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Abstract

What could a robot learn in one day? This pa-
per describes the DayOne project, an endeavor
to build an epigenetic robot that can bootstrap
from a very rudimentary state to relatively so-
phisticated perception of objects and activities in
a matter of hours. The project is inspired by the
astonishingly rapidity with which many animals
such as foals and lambs adapt to their surround-
ings on the first day of their life. While such plas-
ticity may not be a sufficient basis for long-term
cognitive development, it may be at least neces-
sary, and share underlying infrastructure. This
paper suggests that a sufficiently flexible percep-
tual system begins to look and act like it contains
cognitive structures.

1. Introduction

Sometimes development is a rapid process. Con-
sider the first day in the life of a foal, which
can typically trot, gallop, groom itself, follow
and feed from its mare, all within hours of birth
(McCusker, 2003). Such precociousness is a com-
mon pattern for ungulates that evolved in habi-
tats with sparse cover, where the newborn needs
to (almost literally) hit the ground running or risk
becoming a sitting target for predators.

In epigenetic robotics, we seek to create a “pro-
longed epigenetic developmental process through
which increasingly more complex cognitive struc-
tures emerge in the system as a result of in-
teractions with the physical and social environ-
ment” (Zlatev and Balkenius, 2001). Should the
rapid development of the young of many species
give us hope that this process could be much
faster than we imagine? Perhaps not, since there
is a difference between the development of per-
ceptual and motor skills and the development of
cognitive structures. Cognitive structures exhibit
at least some flexibility of use and reuse, whereas
perceptual and motor structures are closely tied
to immediate sensing and actuation. But for

those who see value in embodied, situated cog-
nition, this distinction may seem unconvincing.
Explicit in the work of Brooks was the suspicion
that techniques for dealing with the uncertainty
and ambiguity of perception and the subtleties of
appropriate actuation are the work-horses of in-
telligence, and are presumably then key to cogni-
tive structures: “This abstraction process is the
essence of intelligence and the hard part of the
problem being solved” (Brooks, 1991).

Work on the humanoid robot Cog has focused
very much on rapid perceptual development. This
paper describes the DayOne project, which was
an attempt to integrate much of that work into
a single, continuously running system. We hope
to demonstrate that sufficiently advanced percep-
tual structures begin to look a lot like cognitive
structures, since there is much flexibility in how
they are constructed and used.

2. The stages of DayOne

The robot, upon startup, has the innate ability to
turn towards and track movements, and to reach
towards close objects, as described in earlier work
(Metta and Fitzpatrick, 2003). Development of
new perceptual skills begins in earnest right from
the beginning, in the following stages :-

Low-level vision – The robot’s low-level vision
system is not complete upon startup. It has a
filter which, by its construction, is fated to de-
velop into an edge orientation detector, but to do
so requires visual experience (Fitzpatrick, 2003b).
This is an alternative to using carefully con-
structed model-based filters such as those devel-
oped in (Chen et al., 2000).

Mid-level vision – Once the low-level fil-
ters have stabilized, the robot learns to differ-
entiate objects in its immediate surroundings.
Again, the object recognition modules involved
are fated to perform this task by their con-
struction, but the actual set of objects that the
robot learns to recognize is dependent on the
contents of its environment (Fitzpatrick, 2003b,
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Figure 1: Each successively higher-level perceptual layer fil-

ters the one below it. For example, an object recognition

layer finds clusters in the feature space presented to it and

presents the clusters themselves as the features passed on

to the next level. Modulation signals flow in the opposite

direction to perception. They indicate when the output of

the layer is overly detailed, or on the contrary insufficiently

nuanced. If there is no way for the layer to make such a

distinction, it passes the request on as ‘trickle-down’ modu-

lation.

Metta and Fitzpatrick, 2003).

Mid-level audition – In parallel with visual
development, the robot learns to differentiate ut-
terances. This case is analogous to object dif-
ferentiation. The actual set of utterances that
the robot learns to recognize depends on what
the humans in its environment choose to say
(Fitzpatrick, 2003a).

High-level perception – As soon as the robot
is familiar with some objects and utterances, it
can begin to learn the causal structure of simple
activities. The modules involved are fated to per-
form this task, but the activities, the utterances,
and the objects involved are all a function of the
environment.

3. Layered, coupled development

At any moment in time, Cog’s sensory input is
distilled into a distributed set of percepts. In
lower-level modules, these percepts are quantita-
tive in nature, and closely tied to the details of the
immediate sensor input – for example, the output
of the edge orientation detector. In higher level
modules, the percepts become more qualitative in
nature, and less sensitive to accidental or irrele-
vant details – for example, the output of object
recognition. Still higher-level percepts are even
more qualitative, such as a percept that corre-
sponds to seeing a familiar object, or hearing a
familiar sound.

Figure 1 shows an abstract view of each per-

ceptual layer. The primary direction of informa-
tion flow is from lower levels to higher levels, with
details being dropped along the way. A layer is
useful if it drops irrelevant details; each layer has
its own heuristics about what is relevant. For
example, the object recognition module attempts
to minimize the effects of pose. Of course, these
heuristics will not always be appropriate, and
only the overall task can determine that. Hence
there is a modulation signal that operates in the
reverse direction. It can request that more or less
detail be supplied for recently activated percepts,
or provide a training signal to drive differentia-
tion. This is somewhat analogous to the behavior
of neural networks.

The contract between each perceptual layer is
as follows :-

. The “semantics” of what activation means
for each line projecting to a higher layer will
be preserved as much as possible over time.
In other words, an output line will be acti-
vated for the same situations in the future
as it was in the past.

. An important exception is that the seman-
tics of an output line may change due to at-
tempts to refine or purify it (so that it is less
affected by noise, for example, or responds
to the same basic property in an extended
range of situations).

. Requests for refinement are handled locally
if possible, otherwise passed back to a lower
layer.

. Input lines with very similar activation
should be detected and merged.

The contract is important because in actual im-
plementation, layers change in both an incremen-
tal and batch manner, and this requires careful
regulation to stay consistent over time. For ex-
ample, the object recognition layer quickly cre-
ates a new output line when the robot appears to
experience a novel object; periodically, all object
clusters are examined and optimized using an off-
the-shelf clustering algorithm in MATLAB, and
the new output line may turn out to be redun-
dant. The output of this clustering is mapped
to the current output lines in such a way as to
maximally preserve their semantics. Excess lines
are never removed, but simply made identical, so
that there are no abrupt changes in semantics.

4. Generalization of percepts

Cog continually searches for useful new ways to
perceive the world, where being ‘useful’ means
having predictive power. This search is performed
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by considering combinations of existing percepts,
when heuristics suggest that such combinations
may be fruitful. There are three categories of
combinations :-

. Conjunctions: if two percepts are noted
to occur frequently together, and rarely oc-
cur without each other, a composite percept
called their conjunction is formed. From
then on, this percept is activated whenever
the two component percepts do in fact occur
together in future.

. Disjunctions: if two percepts are noted to
occur frequently together, but also occur in-
dependently in other situations, a composite
percept called their disjunction is formed.
This percept is activated whenever one or
both of the two component percepts occur.

. Implications: Causal versions of the above
composite percepts, which are sensitive to
event order and timing, are also considered.

These composite percepts are intended to en-
able the robot to make meaningful generaliza-
tions, by allowing the same physical event to be
viewed in ways that are sensitive to past his-
tory. Figure 2 demonstrates the use of such
generalizations to link an object with its name
through an extended search activity. This is a
simplified version of an experiment carried out on
human infants by Tomasello (Tomasello, 1997),
which in combination with other experiments
seeks to rule out many heuristics proposed for
fast word learning in the infant development liter-
ature (Markman, 1989). A human and the robot
engage in a simple search activity, where the hu-
man goes looking for an object, which they fail
to find immediately. The robot is then tested to
see if it can associate the object eventually found
with its name, which is given at the start of the
search and never mentioned in the presence of its
referent.

Searches are presented to the robot as a game
following a fairly strict script: first the word ‘find’
is uttered, then the name of the object to search
for is mentioned. Then a series of objects are fix-
ated. The word ‘no’ is uttered if the object is not
the target of the search. The word ‘yes’ indicates
that the search has succeeded, and the object cur-
rently fixated is the target of the search. The
meaning of these words is initially entirely in the
mind of the human. But the robot can discover
them using event generalization, if it experiences
a number of searches for objects whose name it
already knows.

The word spoken after ‘find’ gets a special
composite implication percept associated with it,

Human

speech

Human action Robot

speech

Robot action

. . . . . . . . . . . .
say [shows ball] say [looks at ball]
beh ball
say [shows car] say [looks at car]
keh car
say [shows cube] say [looks at cube]
keh cube
say say

[waits] cube
[shows ball] [looks at ball]

say say
[waits] ball

. . . . . . . . . . . .
[attracts attention] [looks at person]

find find
ball ball
no [shows cube] no [looks at cube]
no [shows car] no [looks at car]
yes [shows ball] yes [looks at ball]
. . . . . . . . . . . .

[attracts attention] [looks at person]
find find
toma toma
no [shows ball] no [looks at ball]
no [shows cube] no [looks at cube]
yes [shows bottle] yes [looks at bottle]
say [shows cube] say [looks at cube]

cube
say [shows bottle] say [looks at bottle]

toma
. . . . . . . . . . . .

Figure 2: Extracts from a dialogue with Cog. First, the

robot is taught to name the object it is looking at when the

word ‘say’ is spoken. This is done by speaking the word,

then prompting the robot with a short utterance (beh and

keh in this example). Short utterances prompt the robot to

take responsibility for saying what it sees. A link is formed

between ‘say’ and prompting so that ‘say’ becomes an al-

ternate way to prompt the robot. Then the robot is shown

instances of searching for an object whose name it knows (in

the one example given here, the ball is the target). Finally,

the robot is shown an instance of searching where an unfa-

miliar object name is mentioned (‘toma’). This allows it to

demonstrate that it has learned the structure of the search

task, by correctly linking the unfamiliar name (‘toma’) with

the target of search (a bottle). This experiment is similar,

but not identical, to one considered by Tomasello for human

infants (Tomasello, 1997).
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let us call it word-after-find (of course, no
such symbols are used internally, and the word
‘find’ initially has no special significance – it
could be replaced with any other word, such
as ‘seek,’ ‘cherchez,’ or ‘fizzle-tizzle’). When
the search is for an object whose name the
robot knows (through a pre-established disjunc-
tion) that is also noted as a simultaneous event
with word-after-find. The object seen when
‘yes’ (object-with-yes) is said matches this
and an implication is formed between the two.
This implication is sufficient to link an un-
known word following ‘find’ with the object seen
when ‘yes’ is said, via the word-after-find

and object-with-yes generalizations (again, the
choice of the word ‘yes’ has no special significance,
and could be replaced with ‘frob’).

5. Discussion and conclusions

This paper gave a snapshot of project imple-
mented on the humanoid robot Cog, and showed
one task the robot could learn in a single day –
which involved training low-level orientation fil-
ters, object and utterance recognition modules,
and activity understanding, all in one inte-
grated system. There are many exciting research
projects that continue to press the boundaries of
what can be achieved through robot learning and
development – (Weng et al., 2000, Metta, 2000,
Roy and Pentland, 2002) etc. It seems that by
its nature, the field of epigenetic robotics will
advance by a combination of innovation, aggre-
gation, and consolidation. In our own system,
a promising direction of research seems to be to
take the most ‘cognitive-like’ ability of the robot
(understanding patterns of activity through com-
posite percepts) and find ways to push something
analogous back into the very lowest levels of per-
ception. It is interesting to imagine what a robot
of tomorrow could learn in a single hour, if every-
one’s most advanced methods of today become
just a part of the smallest building blocks of to-
morrow’s systems!
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