,f = f (u,∇u) is a vector-valued flux,t is time,x = (x, y, z) ≡ (x1, x2, x3) is a

vector of spatial coordinates defined on the domainΩ with boundaryΓ, and∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂z

)
is a gradient operator.

In general, upon expanding the second term on the left hand side of equation (1), one obtains second derivatives of
the solutionu. These second derivatives are difficult to discretize, and therefore equation (1) is usually rewritten as
a system of two equations each of which contain first derivatives. In order to transform equation (1) into a system of
two first-order equations, one may introduce a new variableq in place of∇u as follows

∂u

∂t
+∇ · f (u,q) = 0, (2)

q−∇u = 0. (3)

In what follows, the variableq will be referred to as the ‘auxiliary variable.’ Now, havingrewritten the advection-
diffusion equation in a more convenient form (equations (2) and (3)), one may attempt to find an approximate solution
on the domainΩ. Towards this end, one may divide the domainΩ intoN non-overlapping, conforming, straight-sided
tetrahedron elementsΩk as follows

Ω =
N⋃

k=1

Ωk, (4)

Ωi ∩Ωj = ∅ ∀i 6= j. (5)

One may now obtain approximate formulations of equations (2) and (3) on thekth elementΩk. Towards this end,
consider defininguDk , a degreep polynomial approximation to the solution that takes the following form

uDk =

Np∑

i=1

(
uDk

)i
ℓi (x) , (6)
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where each
(
uDk

)i
is the value of the solution at each nodal solution pointxi, eachℓi (x) is a nodal basis function

which assumes the value of 1 at each nodal solution pointxi and the value of 0 at all other nodal solution points, and
Np is the number of nodal solution points defined such thatNp ≡ (p+ 1)(p+ 2)(p+ 3)/3!. Note that the superscript
D on uDk refers to the fact that (in general)uDk is discontinuous at the boundary between neighboring elementsΩk

andΩk+1.

An approximate formulation of the auxiliary variable can beconstructed in a similar manner. In particular, each
component of the auxiliary variable can be represented using a polynomial of degreep as follows

qD
k =

(
qDxk

, qDyk
, qDzk

)
,

qDmk
=

Np∑

i=1

(qDmk
)i ℓi (x) ∀ m = 1, 2, 3, (7)

where each(qDmk
)i is the value of the mth component of the auxiliary variable at each nodal solution pointxi. Finally,

one may construct an approximate formulation of the flux via a‘collocation projection’ at theNp nodal solution points
as follows

fDk =
(
fD
xk
, fD

yk
, fD

zk

)
,

fD
mk

=

Np∑

i=1

(fD
mk

)i ℓi (x) ∀ m = 1, 2, 3, (8)

where each(fD
mk

)i is the value of the mth component of the flux at each nodal solution pointxi computed from the

value of the solution
(
uDk

)i
and the auxiliary variable

(
qD
k

)i
at each nodal solution point. The form of the flux in

equation (8) is referred to as a ‘collocation projection form’ because it projects the flux, which is usually nonlinear
and of degree> p, unto a polynomial basis of degreep.

One may now substitute the approximate quantitiesuDk , qD
k , andfDk into equations (2) and (3) in place ofu, q, andf

in order to obtain the following

∂uDk
∂t

+∇ · fDk = 0, (9)

qD
k −∇uDk = 0. (10)

In their current form, equations (9) and (10) do not represent a valid numerical scheme, as the solutionuDk is influenced
only by information that is local to thekth element. In order to resolve this problem, the FR approach couples the
approximate solutionuDk in thekth element to the solutions in neighboring elements by replacing the discontinuous
flux fDk in equation (9) with a continuous fluxfk of degreep + 1. The flux fk is continuous in the sense that the
normal componentsfk ·n andfk+1 ·n are required to be equal to one another on the boundary betweenΩk andΩk+1.
Furthermore, the FR approach replaces the discontinuous solution uDk in equation (10) with a continuous solutionuk
of degreep+ 1, whereuk anduk+1 are required to be equal to one another on the boundary between Ωk andΩk+1.
The resulting FR formulation of equations (9) and (10) becomes

∂uDk
∂t

+∇ · fk = 0, (11)

qD
k −∇uk = 0. (12)

The continuous fluxfk is constructed from the sum of the degreep discontinuous fluxfDk and a degreep + 1 flux
correctionfCk . Similarly, the continuous solutionuk is constructed from the sum of the degreep discontinuous solution
uDk and a degreep+ 1 solution correctionuCk . As a result, equations (11) and (12) can be rewritten as follows

∂uDk
∂t

+∇ · fDk +∇ · fCk = 0, (13)

qD
k −∇uDk −∇uCk = 0. (14)
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Prior to solving equations (13) and (14), it is convenient to first transform them from the physical elementΩk to the
reference (or standard) tetrahedral elementΩS . The reference element and an example of the nodal solution points
(x̂i) that reside in the interior of the reference element are shown in Figure (1).

A mappingΘk between the physical coordinatesx in Ωk and the reference coordinatesx̂ = (x̂, ŷ, ẑ) in ΩS can be
constructed as follows

x = Θk (x̂) = −
x̂+ ŷ + ẑ + 1

2
v1,k +

x̂+ 1

2
v2,k +

ŷ + 1

2
v3,k +

ẑ + 1

2
v4,k, (15)

wherev1,k, v2,k, v3,k, andv4,k are the vertices ofΩk. Once the mapping is established, it is possible to transformuDk ,
fDk , fCk , qD

k , anduCk that reside inΩk into ûD, f̂D, f̂C , q̂D, andûC that reside inΩS via the following transformations
due to Viviand23 and Vinokur24

ûD = Jku
D
k (Θk(x̂), t), ûC = Jku

C
k (Θk(x̂), t), (16)

f̂D =

[
f̂D

ĝD

]
= Jk J

−1

k fDk , f̂C =

[
f̂C

ĝC

]
= Jk J

−1

k fCk , q̂D =

[
q̂Dx̂
q̂Dŷ

]
= ∇̂û = Jk J

T
k qD

k , (17)

where

fDk =

[
fD
k

gDk

]
, fCk =

[
fC
k

gCk

]
, qD

k =

[
qDxk

qDyk

]
= ∇uk, (18)

and

∇̂ =

[
∂
∂x

∂
∂y

]
, Jk =

[
∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

]
, Jk = det(Jk). (19)

Using these transformations, equations (13) and (14) can be reformulated as follows

∂ûD

∂t
+ ∇̂ · f̂D + ∇̂ · f̂C = 0, (20)

q̂D − ∇̂ûD − ∇̂ûC = 0, (21)

where

ûD =

Np∑

i=1

(
ûD

)i
ℓ̂i (x̂) , (22)

q̂D =
(
q̂Dx̂ , q̂

D
ŷ , q̂

D
ẑ

)
,

q̂Dm =

Np∑

i=1

(q̂Dm)i ℓ̂i (x̂) ∀ m = 1̂, 2̂, 3̂, (23)

f̂D =
(
f̂D
x̂ , f̂

D
ŷ , f̂

D
ẑ

)
,

f̂D
m =

Np∑

i=1

(f̂D
m )i ℓ̂i (x̂) ∀ m = 1̂, 2̂, 3̂, (24)

and wherêfC andûC can be defined via several different approaches18,25,26. One such approach due to Williams and
Jameson18 utilizes the following expressions for computinĝ∇ · f̂C and∇̂ûC

∇̂ · f̂C =

4∑

f=1

Nfp∑

l=1

((
f̂⋆f,l − f̂Df,l

)
· n̂f,l

)
φf,l, (25)

∇̂ûC =

4∑

f=1

Nfp∑

l=1

(
û⋆f,l − ûDf,l

)
n̂f,l ψf,l, (26)
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whereNfp is the number of nodal flux points located on each of thef = 1, . . . , 4 faces of the reference tetrahedron
(where an example of theNfp ≡ (p+ 1)(p+ 2)/2! points on each face is shown in Figure (2)), f̂⋆f,l is the value of the

numerical flux at nodal flux pointl on facef (denoted bŷxf,l), f̂Df,l is the value of the discontinuous flux atx̂f,l, n̂f,l is
the value of the normal at̂xf,l, û⋆f,l is the value of the numerical solution atx̂f,l, ûDf,l is the value of the discontinuous
solution atx̂f,l, andφf,l andψf,l are the VCJH correction fields or ‘lifting operators’ associated withx̂f,l. The
purpose of the correction fields is to take information at theboundaries of the element and propagate it into the interior
of the element. Note that this approach for constructing∇̂ · f̂C and∇̂ûC is a variant of the VCJH approaches in 1D
and 2D that were referred to previously15,16. An important characteristic of this approach is that it recovers an infinite
range of energy stable FR schemes (‘VCJH schemes’) that are provably stable for linear advection-diffusion problems
on tetrahedral elements18.

III. Nonlinear Stability of Flux Reconstruction Schemes

Although the linear stability of certain FR schemes (in particular the VCJH schemes) has been established, the non-
linear stability of these schemes is still under review. Most recently, the nonlinear stability of the VCJH schemes was
evaluated by Williams18 for the following nonlinear advection-diffusion problem

∂u

∂t
+∇ · (fadv (u) + fdif (u,q)) = 0, (27)

q−∇u = 0, (28)

wherefadv andfdif are nonlinear advective and diffusive fluxes, respectively, and where in particular

fdif (u,q) = −b (u)q. (29)

Here,b (u) is a non-negative, nonlinear diffusivity coefficient. In18, it was shown that if a VCJH scheme is applied to
this nonlinear advection-diffusion problem, the time rateof change of a matrix-based norm of the approximate solution
is governed by the following equation

1

2

N∑

k=1

(
d

dt
‖Uk‖

2

M̃

)
+

N∑

k=1

(
QT

k BkM̃
k Qk

)
= Ξinterfaces + Ξalias, (30)

whereUk =
[
(uDk )1 . . . (uDk )Np

]T
is a vector containing the solution values,Qk = [Qxk

Qyk
Qzk ]

T = [Q1kQ2kQ3k ]
T

(whereQmk
=

[
(qDmk

)1 . . . (qDmk
)Np

]T
) is a vector containing the auxiliary variable values,M̃k andM̃k are sym-

metric, positive-definite, augmented mass matrices,

‖Uk‖M̃ =
(
UT

k M̃k Uk

)1/2

(31)

is a matrix-based norm,Bk = diag[Bk Bk Bk] (whereBk = diag
[
b
(
(uDk )1

)
. . . b

(
(uDk )Np

)]
) is a matrix of nonlin-

ear diffusion coefficients,Ξinterfaces is a summation of interface contributions, andΞalias is a summation of aliasing
errors introduced by the collocation projection of the flux.The sign ofΞalias is generally unknown, and as a result, it
may cause the time rate of change of the solution to become positive and for the scheme to become unstable. There-
fore, in order to promote stability of the scheme, it is necessary to minimize or eliminate this term. To see how this
can be accomplished, it is useful to examine the following precise definition of the aliasing error term

Ξalias ≡
N∑

k=1

(εΩk
+ εΓk

) , (32)

where

εΩk
≡

∫

Ωk

∇uDk ·
(
fDk, adv − fadv

(
uDk

))
dΩk, (33)

εΓk
≡

∫

Γk

[(
uDk − u⋆

) (
fDk, dif − fdif

(
uDk ,q

D
k

))]
· n dΓk. (34)
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Here,εΩk
andεΓk

are measures of the effective ‘distances’ between the exactflux functions (fadv
(
uDk

)
andfdif

(
uDk ,q

D
k

)
)

and the approximate fluxes (fDk, adv andfDk, dif ). It turns out thatεΩk
andεΓk

can be eliminated if exact ‘L2 projec-
tions’ are utilized to construct the fluxesfDk, adv andfDk, dif onΩk andΓk, respectively. This will be shown via a brief
examination of these L2 projections.

Consider the exact L2 projection of a fluxfDk onΩk which can be defined such that

∀i

∫

Ωk

(
fDk − f

(
uDk

))
L3D
k,i dΩk = 0, (35)

where eachL3D
k,i = L3D

k,i (x) is a member of a 3D orthonormal polynomial basis of degreep− 1 onΩk. Furthermore,
the exact L2 projection of a fluxfDk onΓk can be defined such that for each of thef = 1, . . . , 4 faces of the element
boundary

∀l

∫

Γf

(
fDk − f

(
uDk

))
· nf L

2D
k,f,l dΓf = 0, (36)

where eachL2D
k,f,l = L2D

k,f,l (x) is a member of a 2D orthonormal polynomial basis of degreep onΓf .

Setting equations (35) and (36) aside for the moment, consider representing∇uDk on Ωk and
(
uDk − u⋆

)
on Γf in

terms of the orthonormal basis functionsL3D
k,i andL2D

k,f,l as follows

(
∇uDk

)
m

=

Ñp∑

i=1

ζk,i,m L3D
k,i (x) , for m = 1, 2, 3, (37)

(
uDk − u⋆

)
f
=

Nfp∑

l=1

ϕk,f,l L
2D
k,f,l (x) , (38)

whereζk,i,m andϕk,f,l are constant coefficients, and̃Np is the number of points required to define a polynomial of
degreep − 1 in 3D, i.e. Ñp ≡ p (p+ 1) (p+ 2) /3!. Upon multiplying equation (35) by each coefficientζk,i,m,
substitutingfadv in place off , and summing the result overm andi, one obtains

∫

Ωk

∇uDk ·
(
fDk, adv − fadv

(
uDk

))
dΩk = εΩk

= 0. (39)

Similarly, on multiplying equation (36) by each coefficientϕk,f,l, substitutingfdif in place off , and summing the
result overl andf , one obtains

∫

Γk

[(
uDk − u⋆

) (
fDk, dif − fdif

(
uDk ,q

D
k

))]
· n dΓk = εΓk

= 0. (40)

From equations (39), (40), and (32), it immediately follows thatΞalias = 0.

It is important to note, that one is frequently unable to compute exact L2 projections of high dimensional or infinite
dimensional nonlinear fluxesfadv

(
uDk

)
andfdif

(
uDk ,q

D
k

)
in problems of practical interest. However, if numerical

quadrature rules of sufficiently high-order are employed inequations (35) and (36), the L2 projections can ensure that
Ξalias is of the order of machine zero. Nevertheless, in this case, the L2 projection procedures will be substantially
more expensive, from a computational standpoint, than the collocation projection utilized previously to definefDk (in
equation (8)).

It turns out that one may utilize collocation projection procedures to form the fluxes while simultaneously reducing
aliasing errors, if the nodal solution pointsxi and nodal flux pointsxf,l are placed at the locations of quadrature points.
This can be shown via further examination of the aliasing errorsεΩk

andεΓk
. Towards this end, consider transforming

εΩk
andεΓk

from the physical space to the reference space as follows

εΩk
=
ε̂ΩS

Jk
=

1

Jk

∫

ΩS

∇̂ûD ·
(
f̂Dadv − f̂adv

(
ûD

))
dΩS , (41)

εΓk
=
ε̂ΓS

Jk
=

1

Jk

∫

ΓS

[(
ûD − û⋆

) (
f̂Ddif − f̂dif

(
ûD, q̂D

))]
· n̂ dΓS , (42)
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whereε̂ΩS
andε̂ΓS

are measures of the aliasing errors in the reference space. (Note that the transformation to reference
space has been performed in order to simplify the subsequentanalysis).

Next, one may definê∇ûD in equation (41) and
(
ûD − û⋆

)
in equation (42) as follows

(
∇̂ûD

)
m

=

Ñp∑

i=1

ζ̂i,m L3D
i (x̂) , for m = 1̂, 2̂, 3̂, (43)

(
ûD − û⋆

)
f
=

Nfp∑

l=1

ϕ̂f,l L
2D
f,l (x̂) , (44)

whereζ̂i,m andϕ̂f,l are constant coefficients,L3D
i = L3D

i (x̂) is a member of the 3D orthonormal polynomial basis of
degreep− 1 inside the reference element, andL2D

f,l = L2D
f,l (x̂) is a member of the 2D orthonormal polynomial basis

of degreep on facef of the reference element. Upon substituting equations (43) and (44) into the expressions for̂εΩS

andε̂ΓS
in equations (41) and (42), one obtains

ε̂ΩS
=

3̂∑

m=1̂

Ñp∑

i=1

ζ̂i,m

∫

ΩS

(
f̂D
m, adv − f̂m, adv

(
ûD

))
L3D
i dΩS , (45)

ε̂ΓS
=

4∑

f=1

Nfp∑

l=1

ϕ̂f,l

∫

Γf

[(
f̂Ddif − f̂dif

(
ûD, q̂D

))
· n̂f

]
L2D
f,l dΓf

=

3̂∑

m=1̂

4∑

f=1

Nfp∑

l=1

ϕ̂f,l n̂f,m

∫

Γf

(
f̂D
m,f, dif − f̂m, dif

(
ûDf , q̂

D
f

))
L2D
f,l dΓf , (46)

or equivalently,

ε̂ΩS
=

3̂∑

m=1̂

Ñp∑

i=1

ζ̂i,m (ε̂ΩS
)i,m , (47)

ε̂ΓS
=

3̂∑

m=1̂

4∑

f=1

Nfp∑

l=1

ϕ̂f,l n̂f,m (ε̂ΓS
)f,l,m , (48)

where

(ε̂ΩS
)i,m =

∫

ΩS

(
f̂D
m, adv − f̂m, adv

(
ûD

))
L3D
i dΩS , (49)

(ε̂ΓS
)f,l,m =

∫

Γf

(
f̂D
m,f, dif − f̂m,dif

(
ûDf , q̂

D
f

))
L2D
f,l dΓf . (50)

It should be noted that equations (49) and (50) are analogous to equations (35) and (36) that define the L2 projections
in physical space. In fact, equations (49) and (50) simply define the component-wise L2 projections of the advective
and diffusive fluxes in reference space. Thus, if exact L2 projections of the fluxes are performed then(ε̂ΩS

)i,m and
(ε̂ΓS

)f,l,m vanish as expected. However, for collocation projections of the flux, this is not necessarily the case. In
order to illustrate this point, one may consider forming collocation projections of the fluxes as follows

f̂D
m, adv =

Np∑

j=1

f̂m, adv

((
ûD

)j)
ℓ 3Dj (x̂) =

Np∑

j=1

(
f̂D
m, adv

)j

ℓ̂ 3Dj , (51)

f̂D
m,f, dif =

Nfp∑

r=1

f̂m, dif

((
ûDf

)r
,
(
q̂D
f

)r)
ℓ 2Df,r (x̂) =

Nfp∑

r=1

(
f̂D
m,f, dif

)r

ℓ̂ 2Df,r , (52)

whereℓ̂ 3Dj is the 3D nodal polynomial of degreep that assumes the value of 1 at nodal solution pointj and the value

of zero at all neighboring nodal solution points,ℓ̂ 2Df,r is the 2D nodal polynomial of degreep that assumes the value
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of 1 at nodal flux pointf, r and the value of zero at all neighboring nodal flux points, andwhere
(
f̂D
m,adv

)j

and
(
f̂D
m,f, dif

)r

are the mth components of the pointwise values of the advective and diffusive fluxes in reference space

(
(
f̂Dadv

)j

and
(
f̂Df, dif

)r

) that are the reference space equivalents of the pointwise values of the fluxes in physical

space (
(
fDk, adv

)j

= fk, adv

((
uDk

)j)
and

(
fDk,f, dif

)r

= fk, dif

((
uDf

)r

,
(
qD
f

)r)
). Upon substituting equations (51)

and (52) into equations (49) and (50), one obtains

(ε̂ΩS
)i,m =

Np∑

j=1

(
f̂D
m,adv

)j
∫

ΩS

ℓ̂ 3Dj L3D
i ΩS −

∫

ΩS

f̂m, adv

(
ûD

)
L3D
i dΩS , (53)

(ε̂ΓS
)f,l,m =

Nfp∑

r=1

(
f̂D
m,f, dif

)r
∫

Γf

ℓ̂ 2Df,r L
2D
f,l dΓf −

∫

Γf

f̂m,dif

(
ûDf , q̂

D
f

)
L2D
f,l dΓf . (54)

The termŝℓ 3Dj L3D
i andℓ̂ 2Df,r L

2D
f,l that appear in equations (53) and (54) are polynomials of degree2p − 1 in 3D and

degree2p in 2D, respectively. Thus, the integrals of these terms can be computed exactly via quadrature rules of
degree2p − 1 in 3D and degree2p in 2D. More generally, a 3D quadrature rule (or equivalentlya cubature rule) of
arbitrary degree can approximate the integral ofℓ̂ 3Dj L3D

i onΩS as follows

∫

ΩS

ℓ̂ 3Dj L3D
i ΩS =

N3D
q∑

n=1

wn ℓ̂
3D
j (ςn)L

3D
i (ςn) + e3Dq , (55)

whereN3D
q is the number of quadrature points,ςn’s are the point locations,wn’s are the weights, ande3Dq is the

quadrature error that vanishes for quadrature rules of degree≥ 2p − 1. Similarly, a 2D quadrature rule of arbitrary
degree can approximate the integral ofℓ̂ 2Df,r L

2D
f,l onΓf as follows

∫

Γf

ℓ̂ 2Df,r L
2D
f,l dΓf =

N2D
q∑

s=1

ωs ℓ̂
2D
f,r (ϑs)L

2D
f,l (ϑs) + e2Dq , (56)

whereN2D
q is the number of quadrature points,ϑs’s are the point locations,ωs’s are the weights, ande2Dq is the

quadrature error that vanishes for quadrature rules of degree≥ 2p.

Upon substituting equations (55) and (56) into equations (53) and (54), one obtains

(ε̂ΩS
)i,m =

Np∑

j=1

(
f̂D
m, adv

)j
N3D

q∑

n=1

wn ℓ̂
3D
j (ςn)L

3D
i (ςn)−

∫

ΩS

f̂m, adv

(
ûD

)
L3D
i dΩS + E3D

q , (57)

(ε̂ΓS
)f,l,m =

Nfp∑

r=1

(
f̂D
m,f, dif

)r
N2D

q∑

s=1

ωs ℓ̂
2D
f,r (ϑs)L

2D
f,l (ϑs)−

∫

Γf

f̂m,dif

(
ûDf , q̂

D
f

)
L2D
f,l dΓf + E2D

q , (58)

where

E3D
q =

Np∑

j=1

(
f̂D
m,adv

)j

e3Dq , E2D
q =

Nfp∑

r=1

(
f̂D
m,f, dif

)r

e2Dq . (59)

Now, if the quadrature rules are required to have a particular number of points,N3D
q = Np andN2D

q = Nfp, and
the nodal solution pointŝxi (or equivalentlyx̂j) and nodal flux pointŝxf,l (or equivalentlyx̂f,r) are placed at the
locations of the quadrature pointsςn andϑs, one obtains

(ε̂ΩS
)i,m =

Np∑

j=1

f̂m,adv

(
ûD

) ∣∣∣∣
ςj

Np∑

n=1

wn δjn L
3D
i (ςn)−

∫

ΩS

f̂m, adv

(
ûD

)
L3D
i dΩS + E3D

q , (60)

(ε̂ΓS
)f,l,m =

Nfp∑

r=1

f̂m,dif

(
ûDf , q̂

D
f

) ∣∣∣∣
ϑr

Nfp∑

s=1

ωs δrs L
2D
f,l (ϑs)−

∫

Γf

f̂m,dif

(
ûDf , q̂

D
f

)
L2D
f,l dΓf + E2D

q , (61)
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or equivalently,

(ε̂ΩS
)i,m =

Np∑

j=1

wj f̂m, adv

(
ûD

) ∣∣∣∣
ςj

L3D
i (ςj)−

∫

ΩS

f̂m, adv

(
ûD

)
L3D
i dΩS + E3D

q , (62)

(ε̂ΓS
)f,l,m =

Nfp∑

r=1

ωr f̂m, dif

(
ûDf , q̂

D
f

) ∣∣∣∣
ϑr

L2D
f,l (ϑr)−

∫

Γf

f̂m, dif

(
ûDf , q̂

D
f

)
L2D
f,l dΓf + E2D

q . (63)

The sums in equations (62) and (63) act as numerical quadrature approximations of the integral terms in each of the
equations, and evidently, for quadrature rules of sufficient strength, the integral terms and their numerical approxima-
tions will effectively cancel one another. In addition, (asmentioned previously) for quadrature rules of order≥ 2p− 1
in 3D and≥ 2p in 2D, the termsE3D

q andE2D
q will vanish. Thus, for quadrature rules of sufficient strength, (ε̂ΩS

)i,m
and (ε̂ΓS

)f,l,m approximately vanish,̂εΩS
and ε̂ΓS

approximately vanish, and in turnεΩk
andεΓk

approximately
vanish. However, it is important to note that a quadrature rule of a very high degree maybe required for this to occur,
and that there will frequently not be enough nodal solution points or nodal flux points to allow for this. Therefore, in
practice, one should consider the act of placing the nodal solution pointsx̂i and nodal flux pointŝxf,l at the locations
of quadrature points as a procedure for reducing (but most likely not eliminating) aliasing errors. This procedure re-
sults in an effective compromise between the extremes of eliminating all aliasing errors via expensive L2 projections
and creating large aliasing errors via inexpensive collocation projections that employ nodal solution and nodal flux
point locations that differ from quadrature point locations.

Finding suitable quadrature rules on which to base the nodalsolution and nodal flux point locations is a challenging
task because of the following requirements:

1. The quadrature rules must have the correct numbers of pointsN2D
q = Nfp andN3D

q = Np (as mentioned
previously). In 2D, the quadrature rules must haveNfp points because the nodal set must be able to exactly
represent a polynomial of degreep usingNfp = 1, 3, 6, 10, 15, or 21 points forp = 0 to p = 5. In 3D, the
quadrature rules must haveNp points because the nodal set must be able to exactly represent a polynomial of
degreep usingNp = 1, 4, 10, 20, 35, or 56 points forp = 0 to p = 5. This requirement is perhaps the most
difficult to satisfy, as the vast majority of existing quadrature rules do not have the desired number of points.

2. The quadrature rules must be symmetric under affine transformations of the triangle unto itself and affine trans-
formations of the tetrahedron unto itself. The locations ofthe nodal points must not introduce artificial asym-
metries into the simulation of physical phenomena.

3. The quadrature rules must utilize points which reside within the interior or (at most) on the boundary of the
triangle and tetrahedron.

4. The quadrature rules must result in a well-conditioned set of nodal basis functions. The associated nodal set
must be well-conditioned in the sense that the Lebesgue constantΛ of the nodal basis functions must not be
excessively large.

Recently, Shunn, Ham, and Williams18,21 identified a set of quadrature rules for the triangle and tetrahedron that have
the potential to satisfy these requirements. The quadrature rules are inspired by Sphere-Closed-Packed (SCP) lattice
arrangements of points within the triangle and tetrahedron, (c.f. Figure (3) for examples of the SCP lattices on the
equilateral triangle and tetrahedron). The quadrature rules and the degree of the highest polynomial that they exactly
integrate are provided in Tables (1) and (2). The rules have the correct numbers of points (Nfp in 2D andNp in 3D) and
possess symmetric structures which mimic those of the SCP lattices in 2D and 3D. In addition, all quadrature points
reside (strictly) within the interiors of the triangle and tetrahedron. However, the conditioning of these quadrature
points has yet to be determined. Furthermore, the points have yet to be extensively used as nodal points on practical
problems, thus it is unclear whether they have a substantialimpact on the nonlinear aliasing errors of high-order nodal
schemes such as the VCJH schemes.

In order to evaluate the quadrature points of Shunn, Ham, andWilliams and to determine if they can be effectively
utilized as nodal points, the authors will compare these points to the well-known ‘α-optimized’ points of Hesthaven
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and Warburton10, and Chen and Babushka22. Theα-optimized sets of points were developed to be utilized as nodal
points and are known to produce well conditioned interpolations and small Lebesgue constants. However, it is not
yet clear whether these benefits outweigh their potential inability to act as good quadrature points and to attenuate
aliasing error (by minimizingεΩk

andεΓk
). However, as discussed previously, the quadrature pointsof Shunn, Ham,

and Williams may not necessarily represent a viable alternative, as they may produce ill-conditioned interpolations
which may outweigh any potential benefits from their abilityto reduce aliasing errors. In what follows, a thorough
comparison of the aforementioned sets of nodal points is undertaken in order to obtain clarity regarding which points
are more suitable for unsteady, nonlinear, flow problems.

IV. Conditioning of Nodal Sets

Calculations were performed in order to evaluate the conditioning of the nodal sets. In particular, the Lebesgue
constantΛ was computed for each of the nodal sets in 2D and 3D. In 2D on a triangle, the Lebesgue constant takes the
following form

Λ2D = sup
x̂

Nfp∑

i=1

|ℓ̂2Di (x̂)|, (64)

and, similarly, in 3D on a tetrahedron it takes the followingform

Λ3D = sup
x̂

Np∑

i=1

|ℓ̂3Di (x̂)|. (65)

The constantΛ can be interpreted as a measure of how far awayûD can venture from the best degreep polynomial
approximation of the exact solutionu. Alternatively,Λ can be interpreted as a condition number on the interpolation.
In particular, if the vector of solution coefficientsUk is perturbed by a certain amount, thenΛ characterizes how far
the polynomial approximation can venture from its originalform. Evidently, a smaller value ofΛ is preferred.

In order to evaluate the conditioning of each of the point distributions, the Lebesgue constants were computed for
p = 1 to p = 5 for the nodal points of Hesthaven and Warburton10, Chen and Babushka22, and Shunn, Ham, and
Williams18,21. In addition, in order to establish a reference (or baseline), the Lebesgue constants were computed for
nodal sets with points located at the centers of the 2D and 3D spheres in the 2D and 3D SCP lattices. The results are
shown in Tables (3) and (4).

The best results are obtained by theα-optimized points from10 and22. This is not unexpected, as theα-optimized points
have been generated with the primary purpose of optimizing asingle parameter ‘α’ (which controls the distribution of
nodal points) with the purpose of minimizingΛ.

Note that the SCP-based quadrature points of Shunn, Ham, andWilliams18,21 produce values forΛ which are larger
than those of theα-optimized points. However, the values ofΛ are still seen to be much smaller than those associated
with the naive choice of placing points at the centers of the spheres in the SCP lattices. Thus, the SCP-based quadra-
ture points appear to produce values ofΛ which are a reasonable compromise between those of the best and worst
distributions of points that were tested.

V. Aliasing Errors of Nodal Sets

In order to evaluate the aliasing errors associated with thenodal sets, they were employed, in conjunction with the
VCJH schemes, to solve the nonlinear Navier-Stokes (NS) equations. The NS equations in 3D can be written as
follows

∂U

∂t
+∇ ·F(U,∇U) = 0, (66)
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whereU represents the conserved variables (which are scalars) andF represents the flux vector that is composed from
inviscid and viscous parts:F = Finv (U)− Fvisc (U,∇U). In 3D, the conserved variables are defined as follows

U =





ρ
ρu
ρv
ρw
E




, (67)

whereρ = ρ (x, y, z, t) is the density,u = u (x, y, z, t), v = v (x, y, z, t), andw = w (x, y, z, t) are the velocity
components,E = p/ (γ − 1) + (1/2)ρ

(
u2 + v2 + w2

)
is the total energy,p = p (x, y, z, t) is the pressure, andγ is

the ratio of specific heats. In addition, the inviscid and viscous fluxes in 3D can be defined in terms of their components
along thex, y, andz coordinate directions, i.e.Finv = (finv, ginv, hinv) andFvisc = (fvisc, gvisc, hvisc). Here,
the inviscid flux components are defined such that

finv =





ρu
ρu2 + p
ρuv
ρuw

u(E + p)




, ginv =





ρv
ρuv

ρv2 + p
ρvw

v(E + p)




, hinv =





ρw
ρuw
ρvw

ρw2 + p
w(E + p)




, (68)

and the viscous flux components are defined such that

fvisc = µ





0
2ux + λ(ux + vy + wz)

vx + uy
wx + uz

u[2ux + λ(ux + vy + wz)] + v(vx + uy) + w(wx + uz) +
Cp

PrTx




,

gvisc = µ





0
vx + uy

2vy + λ(ux + vy + wz)
wy + vz

v[2vy + λ(ux + vy + wz)] + u(vx + uy) + w(wy + vz) +
Cp

PrTy




,

hvisc = µ





0
wx + uz
wy + vz

2wz + λ(ux + vy + wz)

w[2wz + λ(ux + vy + wz)] + u(wx + uz) + v(wy + vz) +
Cp

PrTz




, (69)

whereµ is the dynamic viscosity,λ is the bulk viscosity coefficient,T = p/ (ρR) is the temperature,R is the gas
constant,Cp is the specific heat capacity at constant pressure, andPr is the Prandtl number. It should be noted that
the terms with subscriptsx, y, andz in equation (69) signify first derivatives inx, y, andz (for exampleTz = ∂T

∂z ).

Before proceeding further, it should be noted that equation(66) contains second derivatives of the conservative vari-
ables and can therefore be classified as a ‘2nd-order’ systemof PDEs. However, this system can easily be reformulated
as a 1st-order system by eliminating∇U from equation (66) and replacing it with the auxiliary variable denoted byQ
as follows

∂U

∂t
+∇ · F(U,Q) = 0, (70)

Q−∇U = 0. (71)

This operation transforms equation (66) into a form that is more amenable to treatment by the VCJH schemes.

Experiments on equations (70) and (71) were performed with the VCJH schemes in conjunction with two ‘represen-
tative’ nodal sets: the nodal set based on the SCP-quadrature points of Shunn, Ham, and Williams18,21, and the nodal
set based on theα-optimized points of Hesthaven and Warburton10. Figure (4) illustrates the locations of the nodal
solution points and nodal flux points for each nodal set, on the reference tetrahedron, for the case ofp = 3.
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A. Propagation of an Isentropic Vortex

In what follows, a VCJH scheme and the aforementioned nodal sets are employed to simulate the propagation of
an inviscid, isentropic vortex. The propagation of an inviscid, isentropic vortex in a quiescent fluid is a well-known
solution to the NS equations withµ = 0 (i.e., the Euler equations). In this scenario, the vortex propagates indefinitely,
and the exact solution can be straightforwardly computed from the initial conditions. In 3D, the exact solution of this
problem takes the following form

ρ = ρ0

(
1−

γ − 1

2
Π2

) 1

γ−1

, (72)

ρu = ρ (u0 + rxc0 Π) , (73)

ρv = ρ (v0 + ryc0 Π) , (74)

ρw = ρ (w0 + rzc0 Π) , (75)

E =
p0

γ − 1

(
1−

γ − 1

2
Π2

) γ
γ−1

+
ρ

2

(
u2 + v2 + w2

)
, (76)

where

c0 =

√
γp0
ρ0

, (77)

Π = Πmax exp



1−

(
|r|
r0

)2

2


 , (78)

r = r̃× (x− x0 − u0 t) , (79)

and wherec is the speed of sound,Π characterizes the strength of the vortex,r0 is the radius of the vortex, and
r = (rx, ry, rz) andr̃ = (r̃x, r̃y , r̃z) are the orthogonal orientation vectors for the vortex. Here, it should be noted that
all quantities subscripted by 0 denote values at initial time t0.

Approximate solutions to the vortex propagation problem were sought on the cubic domainΩ = [−10, 10] ×
[−10, 10]× [−10, 10]. The cubic domain was discretized by formingÑ × Ñ × Ñ regular hexahedral meshes and then
splitting these meshes into grids withN = 6Ñ3 tetrahedron elements. In this manner, structured tetrahedral grids
with Ñ = 16 and 32 were formed. Figure (5) shows the tetrahedral grid with̃N = 16.

Periodic boundary conditions were imposed on the boundaries of the cubic domain. The flow on the domain was
initialized with ρ0 = 1, γ = 1.4, p0 = γ−1, Πmax = 0.4, u0 = (0, 1, 0), r0 = 1, r̃0 = (0, 0, 1), andx0 = (0, 0, 0).
Figure (6) shows density contours of the initial flow.

The explicit 5-stage, 4th-order Runge-Kutta scheme of Carpenter and Kennedy27 (denoted by RK54) was used to
advance the approximate solution in time (starting fromt0 = 0) and, at each time-step, the inviscid and viscous
numerical fluxes were computed using the Rusanov approach28 and the LDG approach29, respectively. Results were
obtained on the aforementioned cubic domains withÑ = 32 and 16 for polynomial ordersp = 3 and 4. In order to
highlight the effects of aliasing errors, the approximate solutions were computed for long times (until timet = 80)
using the VCJH scheme withc = cdg andκ = κdg, where it is important to note that the constantsc andκ parameterize
the VCJH scheme as described in18. This scheme is of particular interest because it is equivalent to the well-known,
collocation-based, nodal DG scheme18. For this scheme, and for each set of nodal points, L2 errors in the energyE are
shown in Table (5). In addition, contours of the density obtained with theα-optimized points for the case of̃N = 32
andp = 3 are shown in Figure (7). Note that the aliasing errors that frequently arose in each of the simulations are
exemplified by the oscillations that distort the contours inFigure (7).

The data in Table (5) demonstrates that the simulations that utilize the quadrature points produce significantly less
total error than the simulations that utilize theα-optimized points. It is reasonable to assume that these reductions in
the total error are due to successful reductions in the aliasing error.
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B. Flow Generated by a Time-Dependent Source Term

In what follows, a VCJH scheme and the aforementioned nodal sets are employed to solve the NS equations with a
time-dependent source termS. In general, the termS is incorporated into the NS equations as follows

∂U

∂t
+∇ ·F(U,Q) = S, (80)

Q−∇U = 0. (81)

It turns out that for certain choices ofS, the NS equations have well-known exact solutions. In particular, if the source
term is defined in 3D as follows

S =





s1
s2
s3
s4
s5




,

s1 = (3k − ω) cos (k (x+ y + z)− ωt) ,

s2 =
1

2
cos (k (x+ y + z)− ωt)

[(9 + 4a (γ − 1)− 3γ)k − 2ω + 4 (γ − 1) k sin (k (x+ y + z)− ωt)] ,

s3 =
1

2
cos (k (x+ y + z)− ωt)

[(9 + 4a (γ − 1)− 3γ)k − 2ω + 4 (γ − 1) k sin (k (x+ y + z)− ωt)] ,

s4 =
1

2
cos (k (x+ y + z)− ωt)

[(9 + 4a (γ − 1)− 3γ)k − 2ω + 4 (γ − 1) k sin (k (x+ y + z)− ωt)] ,

s5 =

(
3γk2µ

Pr

)
sin (k (x+ y + z)− ωt) +

1

2
cos (k (x+ y + z)− ωt)

[3 (3− 3γ + 4aγ)k − 4aω + 4 (3γk − ω) sin (k (x+ y + z)− ωt)] , (82)

the following exact solution can be obtained

U =





sin (k (x+ y)− ωt) + a
sin (k (x+ y)− ωt) + a
sin (k (x+ y)− ωt) + a
sin (k (x+ y)− ωt) + a

(sin (k (x+ y)− ωt) + a)
2




. (83)

Approximate solutions to equations (80) and (81) were sought on a cubic domainΩ = [−1, 1] × [−1, 1] × [−1, 1].
The cubic domain was discretized by forming̃N × Ñ × Ñ regular hexahedral meshes and then splitting these meshes
into grids withN = 6Ñ3 tetrahedron elements. In this manner, structured tetrahedral grids withÑ = 4, 6, 8, and 12
were formed.

Periodic boundary conditions were imposed on the boundaries of the cubic domain. At timet = 0, the flow on the
domain was initialized with source term parametersPr = 0.72, γ = 1.4, k = π, ω = π, a = 3.0, andµ = 0.001.
Figure (8) shows density contours of the initial flow.

The solution was marched forward in time using the RK54 approach27 and, at each time-step, the inviscid and viscous
numerical fluxes were computed using the Rusanov approach28 and the LDG approach29, respectively. Results were
obtained on the aforementioned cubic domains withÑ = 12, 8, 6, and 4 for polynomial ordersp = 2, 3, 4, and 5.
The approximate solutions were computed for long times (until time t = 10) using the VCJH scheme withc = c+
andκ = κ+. This scheme is of particular interest because (in some cases) it yields explicit time-step limits which
are more than 2x larger than those of the collocation-based nodal DG scheme18. For this scheme, and for each set of
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nodal points, L2 errors in the energyE are shown in Table (6). In addition, contours of the density obtained with the
α-optimized points for the case of̃N = 8 andp = 3 are shown in Figure (9).

The results of the simulations are consistent with the results of the previous section, as the data in Table (6) demon-
strates that the simulations that utilize the quadrature points produce less error than the simulations that utilize the
α-optimized points. The reduction in error can be seen most notably for odd polynomial ordersp = 3 andp = 5,
where the error is reduced by roughly 25 – 50 percent. This suggests the existence of a diffusive phenomena that tends
to dampen aliasing errors for even polynomial ordersp = 2 andp = 4. More importantly, the tabulated data suggests
that (regardless of whether the order is even or odd), the quadrature points are effective in reducing the aliasing errors,
and in turn, reducing the total errors.

VI. Conclusion

It has been shown that placing nodal points at the locations of quadrature points reduces aliasing errors and results
in moderately well-conditioned interpolations. These results has been demonstrated theoretically and empirically for
a particular set of nodal points on tetrahedral elements. Specifically, a particular set of quadrature points has been
shown to possess moderate values of the Lebesgue constants for polynomial ordersp = 1 to p = 5. In addition, these
points have been successfully employed to reduce aliasing errors in a number of experiments involving the nonlinear
NS equations. It is hoped that the favorable performance of these points will result in their increasingly wide-spread
utilization for nonlinear problems in the field of computational fluid dynamics.

Acknowledgments

The authors would like to acknowledge the support for this work provided by the Stanford Graduate Fellowships
program, the National Science Foundation (NSF), and NVIDIA. The authors would also like to thank Peter E. Vincent,
Patrice Castonguay, and Lee Shunn for engaging in many productive discussions that helped contribute to this work.

14 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

Ju
ly

 1
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
28

30
 

 Copyright © 2013 by David M. Williams, Antony Jameson. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



Tables

Nfp Polynomial Integrated
1 1
3 2
6 4
10 5
15 7
21 8

Table 1. Strength of integration rules on the triangle due toWilliams and Shunn18.

Np Polynomial Integrated
1 1
4 2
10 3
20 5
35 6
56 8

Table 2. Strength of integration rules on the tetrahedron due to Shunn and Ham21.

Λ2D Λ2D Λ2D

p α10 SCP quadrature18 SCP
1 1.00 2.33 3.31
2 1.67 3.55 8.29
3 2.11 4.52 18.75
4 2.66 5.12 40.49
5 3.12 6.53 85.32

Table 3. Lebesgue constants for nodal sets on the reference triangle.

Λ3D Λ3D Λ3D Λ3D

p α10 α22 SCP quadrature21 SCP
1 1.00 1.00 2.85 4.67
2 2.00 2.00 4.39 15.10
3 2.93 2.93 6.14 41.76
4 4.07 4.11 8.28 106.26
5 5.32 5.62 29.59 256.84

Table 4. Lebesgue constants for nodal sets on the reference tetrahedron.
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p Ñ L2 err. (quad-points) L2 err. (α-points) % difference

3 32 2.24e-03 1.20e-02 438.19
4 16 6.04e-03 2.63e-02 335.11

Table 5. Comparison of errors produced by experiments with the quadrature points and theα-optimized points for the VCJH scheme with
c = cdg and κ = κdg , for the problem involving inviscid, isentropic vortex propagation on tetrahedral grids, for the cases ofp = 3 and
p = 4.

p Ñ L2 err. (quad-points) L2 err. (α-points) % difference

2 12 5.42e-01 5.45e-01 0.52
3 8 1.82e-01 2.28e-01 25.47
4 6 1.47e-01 1.51e-01 2.21
5 4 3.07e-01 4.63e-01 50.86

Table 6. Comparison of errors produced by experiments with the quadrature points and theα-optimized points for the VCJH scheme with
c = c+ and κ = κ+, for the problem with flow driven by a time-dependent source term on tetrahedral grids, for the cases ofp = 2 to
p = 5.

Figures

(−1,1,−1)

(1,−1,−1)

(−1,−1,−1)

(−1,−1,1)

Figure 1. Example of theNp = 10 solution point locations (denoted by circles) in the reference element for the case ofp = 2.
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./Figures/Fig1_tet.eps


f = 2 (back)

f = 1 (front)

f = 4 (bottom)

f = 3 (back)

(a) Numbering convention on the faces of the reference element.

l = 3

l = 5

l = 2

l = 6

l = 4

l = 1

(b) Numbering convention for the flux points on a face of the reference
element.

Figure 2. Example of the numbering convention for the flux points on thereference element for the case ofp = 2. The flux points (denoted by
squares) are shown for the facef = 1.

(a) Nfp = 10 (b) Np = 20

Figure 3. Sphere closed packed (SCP) configurations withNfp = 10 points on the triangle andNp = 20 points on the tetrahedron.
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./Figures/Fig2_tet.eps
./Figures/Fig3_tet.eps
./Figures/Tri_ccp_3.eps
./Figures/Tet_ccp_3.eps


(a) Point arrangement based on quadrature points (b) Point arrangement based onα-optimized points

Figure 4. Placement of the solution points (circles) and flux points (squares) at the locations of the quadrature points and theα-optimized points
for the case ofp = 3.

Figure 5. Structured tetrahedral grid for the case ofÑ = 16.
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./Figures/tet_p3_alpha.eps
./Figures/tet_p3_beta.eps
./Figures/manu_tet_mesh.eps


Figure 6. Contours of the density of the initial condition for the inviscid, isentropic vortex.

Figure 7. Contours of the density obtained via the VCJH scheme withc = cdg , κ = κdg , and the solution and flux points placed at the locations
of theα-optimized points, on the tetrahedral grid with̃N = 32 for the case ofp = 3.
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./Figures/vort_init.eps
./Figures/vort_alias_tet.eps


Figure 8. Contours of the density of the initial condition for the flow driven by a time-dependent forcing term.

Figure 9. Contours of the density obtained via the VCJH scheme withc = c+, κ = κ+, and the solution and flux points placed at the locations of
theα-optimized points, on the tetrahedral grid with̃N = 8 for the case ofp = 3.
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./Figures/manu_init.eps
./Figures/source_alias_tet.eps
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