
Creation of a Style Independent Intelligent Autonomous Citation Indexer
to Support Academic Research

Eric G. Berkowitz, Mohamed Reda Elkhadiri

Department of Computer Science
Roosevelt University

1400 North Roosevelt Boulevard
Schaumburg, IL 60173

Abstract
This paper describes the current state of RUgle, a system for
classifying and indexing papers made available on the
World Wide Web, in a domain-independent and universal
manner. By building RUgle with the most relaxed
restrictions possible on the formatting of the documents it
can process, we hope to create a system that can combine
the best features of currently available closed library
searches that are designed to facilitate academic research
with the inclusive nature of general purpose search engines
that continually crawl the web and add documents to their
indexed database.

Introduction
RUgle is a system composed of three major

components, a Web scanner, a document analyzer and
cross-referencing system. Using the system it is possible
to perform searches of academic and other research papers
extracted from the World Wide Web without needing to
sort through the seemingly endless number of loosely
related or valueless Web documents returned by traditional
searches.

Background
Current search engines for the World Wide Web fall into
one of two categories. The first is the general purpose
search engine examples of which are Google.com,
Yahoo.com and AltaVista.com. The engines attempt to
index the entire expanse of the World Wide Web using the
words and phrases in the document as tokens with which to
build and index. Using these search engines, one can
search the largest collection of documents from the Web.
Unfortunately, this abundance of documents leads to the
retrieval of many documents that may be of little worth.
The lack of focus on quality also creates collection that
include a large number of papers but may not include many
scientific papers (Lawrence, Bollacker and Giles 1999).
Additionally, the use of the entire collection of words, in
the document as tokens for the index can cause a search to
retrieve many irrelevant documents, particularly when the
words in the search term are quite common (Bradshaw
Sheinkman and Hammond 2000). For example, if one is
seeking information on the content of a will one might use
the word “will” as a search term. Since “will” has other
meanings as a verb and a proper noun, the common search

engines will return a plethora of irrelevant documents.
One might then be tempted to use the search term “will and
testament.” This phrase might however lead to the
exclusion of many relevant documents since the word
“testament” does not always accompany the word “will,”
even in the correct context. Another problem is that if one
finds a relevant document in the list returned by the search
engine, having this document does not always lead to
additional relevant documents. Even if the document in
question has hyperlinks to other documents, the reason one
might link from his document to others on the Web are
many and varied and not always based on any form of
relevance. Since the links in a document on the Web are
placed there for the specific purpose of facilitating
navigation around the WWW they incorporate the
document authors’ ideas, both conscious and subconscious
regarding other documents a reader should view. This
brings up three major shortcomings of navigating the Web
via links in existing documents.
1. The link’s sole purpose is to facilitate the navigation

from one document to another and therefore
incorporate the ideas of the designer, both conscious
and subconscious, regarding other documents a user
should view.

2. Designers of documents usually possess a very poor
knowledge of what is available outside their own
collection of documents or their own site and
therefore, given the purposeful nature of links on the
WWW, those links that a designer provides to other
sites are often few and inadequate.

3. Related documents are often not linked at all since the
designer of one document may not be aware of the
existence of other relevant documents, or may simply
not care to provide links to the other documents, or
may even want to impede (or at least not facilitate)
navigation to those other documents.

Thus attempting to navigate the WWW from within a
single site fits the old saying of not being able to see the
forest for the trees; one often cannot move away from one
location even if a bird’s-eye view would allow one to see
that useful information is very nearby.

Library collections such as CiteSeer attempt to resolve
many of the issues listed above. Document are only
included in the collection to be searched if they meet some
criteria of relevance. The content of the document is not
used as a single collection of equally weighted tokens and

one can currently only search for terms in the authors
names, paper title, or body. Thus one is more likely to
receive a list of valuable, relevant documents from a
search. Still these mechanisms suffer from shortcomings
of their own. They rely on closed collections of
documents. Addition of a document to the collection
usually requires manual data entry or manual data
correction making the process quite slow (Lawrence and
Giles 1999(3)). For example, the DBLP engine relies on
manual data entry. In order to facilitate the indexing
mechanisms used, the documents are usually restricted to a
single domain or a collection of domains. For example,
CiteSeer uses a list of URLs known to contain papers and
actively attempts to download papers from these sites with
secondary reliance on active searching. It is, however,
restricted to a limited set of domains and still remains quite
dependent on manual data entry. Authors are encouraged
to log on to the site and to manual correct the entries for
their papers. Such search engines also usually require
documents to be submitted or at least the submission of a
top level URL to be searched. Manual filtering of the
documents or top level URLs is required to guarantee the
domain restricted nature of the collections. They do not
find documents on their own. Thus, while they may aid in
finding only quality, relevant documents when searching
for information in an included domain, they exclude a
wealth of other quality, relevant documents that have not
been added to their collection.

RUgle is the first product of our research into producing
a system that combines the best features of both types of
searches while minimizing the effect of their shortcomings.

Design
RUgle’s currently operates using five computer systems

running Solaris, Linux, and Windows as shown in Figure
1. The Solaris server, called Epsilon, is the maindatabase
server and contains the cross reference database with
information extracted from the papers along with tracking
information used by the crawler. A Linux computer,
named Xeon, serves as a backup database server. Another
Linux computer, called RUgle, runs the code for the
crawler and document analysis interacting directly with the

database server and the WWW. The windows machine,
called Winbox runs code required for analysis of
documents in Microsoft proprietary formats and operates
under control of the document analyzer running on RUgle.
The second Solaris server, named Lambda, runs the user
interface code described later in this paper. From a logical
perspective, RUgle’s main engine is a single loop that
works as follows:

• A single unprocessed citation is retrieved from the
database.

• The citation is sent to the main crawler that
attempts to download the referenced document
using traditional search engines.

• The downloaded document is analyzed and:
o the title and authors’ names are entered

into the database.
o the bibliography entries are entered into

the database and stored for later
processing by the system.

• The next bibliography entry is retrieved and the
loop repeats.

This logical flow is shown in Figure 2.

Next Citation?

Crawler

Retrieve the next
unprocessed

citation from the
Database for

analysis.

Retrieve citation
document from the

WEB using
traditional search

engines.

Unprocessed
Citation

Document
Analyser

Document
Citations

Title,
Authors,
URL, and
Content

Store Extracted
Information for

later
Processing

Figure 2

Database
Postgresql/

tsearch2

EpsilonXeon

Rugle
World Wide Web

Lambda

Winbox

User

User

User

Figure 1

Active Acquisition of Documents on the Web
In order not to be restricted to a small collection of
submitted documents, RUgle must actively scour the Web
for documents to add to its collection. Thus RUgle
employs a crawler or Web spider. RUgle’s crawler is
however very different from traditional crawlers in the
manner in which it moves from document to document on
the Web. It does not use hyper-text links to do so. As
described above, these links do not always represent any
objective form of relationship between documents.
Instead, RUgle analyzes the content of the document
currently being processed. RUgle extracts from the
document the name of the author, the title and the
bibliography. RUgle is designed with the assumption that
a document of value will contain citations to other works.
After a document is analyzed, RUgle iterates over the
bibliography and extracts the components of each entry,
particularly the authors of the cited work and its title. It
then uses information provided by traditional search
engines to try to locate the cited work on the Web. Thus,
rather than relying on hyperlinks or a set of common
tokens, works are considered related because one cites the
other. Since a bibliography lists cited works, it is far less
susceptible to purposeful manipulation than hyperlinks
placed to facilitate Web navigation. Papers that are found
are then downloaded from the Web. Their title, author and
bibliographies are extracted and then queued for searching
in a breadth first manner. The issues encountered in
developing a crawler of this kind are in actually extracting
the critical information from a document. It is for this
reason that the traditional library collections require a full
set of BibTex entries to be submitted with each paper to be
indexed that incorporate information on the paper itself and
the complete bibliography.

Formatting Languages
In order to process the documents and find the elements
RUgle needs to index them and continue scanning the
Web, RUgle needs to be able to analyze the document
content. Given the almost ubiquitous nature of Adobe’s
Portable Document Format (PDF) on the Web we began by
processing this type of formatting. Rather than parsing the
formatting tags in the PDF, it was decided to use available
tools designed to render a PDF document as ASCII text
while maintaining as close an approximation as possible to
the documents original layout. RUgle’s first step in
processing a document is to convert it to text. After
converting the document to text RUgle begins to analyze
its content.
 While the PDF format is very common on the Web, we
found it to be far more common in the sciences, slightly
less common in the social sciences, and even less so in the
humanities. If RUgle were not to be skewed against
indexing papers in the humanities and toward the hard
sciences it needed to be able to process documents as they
are posted on the Web by researchers in those fields. Our
investigation revealed that it would be crucial for RUgle to

process documents in Microsoft Word (doc) format for it
to have a more universal indexing ability. Doc format is
far more complex than PDF, and, unlike PDF, it is not an
open standard. Thus there are few tools to process
documents in this format and most of the available ones
have shortcomings that preclude them from processing
even large subsets of documents in this format, particularly
documents with embedded graphics. Even if such a tool
were available, it would require constructing a whole new
interface to the parsing routines and complicate system
enhancements. It was decided therefore to convert doc
format documents to PDF as a preprocessing stage and
then let the PDF processing engine take over. The most
reliable tool for the task proved to be Microsoft Word
itself. RUgle searches the Web for documents in both PDF
format and doc format. Documents in doc format are
automatically passed through Microsoft Word and
rerendered as PDF documents for further processing.

Columns
The first hurdle to processing documents originally
designed for publication in journals is that many of them
tend to be formatted as two columns. Linear processing of
such documents yields collections of sentence fragments
and renders the document useless. This because, while
visually the document is in two columns and a human
reader easily identifies columns on a page and treats them
as separate pages when reading, the columns have no
manifestation in the actual stored document which is stored
as a collection of pages with linear text from left to right
across lines of the full page. RUgle must determine if a
document is indeed formatted in columns, and, if it is,
recreate the document in one column with linear text.
 RUgle does this by scanning a page and searching for
word gaps (spaces) that appear in the same place in the text
in all lines of the page. RUgle is built on the assumption
that the probability of such a gap being a random
occurrence is very low. If RUgle finds such a gap it treats
it as a column break and rerenders the document wrapping
the text from the left margin to the column break for the
left column and the end of the column break to the right
margin for the right column. This analysis is particularly
difficult on pages that include bibliography entries since
such entries often incorporate various amounts of spacing
and indentation in the bibliography itself.

Analyzing Document Content
Since RUgle is designed not to require documents to be
submitted but to locate them independently and also not to
require manual data entry, RUgle needs to be able to find
the data it needs to process the document on its own. Were
we to restrict RUgle to a limited domain, one would think
this task would be somewhat simple since, for example,
papers on computer science are usually formatted using the
style dictated by IEEE or the ACM. This domain specific
information proved however, to be of limited values since

RUgle is intended to be completely generalized and index
documents in all fields.
 Our first efforts were to build parsers for the most
common document formatting styles in use including APA,
PAR, Chicago style, AMA, ACM, IEEE, MLA, and
AAAI. Several such parsers were written and incorporated
into early analysis subsystems for RUgle.
 Quite surprisingly, we discovered, that even for may
documents claiming to be formatted according to the
dictates of a particular style, they do not actually follow all
the rules of that style (Lawrence and Giles 1999(2)).
While aesthetically, the papers tend to adhere closely
enough to the style dictates that they look good when
grouped together with other documents that also claim to
follow the given style in a single publication, they actually
deviate from the fine details to a sufficient degree to
significantly complicate computer analysis. Distinctions
that are lost to the human eye are quite apparent to any
scanning and parsing algorithm. Thus, though we had
created a large variety of parsers we were having difficulty
analyzing even the types of documents for which they were
specifically written. We learned that to function as
intended, RUgle needs to not only process documents that
adhere to a wide variety of formatting styles, such as APA,
Chicago style, AMA, ACM, IEEE, MLA, and AAAI., but
also documents that only loosely follow one of these styles,
and documents that do not follow any specific style at all.
Since writing an entire collection of parsers, even if a
doable task, proved to be of limited value, we attempted to
determine what could be assumed about the way people
format documents.
 We discovered that the majority of bibliographies fall
into one of two categories: those that place the date at the
end of the citation (an end date entry or EDE) and those
that place the date in the middle of the citation (a mid-date
entry or MDE). In the latter case, the date, possibly along
with some collection of punctuation, usually separates the
authors’ names, that precede it, from the title of the
publication that follows it. In the former case it is usually
punctuation alone, and sometimes little more that a single
space, that separates the authors’ names from the title and
they usually are in that order in the citation.
 Thus we built a style independent, three-tiered system
for processing bibliographies. The lowest tier is made of
two parsers, one that processes EDEs and one that
processes MDEs. Above that is a tier that attempts to
unify stylistic elements of each type of entry so that the
parser can successfully analyze it. At this level RUgle
attempts to determine what form of punctuation the author
used, such as interspersing commas or periods between
bibliography entries and enclosing the date in parentheses.
Once this information is determined, the entry is modified
to conform more closely to a single style understood by the
parser. At the top tier, RUgle attempts to determine

whether the entries should be sent to the MDE unifier and
parser or the EDE unifier and parser.
 The other issue is to find the title and author of the
document being analyzed itself. For this we integrated into
RUgle the algorithms originally developed for an
automated literature review system we had been
developing. The algorithm determines the title by
assuming the approximate location of the title in the
document and then removing all the text that is not the title
thereby leaving only the title. RUgle employs a two tiered
system for extracting the title. The first tier attempts to
determine where the title and authors’ names should appear
in the document. The second tier attempts to discard all
other information from that section of the document and to
determine from the remaining text, the title of the
document and the names of its authors.

User Interface
Conventional search engines maintain complete full text
indexes (FTIs) of the documents in their database. This
allows a user to search for a document using any word or
phrase that appears in the document. The document is
treated as a single string of tokens with equal weight. The
weight associated with any given token in the document is
increased based on the number of times it appears in the
document. Thus words in parenthetical phrases are given
the same weight in indexing as words from a title, section
heading or other presumably more important sections of a
document that are intended by the author to summarize and
typify the content of the document. RUgle maintains a full
text index of only the title and authors’ names. While it is
the intention to maintain an FTI of only the title, the
current algorithm confuses the title and author to a
sufficient degree that it was decided to index both entries
as a single unit. The result is that a search for a term such
as “executive compensation” results in a list of documents
that:
1. meet RUgle’s criteria for quality. They have a stated

title, author and a bibliography.
2. contain the words in the search term in the title of the

document.
That is, by the criteria used to design RUgle, a quality
document that the author believed addresses the terms in
the search. The results page of a RUgle search is shown in
Figure 3.

When a user select a title from the list on the results page,
the user is presented with the following information:
1. The title and author of the paper.
2. A list of all of the citations in the bibliography of the

paper.
3. A list of all cited papers that also exist in RUgle’s

database.
4. An image of the first page of the selected paper.

A user can decide to:
• return to the list of titles.
• download the paper.
• select a new paper from list of cited papers that

are in RUgle’s database and view it. The
document display page is shown in Figure 4.

Analysis of Current Performance
RUgles currently has downloaded approximately 700,000
documents from the WWW. To determine how well the
current algorithms are performing their tasks, we selected a

random sample of 200 papers and reviewed the title and
author names that RUgle had determined for them. The
results are shown in Table 1.

Criterion Percentage of Papers
Exact Title 43.27%
Title + Extra Text 11.54%
Title + Author as Title 5.77%
Partial Title 12.5%

Total Titles: 73.08%
Exact Author 25.96%
Author + Extra Text 22.11%
Partial Author 2.88%

Total Authors: 50.95%

The performance for the bibliography extraction is
somewhat lower. From 418174 papers scanned for a
bibliography, entries were only extracted from 133882 of
them. Much of this can be explained by RUgle’s inability
to filter out documents whose content makes them appear
academic but which in reality are not and do not contain
bibliographical data such as professors’ resumes, course
syllabi, course notes, industry white papers, etc.

Conclusion
RUgle is quickly becoming viable a system for generalized
academic research. Its mechanisms, however, ignore much
of the visual information hidden in a document as
described in Berkowitz and Mastenbrook 2002. Utilizing
this information would enhance the quality of the analysis
and the indexing and it is our intention to incorporate the
Purpose Encoding Document Abstraction language into
future versions of RUgle. RUgle’s generalized scope and
its ability to index papers from all fields of research are
helping to make it a useful research tool in its own right.
The system’s current ability to locate and then analyze
bibliographies is lacking and research is being done on
how to improve this aspect of the system. We are also
working to improve the ergonomics of the user interface.
One problem we are currently facing is the magnitude of
the database which currently stores over seven million
bibliography entries even with RUgle’s limited ability to
extract this information. Queries on the database are
beginning to take more time than desired, slowing down
both the updates and the end-user interface. We are
researching methods to improve the overall design of the
database along with methods for distributing and
replicating the data to accelerate read-only queries from the
user interface.

Figure 4

Table 1

Figure 3

References

Eric Berkowitz and Brian Mastenbrook. “A Visual
Formatting Purpose Representation Language to Enhance
Automated Document Classification, Retrieval, and
Indexing” In Proceedings of the 16th Annual Midwest
Computer Conference, Schaumburg, IL, April 2002.

S. Lawrence, and C.L. Giles, "CiteSeer: An Automatic
Citation IndexingSystem," IEEE Communications,
Volume 37, Number 1, 1999, pp. 116-122.

S. Lawrence, and C.L. Giles, "Digital Libraries and
Autonomous Citation Indexing," IEEE Computer, Volume
32, Number 6, 1999, pp. 67-71.

S. Lawrence, C.L. Giles, and Kurt D. Bollacker,
"Autonomous Citation Matching," Proceedings of the
Third International Conference on Autonomous Agents,
ACM Press, New York, 1999.

S. Lawrence, C.L. Giles, and Kurt D. Bollacker, "Indexing
and Retrieval of Scientific Literature," Proceedings of the
Eighth International Conference on Information and
Knowledge Management, 1999, pp. 139-146.

S. Bradshaw, and K. Hammond, "Automatically Indexing
Documents: Content vs. Reference," In Proceedings of the
Sixth International Conference on Intelligent User
Interfaces, San Francisco, CA, January 14-17, 2002.

S. Bradshaw, A. Scheinkman, and K. Hammond, "Guiding
People to Information: Providing an Interface to a Digital
Library Using Reference as a Basis for Indexing," In
Proceedings of the Fourth International Conference on
Intelligent User Interfaces, New Orleans, LA, January 9-
12, 2000

