
Computation Of Flows with Shocks Using Spectral

Di�erence Scheme with Arti�cial Viscosity

Sachin Premasuthan, � Chunlei Liang y and Antony Jameson z

Stanford University, Stanford, CA 94305, USA

The current work focuses on applying an arti�cial viscosity approach to the Spectral
Di�erence (SD) method to enable high-order computation of compressible 
uid 
ows with
discontinuities. The study modi�es the arti�cial viscosity approach proposed in the earlier
work.24 Studies show that a dilatation sensor for arti�cial viscosity, combined with a
dilatation-based switch and �lter for smoothing, works well for curvilinear and unstructured
grids. The arti�cial viscosity model is found to stabilize numerical calculations and reduce
oscillations near discontinuities. Promising results are demonstrated for 2-D test problems.
Adaptive mesh re�nement is used in conjunction with arti�cial viscosity to obtain improved
shock pro�les. A mortar element method is used to handle the non-conforming interfaces
generated from mesh-re�nement of quadrilateral elements.

I. Introduction

Until recently, compressible 
ow computations on unstructured meshes have generally been dominated
by schemes restricted to second order accuracy. However, the need for highly accurate methods in applica-
tions such as large eddy simulation, direct numerical simulation, computational aeroacoustics etc., has seen
the development of higher order schemes for unstructured meshes such as the Discontinuous Galerkin (DG)
Method,2,20 Spectral Volume (SV) method19,33 and Spectral Di�erence (SD) Method.18,32 The SD method
is a newly developed e�cient high-order approach based on di�erential form of the governing equation. The
SD method can be viewed as an extension of the staggered-grid multi-domain method introduced by Kopriva
and Kolias.15 It was originally proposed by Liu et al.18 and developed for wave equations in their paper
on triangular grids. Wang et al.32(2007) extended it to 2D Euler equations on triangular grids and Sun et
al.31(2007) further developed it for three-dimensional Navier-Stokes equations on hexahedral unstructured
meshes. The SD method combines elements from �nite-volume and �nite-di�erence techniques, and is par-
ticularly attractive because it is conservative, has a simple formulation and straightforward implementation.

One of the greatest challenges with using high-order unstructured solvers is their inability to handle 
ow
discontinuities. When 
ows involve steep gradients such as shock waves or contact surfaces, non-physical
spurious oscillations arise that cause the simulations to go unstable. For higher order approximations, it is
typically necessary to add explicit dissipation in order to obtain a stable solution. But this has a negative
e�ect on accuracy, and the resolution of turbulent scales. The development of numerical algorithms that
capture discontinuities and also resolve the scales of turbulence in compressible turbulent 
ows remains a
signi�cant challenge.

A classical approach to shock capturing is the addition of arti�cial viscosity, pioneered by von Neumann
and Richtmeyer.21 The addition of arti�cial viscosity or dissipation facilitates the capturing of discontinuities
by smearing the discontinuity over a numerically resolvable scale. The concept of 
exible addition of arti�cial
viscosity/dissipation has been used notably by Jameson et al.,10{13 thus producing non-oscillatory and sharp
resolution of shocks for structured and unstructured �nite volume calculations.

Cook and Cabot proposed such a method for high-order centered di�erencing schemes, wherein a spectral-
like high-wavenumber biased arti�cial viscosity and di�usivity were dynamically added.6,7 This was followed
up with work by Fiorina and Lele,8 on high-order compact di�erence schemes, wherein arti�cial di�usivity
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was added in addition to arti�cial viscosity. Kawai and Lele14 extended the method to non-uniform and
curvilinear meshes. This method involves the dynamic addition of grid-dependent localized transport coe�-
cients such as arti�cial bulk viscosity, shear viscosity, arti�cial conductivity where needed. The application
of this form of arti�cial viscosity (hyperviscosity) has been limited to structured grid computations.

Other forms of arti�cial viscosity have been applied to high-order unstructured grid calculations. Persson
and Peraire22 introduced a p-dependent arti�cial viscosity and demonstrated that higher-order representa-
tions and a piecewise-constant arti�cial viscosity can be combined to produce sub-cell shock resolution.
Barter and Darmofal3 proposed shock-capturing using a combination of higher-order PDE-based arti�cial
viscosity and enthalpy-preserving dissipation operator. Both the above methods were proposed for high-order
Discontinuous Galerkin (DG) discretizations.

Our earlier paper24 presented the extension the arti�cial viscosity approach proposed by Cook et al,6,7 and
modi�ed by Kawai et al14 to computations on unstructured quadrilateral grids using the Spectral Di�erence
scheme. The current work modi�es the arti�cial viscosity formulation to add arti�cial bulk coe�cient that
is scaled as the dilatation, and is 2nd order in smooth regions of 
ow. It is shown that this modi�cation
is necessary when the grids are non-cartesian. A number of test-cases in 2D are included to demonstrate
its applicability as well as limitations. The current implementation of arti�cial viscosity can also be easily
extended to 3D spectral di�erence scheme.

It is known that the addition of arti�cial viscosity causes the accuracy to drop to �rst order in the vicinity
of the shock. Thus the accuracy of shock computations can be improved only by re�ning the mesh in the
region of shocks. Adaptive mesh re�nement is one of the most commonly used tools in shock-capturing.
However, adaptive mesh re�nement in quadrilaterals leads to hanging nodes on the interfaces. To deal with
these non-conforming interfaces, we use a mortar-element method. The mortar-element method for a SD
setup was introduced by Kopriva.16

In section II, we look at the formulation of the Spectral Di�erence (SD) method on unstructured quadri-
lateral meshes. Section III discusses the details of the arti�cial viscosity method used. In section IV, we take
a look at the mortar-element method required to enable computations with local mesh-re�nement. In section
V, we look at the numerical results obtained from the application of the current arti�cial viscosity model to
2D test cases. A couple of cases where arti�cial viscosity has been combined with local mesh-re�nement are
also demonstrated. Section VI discusses the conclusions of our study and the direction of future e�orts.

II. Formulation of 2D Spectral Di�erence Scheme on quadrilateral meshes

The formulation of the equations for the 2D spectral di�erence scheme on quadrilateral meshes is similiar
to the formulation of Sun et al31 for unstructured hexahedral grids

Consider the unsteady compressible 2D Navier Stokes equations in conservative form

@Q

@t
+
@F

@x
+
@G

@y
= 0 (1)

where Q is the vector of conserved variables; F and G are the total 
uxes including both inviscid and viscous

ux vectors.

To achieve an e�cient implementation, all elements in the physical domain (x; y) are transformed into a
standard square element. 0 < � < 1, 0 < � < 1. The transformation can be written as: 

x

y

!
=

KX
i=1

Mi (�; �)

 
xi

yi

!
(2)

where K is the number of points used to de�ne the physical element, (xi; yi) are the cartesian coordinates at
those points, and Mi (�; �) are the shape functions. The metrics and the Jacobian of the transformation can
be computed for the standard element. The governing equations in the physical domain are then transfered
into the computational domain, and the transformed equations take the following form:

@ ~Q

@t
+
@ ~F

@�
+
@ ~G

@�
= 0 (3)
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where ~Q = jJ j �Q and  
~F
~G

!
= jJ j

 
�x �y

�x �y

! 
F

G

!
(4)

In the standard element, two sets of points are de�ned, namely the solution points and the 
ux points,
illustrated in �gure 1. In order to construct a degree (N � 1) polynomial in each coordinate direction,
solution at N points are required. The solution points in 1D are chosen to be the Chebyshev-Gauss points
de�ned by:

Xs =
1

2

�
1� cos

�
2s� 1

2N
� �
��

; s = 1; 2; � � � ; N: (5)

The 
ux points were selected to be Legendre-Gauss quadrature points plus the two end points 0 and 1,
as suggested by Huynh.9 Choosing P�1(�) = 0 and P0(�) = 1, we can determine the higher-degree Legendre
polynomials as

Pn(�) =
2n� 1

n
(2� � 1)Pn�1(�)� n� 1

n
Pn�2(�) (6)

The locations of these Legendre-Gauss quadrature points are the roots of equation Pn(�) = 0. They are
generally found to be more stable than the Gauss-Lobatto 
ux points and produce more accurate solutions
for high-order spectral di�erence schemes.

Using the solutions at N solution points, a degree (N � 1) polynomial can be built using the following
Lagrange basis de�ned as:

hi (X) =

NY
s=1;s6=i

�
X �Xs

Xi �Xs

�
(7)

Similiarly, using the 
uxes at (N + 1) 
ux points, a degree N polynomial can be built for the 
ux using
a similar Lagrange basis de�ned as:

li+1=2 (X) =

NY
s=0;s6=i

�
X �Xs+1=2

Xi+1=2 �Xs+1=2

�
(8)

The reconstructed solution for the conserved variables in the standard element is just the tensor products
of the two one-dimensional polynomials,

Q (�; �) =

NX
j=1

NX
i=1

~Qi;j
jJi;j j

hi (�) � hj (�) (9)

Similiarly, the reconstructed 
ux polynomials take the following form:

~F (�; �) =

NX
j=1

NX
i=0

~Fi+1=2;j � li+1=2 (�) � hj (�);

~G (�; �) =

NX
j=0

NX
i=1

~Gi;j+1=2 � hi (�) � lj+1=2 (�) (10)

The reconstructed 
uxes are only element-wise continuous, but discontinuous across cell interfaces. For
the inviscid 
ux, an approximate Riemann solver is employed to compute a common 
ux at interfaces to
ensure conservation amd stability. In our case, we have used the Rusanov solver26 or Scalar Di�usion12 as
the approximate Reimann solver to compute the interface 
uxes.

In summary, the algorithm to compute the inviscid 
ux derivatives consists of the following steps:

1. Given the conservative variables at the solution points, the conservative variables are computed at the

ux points

2. The inviscid 
uxes at the interior 
ux points are computed using the solutions computed at Step 1

3. The inviscid 
uxes at the element interfaces are computed using the Rusanov solver.
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4. The derivative of the 
uxes are computed at the solution points according to (equation) 
@ ~F

@�

!
i;j

=

NX
r=0

~Fr+1=2;j � l
0

r+1=2 (�i); (11)

 
@ ~G

@�

!
i;j

=

NX
r=0

~Gi;r+1=2 � l
0

r+1=2 (�j) (12)

The viscous 
ux is a function of both the conserved variables and their gradients. Therefore, the solution
gradients have to be calculated at the 
ux points. In our solver, the average approach described in reference31

is used to compute the viscous 
uxes. The procedure to compute the viscous 
uxes can be described as
follows.

1. Reconstruct Qf at the 
ux points from the Q at the solution points using equation 9.

2. At the element interfaces, �nd the average of left and right values of Qf ; Qf = 1
2 (QLf +QRf ). For interior


ux points, Qf = Qf . Appropriate boundary conditions are applied at 
ux points on boundary edges.

3. Evaluate rQ at the solution points from Qf using equation 11, where rQ =

(
Qx

Qy

)
and Qx =

@Q
@� �x + @Q

@� �x, etc.

4. Reconstruct rQ to the 
ux points, apply appropriate boundary conditions for boundary 
ux points,
and average them on the element interfaces as rQf = 1

2 (rQLf +rQRf )

5. Use Qf and rQf in order to compute viscous 
ux vectors at the 
ux points.

It should be mentioned that all explicit time-marching calculations for steady 
ows have been done using
a Jameson type four-stage Runge Kutta scheme (RK4), which is 2nd order accurate in time. For the unsteady
problems, we have used a 4th order accurate, strong-stability-preserving �ve-stage Runge-Kutta scheme29

to advance in time.

III. Arti�cial Viscosity

The application of spatially high-order schemes to compute 
ows with discontinuities such as shock or
contact-discontinuities, results in non-physical spurious oscillations that make the computation unstable.
One of the major concerns in simulating such 
ows is to ensure the removal of these non-physical oscillations
while avoiding damping of the resolved scales of turbulence.

The general formulation for arti�cial viscosity approach used here is similar to the ’Local arti�cial viscosity
and di�usivity’ approach of Kawai and Lele.14 This method is a modi�cation of the original high-wavenumber
biased arti�cial viscosity approach introduced by Cook and Cabot,7 extended to anisotropic and curvilinear
structured grids. The present arti�cial viscosity approach adds grid-dependent components to the viscosity
coe�cients, as proposed by Kawai and Lele,

� = �f + ��;

� = �f + ��;

� = �f + �� (13)

where � is the dynamic (shear) viscosity, � is the bulk viscosity, and � is the thermal conductivity. The
f and � subscripts denote the 
uid and arti�cial transport coe�cients respectively.

These arti�cial transport coe�cients are de�ned by:

�� = C�� j
3X
l=1

3X
m=1

�r+2
l

�
@�l
@xm

�r
@rS

@�rl
j

4 of 28

American Institute of Aeronautics and Astronautics



�� = C�� j
3X
l=1

3X
m=1

�r+2
l

�
@�l
@xm

�r
@r (r:u)

@�rl
j

�� = C�
�cs
T
j

3X
l=1

3X
m=1

�r+2
l

�
@�l
@xm

�r
@re

@�rl
j (14)

where C�, C� and C� are user-speci�ed constants. �l refers to the computational coordinates and xm
refer to the physical coordinates. �l is the physical grid spacing along a grid line in the �l direction. The
magnitude of the strain rate tensor (S), the dilatation (r:u) , and the internal energy (e) are the sensors
corresponding to arti�cial shear viscosity, bulk viscosity and conductivity respectively. Experiments using
high-order structured grid calculations suggest that r equals 4 or higher. For su�ciently high r, the high-
wavenumber bias (kr) results in damping of wavenumbers close to the unresolved wavenumbers.

It must be noted that such a formulation results in the addition of arti�cial viscosity terms that are
O(�r+2) in smooth regions of the 
ow and O(�) in the vicinity of the shock. This can in fact be compared
to the blended di�usion used by Jameson et al,12 in schemes like JST (Jameson-Schmidt-Turkel) and SLIP
(Symmetric Limited Positive), where the arti�cial dissipation is third order in smooth regions of the 
ow
and �rst order when there is a discontinuity.

Our earlier experiments with this form of viscosity suggested using r = 2, which essentially meant adding
a O(�4) term to the viscosity coe�cients in smooth of the 
ows. It also involved computing the Laplacian
of the sensor quantities. An advantage of such an arti�cial viscosity scheme is that it eliminates the need for
limiters/switches to turn o� the arti�cial bulk viscosity in regions of expansion and isentropic compression.
However, the use of r = 2 was found to have a detrimental e�ect when using curvilinear meshes, or fully
unstructured meshes. This could be attributed to the inaccurate calculation of the laplacian of sensor
quantities using the SD setup, when we have non-cartesian grids.

The current study proposes the use of r = 0 for arti�cial viscosity (AV) computations. With r=0 the
formulation reduces to

�� = C�� j �2S j
�� = C��S� j �2 (r:u) j (15)

where � is the grid spacing, and S� is a dilation-based switch. This form of arti�cial viscosity was found
to give much better results for 
ows with shocks on curvilinear and fully unstructured meshes. This is
clearly demonstrated in �gure 5. Figure 5(a) shows the computed arti�cial viscosity (with r=2) when a
shock is located at x=0.0, and the discontinuity is aligned with the grid lines. However in �gure 5(b), the
discontinuity is at x=0.5 and not aligned with the mesh lines. Here we see non-smooth AV contours and
non-physical transverse variations in AV. However, while using r=0 for the AV computations, we see that the
AV pro�le is much smoother, and there are no signi�cant transverse variations, as shown in �gure 5(c). The
superior performance of using r=0 is also seen when using a fully unstructured grid as shown in �gure 6. The
AV contours obtained with r=0 computation is found to be much smoother and gave much more accurate
results, as compared to the r=2 case (see �gures 7 and 8).

However reducing r to 0 comes with certain disadvantages. Firstly the arti�cial viscosity term becomes
2nd order O(�2) in smooth region, which is obviously less accurate than the 4th order term obtained with
r=2. Secondly, the formula for the arti�cial conductivity becomes invalid, and hence we have to �nd an
alternative for problems with contact discontinuities. Thirdly, there is now a need for a switch to turn o�
arti�cial viscosity in regions of smooth 
ow (which is explained in section III.B). The one advantage though
is that the computational cost for calculating the arti�cial viscosity becomes much lesser.

The overbar in equation 15 denotes a �lter to smooth the arti�cial transport coe�cients. In structured
grid calculations, a truncated Gaussian �lter is used.7 The �lter is also meant to eliminate cusps introduced
by the absolute value operator, which in turn ensures that arti�cial viscosities are positive. Here we have
designed a restriction-prolongation �lter suitable to the SD setup. There is also a need for a switch ( S� in
the formulation ), to ensure that AV is added only in the region of shocks, and is zero in smooth regions of
the 
ow.

The arti�cial viscosity/conductivity is calculated at each 
ux point. This is computationally extensive,
but it ensures smooth variation of arti�cial transport coe�cients. A smooth representation of arti�cial
viscosity within mesh elements is considered bene�cial as compared to the piecewise-constant arti�cial vis-
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cosity formulations, as element-to-element variations can lead to oscillations in state gradients and disparate
equilibrium shock-jump conditions in neighboring elements.

III.A. Filter for unstructured SD setup

The �lter plays an important role in arti�cial viscosity computations as it ensures smooth variation of
arti�cial transport coe�cients within the domain. For calculations using arti�cial viscosity on structured
grids, a truncated Gaussian �lter is used. A 7-point or 9-point stencil is generally used for this purpose.7 For
calculations in 2D, the Gaussian �lter is applied along each grid-line separately. However, for unstructured
grids it is not reasonable to implement the Gaussian �lter in its existing form, as obtaining a stencil for each
solution/
ux point can be tedious. The stencil would lie across cells, and the non-uniform spacing would
have to be taken into account, thus making it cumbersome to implement. This motivated the development
of a �lter that would be suited to the current SD setup.

In the current study we use an element-wise restriction-prolongation �lter (we will refer to it as the R-P
�lter). The concept is similar to the one used by Blackburn et al5 for spectral element �ltering. It involves
the projection of the quantity in concern to a lower-order basis (restriction), smoothing at this level, and
then extrapolation back to original basis (prolongation). The basic steps in implementation of the R-P �lter
can be described in 1-D as follows,

1. Consider a 4th order SD element. The arti�cial viscosity terms have been computed at the 4 solution
points (Figure 3(a)).

2. The function (represented by a cubic polynomial through the 4 solution points) is restricted to 2 solution
points (corresponding to 2nd order SD) (Figure 3(a)). The polynomial �t through the interpolated
function is reduced to linear. The function is now extrapolated to the 3 
ux points corresponding to
second order solution.

3. The function values are averaged at the interface for all element interfaces (Figure 3(c)). This is
equivalent to smoothing of the function at the lowest level. A quadratic polynomial is �tted through
this smoothed function through the 3 
ux points.

4. It is then extrapolated to the 
ux points at the highest level (4th order)(Figure 3(d)).

It was found that in 1-D, this �lter performs comparably to the Gaussian �lter applied on 
ux points.
Since the solution representation in multiple dimensions is just a tensor product of 1-D polynomials, the
extension of this �lter to 2-D and 3-D is straight-forward.

Figure 4 corresponds to the initial condition of the SOD shock tube case with a density discontinuity
at x=0.5. The arti�cial conductivity is non-zero in the vicinity of x=0.5. The �gure shows that prior to
�ltering the arti�cial conductivity �eld is noisy and may have oscillatory behavior. The �ltered coe�cient
is smoother and results in a better solution. Also, smoothing e�ect of the present R-P �lter compares quite
well with the Gaussian �lter, even though the peaks do not match.

III.B. Switch in arti�cial viscosity formulation

The switch used here is one proposed by Bhagatwala and Lele4 to restrict the addition of AV only to regions
of strong shocks. The formulation of the switch is as shown

Sbeta = 0:5 � (1� tanh(C1 + C2 � �

c
r:u)) (16)

The constants C1 and C2 were chosen to be 2 and 20 respectively for the present cases. This switch is
designed so as to add AV only in regions of strong negative dilatation, i.e, corresponding to shocks.

IV. Mortar element method for mesh re�nement

Local mesh re�nement for quadrilateral meshes results in hanging nodes on cell faces (�gure 2(a)). As a
result, the 
ux points on the interface do not coincide with each other and the approximate Reimann solver
cannot be applied directly. The treatment of such sub-domain re�nement using mortar elements had been
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illustrated by Kopriva.16 The current work uses a similar mortar method to deal with the non-conforming
meshes obtained from local mesh re�nement.

When a sub-domain is re�ned as shown in �gure 2(b), two mortars are introduced corresponding to each
of the short faces. This ensures that the out
ow condition is satis�ed. The out
ow condition requires that
the projection of face values from sub-domains 
2 and 
3 onto a mortar, and the subsequent projection
back onto the faces returns the original polynomial functions.

We can de�ne the solution approximations along the faces as

U1(�) =

N1X
j=1

U1
j h

1
j (�) 2 PN1�1

U2(�) =

N2X
j=1

U2
j h

2
j (�) 2 PN2�1 (17)

U3(�) =

N3X
j=1

U3
j h

3
j (�) 2 PN3�1

where � 2 [0; 1] is the local sub-domain coordinate. We also de�ne four mortar functions

�1;(L;R)(z) =

J1X
j=1

�
1;(L;R)
j h�1

j (z) 2 PJ1�1

�2;(L;R)(z) =

J2X
j=1

�
2;(L;R)
j h�2

j (z) 2 PJ2�1 (18)

which are functions of the local mortar coordinate z 2 [0; 1]. The superscripts L and R correspond to values
on left and right of the mortar. We also de�ne variables ok and sk to be the o�set and the scale of a mortar
with respect to the sub-domain 
k that contributes to it. Thus for z 2 [0; 1], �k = ok + skz.

The orders of the mortar polynomials must be chosen su�ciently high so that the out
ow condition is
satis�ed. This means the mortar must be at least as large as the largest sub-domain order of all contributing
sub-domains. Thus, J1=max(N1; N2) and J2=max(N1; N3). It must be mentioned that in the present
study, the polynomial order in all the sub-domains are the same.

The computation of 
uxes on the sub-domain faces using mortar elements involves three main steps -

1. Project the solution from sub-domain to mortar

2. Compute the 
uxes on the mortar

3. Project the 
ux from mortar back to sub-domain

IV.A. Sub-domain �! Mortar Projections

To compute the sub-domain to mortar projection matrices, we use an un-weighted L2 projection. Thus, we
seek polynomials on the two mortars that best approximate the polynomial along the contributing face. For
each mortar � and each subdomain contributor 
 we require,Z 1

0

(�(z)� U(�))h�
m(z)dz = 0; m = 1; 2; � � � ; J (19)

Then the vector of the solution values along the mortar can be computed by

� = P
!�U = M�1SU (20)

where,

Smj =

Z 1

0

h�
m(z)h


j (ok + skz)dz; m = 1; � � � ;M; j = 1; � � � ; J (21)

Mmj =

Z 1

0

h�
m(z)h�

j (z)dz; m; j = 1; � � � ; J (22)
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IV.B. Flux calculation on the mortar elements

The 
uxes on the mortar are computed as earlier because the 
ux points on either side of the mortar coincide
with each other. An approximate Reimann solver is used to compute the 
uxes on the mortar. For viscous

ow computations, the solution values are averaged on the mortar. We will denote the 
uxes on the mortar
by the variable 	.

IV.C. Mortar �! Sub-domain projection

The computed 
uxes on the mortar elements have to be projected back to the sub-domain faces. The
current study involves computations where the polynomial order is same in all the cells. This means that
the polynomial order on the mortar matches those on the short faces. Thus it is clear that the projection
matrix for projection from mortar to the short faces is just the identity matrix, i.e, the computed 
uxes are
just copied from the mortar to the short faces. However, the projection from the mortars to the long face is
a little more complicated. The piecewise polynomial that represents the 
uxes along the mortars, possibly
discontinuous, must be used to compute the continuous polynomial along the face. As before, we seek the
best polynomial on the face that approximates the mortar solutions in the least squares sense. To obtain
this least squares projection, we seek 
ux that satis�es.

N�X
k=1

Z ok+sk

ok
(F 1(�)�	�k

(�))h1
m(�)d� = 0 (23)

The vector of values on the long sub-domain face can be computed by the projection

F 1 =

N�X
k=1

P k	�k

; P k = M�1Sk (24)

where the matrices M and Sk are de�ned as

Mmj =

Z 1

0

h1
m(�)h1

j (�)d�; m; j = 1; � � � ; N1

Skmj = sk
Z 1

0

h1
m(ok + skz)h�k

j (z)dz; m = 1; � � � ; N1; j = 1; � � � ; Jk (25)

V. Results

It must be mentioned that the Spectral Di�erence scheme has been implemented in 1D, 2D and 3D
solvers which have been tested, validated and found to exhibit formal order accuracy.17,23 In the �rst part
of this section, the results obtained from the application of AV with r=2 to problems with shocks in 1D, are
discussed. Secondly, 2-D cases using r=0 are demonstrated, namely the supersonic 
ow past bump, Mach 3

ow past cylinder, and transonic 
ow past an airfoil.

V.A. SOD Shock-tube problem

The �rst 1-D test case is the shock-tube problem introduced by SOD.28 The initial left and right-side
conditions are �l = 1:0, ul = 0:0 and pl = 1:0 for x � 0:5, and �r = 0:125, ur = 0:0 and pr = 0:1 for x > 0:5.
Simulations are performed on a uniformly spaced grid in the region 0 � x � 1. Arti�cial bulk viscosity and
conductivity are used. The coe�cients used were C� = 0:06 and C� = 0:01, along with r=2 (in equation
14), corresponding to second order derivatives of the sensor quantities. C� was set to zero.

Figure 9 (a),(b) and 10 (a) shows the comparison between density, velocity and pressure for the
exact solution and 4th order SD computation with 100 cells at time � = 0:15. The shock and the contact
discontinuity are captured well without signi�cant spurious oscillations, and show reasonable agreement with
the exact solution. Figure 10 (b) shows the variation of density pro�le with grid-re�nement. It is observed
that as the grid is re�ned, the solution converges closer to the exact solution. It should also be noted that
for all grid spacings, the shock is spread over two cells and the contact discontinuity is spread over 3 cells.
Figure 11 (a) shows the arti�cial bulk viscosity coe�cient. It is seen to be maximum in the vicinity of the
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shock. Figure 11 (b) shows the arti�cial conductivity. There are two peaks corresponding to the shock and
the contact discontinuity. In the SOD problem, arti�cial conductivity plays an important role because the
arti�cial viscosity sensor does not sense the contact discontinuity.

The results described above were obtained using r = 2 in the arti�cial transport coe�cient calculations.
Computations were also conducted using r = 4, but the results obtained were very similar to those obtained
for r = 2. For r = 4, C� = 0:001 and C� = 0:0001 were used. For both 1-D cases it was observed that r = 2
and r = 4 gave very similar results. For all cases considered in this study, r = 2 has been used.

V.B. Shu-Osher problem

The second 1-D test case is the shock-entropy wave interaction introduced by Shu and Osher.27 Because the
entropy waves are sensitive to the numerical dissipation, excessive numerical dissipation damps the entropy
waves. Initial left and right side conditions are given by: �l = 3:857143, ul = 2:629369 and pl = 10:33333
for x < �4, and �r = 1 + 0:2 � sin(5x), ur = 0:0 and pr = 1:0 for x � �4. Simulations are performed on a
uniformly spaced grid in the region �5 � x � 5. The coe�cients used are the same as for the SOD case.

Figure 12(a) shows the comparison between the reference solution and 4th order SD simulations with
100, 200 and 400 cells. The reference solution is obtained using 5th order WENO on 2000 grid points. The
density pro�le using 400 cells shows excellent agreement with the reference solution. Figure 12(b) shows a
close up of the density plot in the region of the entropy waves. It is found that solution with 200 cells also
shows reasonable agreement with reference solution. Figures 13(a) and (b) show the velocity and pressure
pro�les behind the shock.

V.C. Inviscid Supersonic 
ow past bump

This test-case consists of inviscid supersonic 
ow in a channel with a 4% thick circular bump on the bottom.
The length of the channel is 3 units and its height 1 unit. The inlet Mach number is 1:4. This test case
has been used by Ripley et al.25 in computations using adaptive unstructured mesh re�nement. Third and
fourth order SD computations were conducted on two meshes. The coarse computational mesh has 1200
elements, and 20 nodes to resolve the bump, as depicted in �gure 14. The �ne mesh has 4800 cells, and has
twice the number of nodes in the x and y directions. The surface of the bump is represented as a quadratic
and cubic boundary for third and fourth order calculations respectively.

The pressure contours obtained using the 3rd order SD scheme with arti�cial viscosity on the coarse mesh
is shown in �gure 15, and compares well with those obtained using adaptive unstructured mesh re�nement.25

The pressure contours obtained for the �ne mesh are shown in �gure 16. It is observed that on the �ner
mesh, the shock pro�les are sharper, and smoother contours are obtained. Figure 17 shows the drop in global
residual, indicating a stable, convergent solution for both 3rd and 4th order cases. It must be mentioned that
in the absence of arti�cial viscosity, the solution develops spurious oscillations and the simulation becomes
unstable.

Figure 18 gives a plot of the arti�cial viscosity for third order computation on the coarse mesh. Figure 19
shows the variation of arti�cial bulk viscosity on the �ne mesh. We see that arti�cial viscosity is added only
in regions with sharp gradients of dilatation, corresponding to shocks. Figure 20 shows the pressure contours
obtained using 4th order SD. It is observed that the shock pro�les are slightly sharper than in the case of
the third order computation. Also, 4th order on �ner mesh gives sharper shock resolution and more accurate
contours in comparison to the coarse mesh (see Figure 21).

The above test-cases were computed using r=0 and C� = 0:3. Also, the arti�cial shear viscosity and
arti�cial conductivity were set to zero. This is because there are no large shear gradients, and no contact
discontinuities, and hence arti�cial bulk viscosity is su�cient to stabilize the calculations.

V.D. Inviscid Supersonic 
ow past circular cylinder

The next test-case is the M1 = 3:0 
ow past a circular cylinder. The computational grid with 1200 cells is
shown in �gure 24(a). Supersonic in
ow and out
ow BC’s are used. The cylinder wall is treated as inviscid
curved wall. In the arti�cial viscosity model, r=0 was used with C� = 1:0 for 3rd order computation and
C� = 0:5 for 4th order computation. Pressure and arti�cial bulk viscosity for the 3rd order simulation and
4th order simulation are shown in �gure 24 and �gure 25 respectively. It is observed that the shock pro�le
is thinner for the 4th order case as compared to the 3rd order case.
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V.E. Inviscid Transonic 
ow past airfoil

This test-case involves the transonic 
ow past a NACA0012 airfoil. The freestream mach number is 0.8
and the airfoil is at an angle of attack of 1.25 degrees. Freestream conditions are prescribed at the outer
boundaries. On the airfoil surface, inviscid wall boundary condition is used. The curved airfoil surface is
represented by cubic splines. A weak shock is formed on the upper surface, and an even weaker shock is
formed on the lower surface. The current method is able to capture the shocks accurately for both 3rd and
4th order computations. Computations are done on a 80� 16 mesh and on a 160� 32 mesh.

Figures 26 and 27 show the pressure and AV contours for the 3rd order computations on the coarse and
�ne mesh. Figures 28 and 29 show the pressure and AV contours for the 4th order computations on the
coarse and �ne mesh. A look at the AV plot clearly indicates that AV is added only in the region of the
shocks. The switch ensures that AV is zero even when dilatation is non-zero, such as in the region near
the leading edge. The Cp plots obtained are compared with the results from FLO-82 on a 320x64 grid, and
are shown in �gure 30. The Cp plots obtained shows good comparison with those obtained using FLO-82
with a �ner (320x64) grid. It is observed that the shock pro�le obtained with FLO-82 is much sharper.
This is expected as the SD computations were done on coarser grids (even though the number of DOF’s are
comparable), and the current AV model tends to smear the shock over one to two cells.

V.F. Adaptive mesh-re�nement for shock capturing

The mortar element method described above has been used to enable adaptive mesh-re�nement in compu-
tations with shocks. The criterion for mesh re�nement used here is non-zero arti�cial viscosity. This is a
su�cient criterion since we are looking to re�ne the mesh only in the region of shocks. Firstly, adaptive
mesh re�nement is applied to the M1 = 3:0 
ow past cylinder case. Two levels of mesh-re�nement are used.
Figure 31 shows the mesh after successive levels of mesh re�nement. The pressure contours and AV contours
obtained after local mesh-re�nement are shown in �gure 32 and �gure 33 respectively. It is observed that as
the mesh is re�ned, the shock structures become thinner, the amount of arti�cial viscosity added is lesser,
and the pressure contours become more accurate.

Adaptive mesh re�nement is also applied to the supersonic bump case described earlier. Once again the
criterion for mesh re�nement is non-zero AV. Figures 34 and 35 show the computational mesh after one
and two levels of re�nement respectively. Figures 36- 38 show the pressure contours obtained for successive
levels of mesh re�nement, for a 4th order computation. Figures 39- 41 show the arti�cial viscosity contours
obtained for the corresponding cases.

VI. Conclusions and Future work

A dilatation-sensor based arti�cial viscosity scheme has been implemented in order to enable high-order
computation of 
ows with discontinuities. The application of arti�cial viscosity with the Spectral Di�erence
method for the computation of 
ows with shocks is demonstrated with test cases in 1D and 2D. Promising
results have been obtained for these cases, with the method being able to produce a stable solution with
sharp resolution of shocks, and no signi�cant spurious oscillations. An element-based restriction-prolongation
�lter has been developed. The arti�cial viscosity has been combined with adaptive mesh re�nement to get
improved results. The mortar element method is used to enable adaptive re�nement of the quad meshes.
Further e�orts will be directed towards the testing and validation of the proposed method, using a variety
of shock-related problems in 2D and 3D. E�orts will also be directed towards the study of the e�ect of using
irregular meshes, and the e�ect of adding arti�cial viscosity on the global accuracy of the Spectral Di�erence
scheme. The scheme will then be used to tackle problems with shocks and shock-turbulence interaction in
three dimensions.
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Figure 1. Position of solution (circles) and 
ux (squares) points on standard square element for 3rd order SD

(a) (b)

Figure 2. (a) Hanging node generated from mesh re�nement (b) Mortar element for each child face on interface

Figure 3. Steps involved in implementation of �lter for 4th order SD
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Figure 4. E�ect of �ltering on the smoothness of arti�cial viscosity/conductivity coe�cients

Figure 5. Arti�cial viscosity contours using using (a) r=2 when discontinuity is aligned with grid lines (b) r=2 when
discontinuity is not aligned with grid-lines (c) r=0 when discontinuity is not aligned with grid-lines
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Figure 6. Unstructured grid used for inviscid supersonic 
ow past bump test-case

Figure 7. Arti�cial viscosity contours using r=2 on unstructured supersonic bump mesh

Figure 8. Arti�cial viscosity contours using r=0 on unstructured supersonic bump mesh
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(a) (b)
Figure 9. SOD shock tube case, black line - exact solution, red line - 4th order SD with 100 cells at � = 0:15 (a) density
vs. x ; (b) velocity vs. x.

(a) (b)

Figure 10. SOD shock tube case, (c) pressure vs. x ; (d) e�ect of grid-re�nement on density (Nx=number of cells).
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(a) (b)

Figure 11. SOD shock tube case (a) Arti�cial bulk viscosity; (b) Arti�cial conductivity at � = 0:15

(a) (b)

Figure 12. Shu-Osher Shock turbulence interaction. Density is presented at � = 1:8.
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(a) (b)

Figure 13. Shu-Osher Shock turbulence interaction. Plot of (a)Velocity, (b)Pressure, at � = 1:8.

Figure 14. Computational grid for supersonic 
ow past bump (thickness=4%)

Figure 15. Non-dimensional pressure contours obtained using arti�cial viscosity with 3rd order SD on the 60�20 mesh.
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Figure 16. Non-dimensional pressure contours obtained using arti�cial viscosity with 3rd order SD on the 120 � 40
mesh.

Figure 17. Convergence plot for supersonic bump 
ow case 3rd and 4th order SD with arti�cial viscosity

18 of 28

American Institute of Aeronautics and Astronautics



Figure 18. Plot of the arti�cial bulk viscosity for 3rd order SD computation on 60� 20 mesh

Figure 19. Plot of the arti�cial bulk viscosity for 3rd order SD computation on 120� 40 mesh

Figure 20. Non-dimensional pressure contours obtained using arti�cial viscosity with 4th order SD on the 60�20 mesh.
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Figure 21. Non-dimensional pressure contours obtained using arti�cial viscosity with 4th order SD on the 120 � 40
mesh.

Figure 22. Plot of the arti�cial bulk viscosity for 4th order SD computation on 60� 20 mesh

Figure 23. Plot of the arti�cial bulk viscosity for 4th order SD computation on 120� 40 mesh
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(a) (b) (c)
Figure 24. 3rd order computation of M1 = 3:0 
ow past cylinder (a)40x30 mesh (b)Non-dimensional pressure contours
(c) Arti�cial bulk viscosity contours

(a) (b) (c)
Figure 25. 4th order computation of M1 = 3:0 
ow past cylinder (a)40x30 mesh (b)Non-dimensional pressure contours
(c) Arti�cial bulk viscosity contours
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(a) (b)
Figure 26. Transonic 
ow past NACA0012 airfoil with M1=0.8 and � = 1:25 degrees. 3rd order computation on coarse
(80x16) mesh. (a)Pressure contours (b)Arti�cial bulk viscosity contours

(a) (b)
Figure 27. Transonic 
ow past NACA0012 airfoil with M1=0.8 and � = 1:25 degrees. 3rd order computation on �ne
(160x32) mesh.(a)Pressure contours (b)Arti�cial bulk viscosity contours
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(a) (b)
Figure 28. Transonic 
ow past NACA0012 airfoil with M1=0.8 and � = 1:25 degrees. 4th order computation on coarse
(80x16) mesh. (a)Pressure contours (b)Arti�cial bulk viscosity contours

(a) (b)
Figure 29. Transonic 
ow past NACA0012 airfoil with M1=0.8 and � = 1:25 degrees. 4th order computation on �ne
(160x32) mesh.(a)Pressure contours (b)Arti�cial bulk viscosity contours
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(a) (b)
Figure 30. Transonic 
ow past NACA0012 airfoil with M1=0.8 and � = 1:25 degrees. Comparison of Cp plots obtained
using present method with those from FLO82 on a 320x64 mesh.(a)3rd order computation (b)4th order computation

(a) (b) (c)
Figure 31. Successive levels of mesh re�nement for M1 = 3:0 
ow past cylinder test-case (a)40x30 initial mesh (b)One
level mesh re�nement (c) Two levels of mesh re�nement
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(a) (b) (c)
Figure 32. Pressure contours for 3rd order computation of M1 = 3:0 
ow past cylinder (a)40x30 initial mesh (b)One
level mesh re�nement (c) Two levels of mesh re�nement

(a) (b) (c)
Figure 33. Arti�cial bulk viscosity contours for 3rd order computation of M1 = 3:0 
ow past cylinder (a)40x30 initial
mesh (b)One level mesh re�nement (c) Two levels of mesh re�nement
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Figure 34. Computational grid for supersonic 
ow past bump after one level mesh re�nement

Figure 35. Computational grid for supersonic 
ow past bump after two levels mesh re�nement
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Figure 36. Non-dimensional pressure contours obtained using 4th order SD on initial mesh.

Figure 37. Non-dimensional pressure contours obtained after one level mesh re�nement.

Figure 38. Non-dimensional pressure contours obtained after 2 levels mesh re�nement.
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Figure 39. Arti�cial bulk viscosity contours obtained using 4th order SD on initial mesh.

Figure 40. Arti�cial bulk viscosity contours obtained after one level mesh re�nement.

Figure 41. Arti�cial bulk viscosity contours obtained after 2 levels mesh re�nement.
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