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ABSTRACT:  
 
Statistical analysis is a widely used traditional technique for classification and discrimination in remotely sensed images, which 
supposes that there is only one endmember in an image pixel. However, the fact is that the ground sampling distance is generally 
larger than the size of targets of interest. So the statistical analysis technique is not suitable. In this case, classification and 
discrimination must be carried out at subpixel level. In this paper the abundance fractions of endmembers in an image pixel are 
estimated by UFCLS (unsupervised fully constrained least squares) method based on the inversion of linear spectral mixture model. 
This method allows us to extract necessary endmember information from an unknown and no prior knowledge image scene so that 
the endmembers present in the image can be quantified. The pixel classification generates a gray scale image, whose gray level 
values are determined by the estimated abundance fractions of endmembers. The band expansion technique is used to create 
additional bands from existing multispectral bands using band-to-band nonlinear correlation. These expanded bands ease the 
problem of insufficient bands in TM imagery. In the two experiments, the results of the pixel classification show that the effects are 
good. The pixel classification image of vegetation agrees significantly with the NDVI image, but the contrast of the former is a little 
larger than that of the latter, so there was lack of the information of details and edges. However, compared to color composite image 
of raw bands 4, 3 and 2 in red, green and blue respectively, especially in the second experiment, the results of vegetation 
classification are excellent. The shade areas in the first experiment are not classified correctly. Compared to CSMA (constrained 
spectral mixture analysis) method, UFCLS method is better in both the effects of classification and the consumption of computation 
time. 
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1. INTRODUCTION 

Statistical analysis such as maximum likelihood, minimum 
distance and mahalanobis distance, is a widely used traditional 
technique for classification and discrimination in remotely 
sensed images, which differentiates pixel one by one according 
to the average spectral signature of materials, is a classification 
method of pure pixel discrimination. These traditional statistical 
classification and discrimination methods suppose that there is 
only one endmember in an image pixel. However, the fact is 
that a pixel is generally mixed by a number of endmembers in 
the image given spatial resolution. Consequently, mixed pixel 
analysis techniques such as spectral mixture model have been 
proposed to describe such mixing activities. The mixed pixel 
classification generally generates a gray scale image whose 
gray level values are determined by the estimated abundance 
fractions of the endmembers resident in the image pixels. 
Although there are many spectral mixture models, they all 
belong to two classes, linear and nonlinear models respectively. 
To this day, the linear spectral mixture model is favorably 
received and most widely used. Its prominent characteristic is 
very simple. It was reported by Zhao Ying-shi (2001) that the 
linear spectral mixture model was better than the tasseled cap 
transformation when used to extract sands information. 
 

Currently, the approach mostly used to decompose the mixed 
pixels by linear model, also be called model inversion, is the 
least squares method. If considering it from the point of 
minimizing the merit function, this is a constrained 
optimization problem because the parameters of the linear 
model generally have explicit physical meaning and constraints. 
The optimization algorithms include the regularly searching 
algorithms such as downhill simplex, conjugate direction set 
and passive set, and the randomly searching algorithms 
proposed in the recent years such as GA (genetic algorithm), ES 
and EP. However, the latter is not better than the former for the 
inversion of the linear spectral mixture model, and cost longer 
computation time (Tang Shihao et al., 2002). The regularly 
searching algorithms are frequently used in the inversion of 
remote sensing models currently. Unsupervised fully 
constrained least squares (UFCLS) recently proposed by Daniel 
et al. (2001) improved the computation speed, which applied 
the method based on the least squares and resembling the 
passive set of the regularly searching algorithms. Under the 
circumstance without prior knowledge, this method is valid for 
decomposing mixed pixels in remote sensing images. In this 
paper, we analyze the effects of UFCLS on classification of TM 
image. 
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2. LINEAR SPECTRAL MIXTURE MODEL 

The linear spectral mixture model is a mostly simple and 
widely used approach for remotely sensed imagery to estimate 
abundance fractions of the endmembers resident in the mixed 
pixels. Suppose that L is the number of spectral bands. Let DN 
be an L×1 column pixel vector in a multispectral or 
hyperspectral image. Let M be an L×p endmember signature 
matrix denoted by [m1 m2 … mp] where mj is an L×1 column 
vector represented by the signature of the j-th endmember and p 
is the number of endmembers in the image scene. Let α =[α 1 
α 2 … α p ]T be a p×1 abundance column vector associated 
within DN, where α j denotes the fraction of the j-th signature 
present in the pixel vector DN .A linear mixture model of DN 
makes use of a mixing equation to model the spectral signature 
of DN as a linear combination of m1 m2 … mp with appropriate 
abundance fractions specified by α 1 α 2 … α p as follows.  
 
 

DN＝Mα ＋E                                                (1) 
 
 
Where E is noise or can be interpreted as measurement error. 
Here, DN will be used to represent digital numbers. In general, 
two constraints must be imposed on this model to yield an 
optimal solution. These are the abundance sum-to-one 

constraint (ASC), ∑ =

p

j 1
α j ＝ 1 and the abundance 

nonnegativity constraint(ANC), α j≥0 for all 1≤j≤p. 
 
 

3. UFCLS METHOD 
3.1 FCLS Algorithm 

FCLS algorithm is introduced firstly in order to understand 
UFCLS method, because of the latter derived from the former. 
FCLS is the abbreviation of fully constrained least squares，
namely, the late is the algorithm about the inversion of α in 
the equation(1) when two constraints, ASC and ANC, must be 
imposed on it at the same time. Taking care of the ASC, we 
introduce a new signature matrix, denoted by N, and a vector S, 
defined respectively by  
 
 

N＝ TI
δΜ⎡ ⎤
⎢
⎢ ⎥⎣ ⎦

⎥

⎥

      with I＝ T                         (2) 

p

)1,1,1(

S＝                                                             (3) 
1
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⎢
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The utilization of δ  in (2), (3) controls the impact of the ASC. 
In this paper, the value of δ was fixed at 1.0×10–5. 
 
If the M and DN in (1) are replaced with N, S respectively, the 
equation can be derived as 
 
 
       S ＝ N α ＋n                                                                (4) 
 
 

It is the solution of the equation (4) that satisfies the above ASC 
condition. In the equation (4), the values of DN are known in a 
given image, and the values of M are supposed to be known, so 
the values of N and S are known. Consequently, solving α  
becomes to solve p unknown parameters from L＋1 equations. 
We use the least squares error as the optimal least squares 
estimate ofα , α LS, for equation (4) can be obtained by 
 
 
           α LS＝（N TN）-1N T S                                      (5) 
 
 
Next, we impose ANC on model (4). Under the constraint, the 
equation (4) can not be solved analytically since ANC results in 
a set of inequalities, only an optimal solution can be obtained, 
which generates the following constrained optimization 
problem as 
 
 

Minimize LSE= (N α - S) T (N α - S)   s.t. α ≥0     （6） 
 
 
Many methods have been developed to address this problem. In 
this section, we use the FCLS method, the principles of which 
have been described by Daniel et al. (2001) and Bro et al. 
(1997), the details of implementing the FCLS algorithm are 
given below. 
 
1. Initialization: The components of the estimate α LS are 
decomposed into two index sets called active set and passive set. 
While the former consists of all indices corresponding to 
negative (or zero) components in the estimate α LS, the latter 
contains all indices corresponding to positive components in the 
estimate α LS. Set the passive set P(0)={1,2,…p} and active set 
R(0)＝ø, k=0. 

2. Calculateα LS using (5). Let ＝
( )k
FCLSα α LS. 

3. At the k-th iteration, if all components in  are 
nonnegative, the algorithm is terminated. Otherwise, continue. 

( )k
FCLSα

4. Let k=k+1. Move all indices in P(k-1) that correspond to 

negative (or zero) components of  to R(k-1), and the 
resulting index sets are denoted by P(k) and R(k), respectively. 
Create a new index set I(k) and set I(k)＝R(k). 

( )k
FCLSα

5.Let α R(k)＝（ α LS(i) α LS(j) … α LS(n)）
T , α LS(i)、

α LS(j)、…、α LS(n) are all the components of α L S in R(k).  

6. Form a steering matrix ( )k
αΓ  by deleting all rows and 

columns in the matrix（N T N）-1 that are specified by P(k).  

7. Calculate β (k)＝（
( )k
αΓ ） -1α R(k).If all components in 

β (k) are negative, go to step 12. Otherwise, continue. 

8. Calculate ( )
max

kβ ＝arg{max ( )k
jβ } and move the index in R(k) 

that corresponds to ( )
max

kβ  to P(k). 

9. Form another new matrix ( )k
βϒ  by deleting all columns of 

（N T N）-1 specified by P(k). 

10. Recalculate β (k)＝（
( )k
αΓ ） -1 α R(k) according to the 

changed R(k), then calculate α I(k)＝α LS－
( )k
βϒ β (k). 
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11. If any components of α I(k) in I(k) are negative, then move 
corresponding indices from  P(k) to R(k). Go to step 5. 

12. Form another new matrix ( )k
βϒ  by deleting all columns of 

（N T N）-1 specified by P(k). 

13. Calculate ＝
( )k
FCLSα α LS－

( )k
βϒ β (k) and go to step 3. 

 
3.2 UFCLS Method 

The above FCLS method requires a complete knowledge of 
the endmember signature matrix M. For the situation of no a 
priori information, it needs an unsupervised process to 
generate the desired endmember information, based on which 
the UFCLS method was proposed.  
 

The least squares error (LSE) is a criterion to judge the fit 
between data measurements and estimated values stand or fall. 
In the inversion of linear spectral mixture model, we expect to 
minimize the LSE, i.e., estimated values are extremely close to 
the data measurements. The UFCLS method makes the 
endmember signature values to be obtained directly from the 
remote sensing image iteratively. In every iteration, we judge a 
pixel to be an endmember pixel or not by the LSE, and decide 
whether to regard its digital values as endmember signature 
values. The idea can be described as follows. 
 
Initially, we can select any arbitrary pixel vector as an initial 
desired endmember m0. However, a good choice may be the 

pixel vector with the maximum length (d =d 2

1

l

i
i

b
=
∑ , 

denotes the digital values of the i-th band, l denotes the 

numbers of bands). We then assume that all pixel vectors in an 
image scene are pure pixels made up of m0 with100% 
abundance. Of course, this is generally not true. So, we find a 
pixel vector which has the largest LSE between itself and m0, 
and select it as the second endmember m1. Now, we form an 
endmember signature matrix M＝[m0 m1]. Because the LSE 
between m0 and m1 is the largest, m1 is most distinct from 
m0.The FCLS algorithm is then used to estimate the abundance 

fractions of m0 and m1 denoted by 

bi

α )2(

0 ( ND )  and 

α )2(

1 ( ND )  for each pixel vector DN respectively. The 

superscript indicates the number of the iteration currently being 
executed. Here DN is included in the estimated abundance 
fractions to emphasize that they are functions of DN. According 
to the principle of the linear spectral mixture model, we are able 

to use α )2(

0 ( ND )  and α )2(

1 ( ND )  to calculate the 

estimated values =ND
∧

α )2(

0 ( ND ) m0＋α )2(

1 ( ND )

⎞⎤
⎟⎥⎦⎠

4.1 

m1. We 

then calculate the LSE between DN and  for all image 
pixel vectors DN using the following equation. 

ND
∧
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1

( )

0
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The pixel vector that yields the largest LSE will be selected to 
be the third endmember m2. The same procedure of using the 
FCLS algorithm with M＝ [m0 m1 m2] is repeated until the 
resulting LSE is small enough and below a given error 
threshold. 
 
 

4. EXPERIMENTAL RESULTS 

Experiment 1 

The data used in this section are ETM＋  data, which were 
obtained on 2 January 2000 over Shenzhen city and the vicinity 
of it, China. The ETM＋ image consists of eight bands, and we 
only selected six bands in the visible and infrared spectral 
region, referred to band 1 to band 5 and band 7. The spatial 
resolution of the six bands is 30 m. The digital value for every 
image pixel is constrained from 0 to 255. Because the ETM＋ 
data which we obtained here were corrected radiometrically and 
geometrically initially, they were only registered. It is a 
subscene of 51×51 pixels with few manmade objects for the 
convenience of analysis extracted from the low right corner of 
the scene, shown in Fig. 1.  
 
 

                         
 

Figure 1. The experiment images     Figure 2.The LSE image 
of the 51×51 pixels                          of m5 

  
We know from the linear spectral mixture model(1) that 
solvingα actually becomes to solve p unknown parameters 
from L linear equations if M and DN are prior known, which 
requires L larger than p .However, we only selected six bands, 
so we can solve six unknown parameters at best. For easing the 
problem of insufficient bands in multispectral imagery, and no 
prior knowledge on the numbers of endmembers, we expanded 
six bands to eighteen bands so that there were sufficient bands 
to calculate iteratively a set of LSEmax, the maximum of LSE. 
The expanded bands were generated by taking the square root 
of the cross-correlation between band1 and band4, band1 and 
band5, band1 and band6, band2 and band3, band2 and band 4, 
band2 and band 5, band2 and band6, band3 and band4, band3 
and band 5, band3 and band 6, band4 and band6, and band5 and 
band6. The square root function was applied to keep the 
magnitudes of the resulting image pixels similar to the original 
data.  
 
After 10 iterations using UFCLS method, a set of LSEmax was 
obtained, shown in Table 1. From the table we see that the 
LSEmax decreased constantly with the increase of iterative times, 
first decreased at a high speed, but the more later the iteration 
came to the more slowly it decreased. There is a distinct 
borderline at m5 iteration since after that the LSEmax decreased 
very slowly, which shows that the extracted pixel vector after it 
is not endmember but noise. In Fig.2 the LSE image of m5 also 
accounts for it. So, in this section the first six extracted pixel 
vector were selected as endmembers. 
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 4.2 
m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

50657 3809 520 165 118 68 63 61 53 43
  

Table 1. The LSE of 10 iterations by UFCLS 
 
The six endmembers formed an endmember signature matrix. 
Then we plugged the endmember signature matrix into (1) to 
estimate the abundance fractions of the six endmembers using 
FCLS algorithm for all pixel vectors in the subscene image. The 
results are shown in Fig.3, where the larger the abundance 
fractions are, the higher the brightness are shown in the gray 
scale image, and the smaller the abundance fractions are, the 
lower the brightness are shown. We know the six endmembers 
were extracted without prior knowledge from the image using 
UFCLS method, so which materials can they not be identified 
to be without true data of the land cover. However we can 
judge the m2 endmember to be vegetation directly from the 
pseudo color image. In order to verify the results, we compare 
the classification image of vegetation in Fig. 4(a), i.e., the 
abundance fractions image of m2, with NDVI in Fig. 4(b). It is 
shown that the pixel classification image of vegetation agrees 
significantly with the NDVI image, but the contrast of the 
former is a little larger than that of the latter, so there is lack of 
the information of details and edges. It is because the values 
shown in the two images have different physical meanings, the 
former denotes the abundance fractions of vegetation, the latter 
denotes NDVI, which are generally larger than 0 even under the 
circumstance of non-vegetation. And it is also shown, in Fig. 
4(a) denoted by the circle, that the shade areas were not 
classified correctly. 
 
 

       
m0                                     m1                                     m2 

 

         
  m3                                       m4                                     m5 

 
Figure 3. The results of the classification of 6 Endmembers 

 
 

     
 

(a)m2(UFCLS)             (b)NDVI               (c) m2 (CSMA) 
 

Figure 4. The effects of the classification of m2(UFCLS) and 
m2 (CSMA) compared to NDVI 

 

 Experiment 2 

The data considered in this section are TM data with seven 
bands from Landsat 5, which were obtained on 19 July 1991 
located in WRS123/039. Here we selected six bands 
excluding thermal infrared region. Firstly, the scene was 
corrected geometrically and registered. A subscene of size 
512×512 pixels, larger than the area in experiment 1, was 
selected from Chibi County, Hubei Province in China for study. 
A map showing the location of the study area is presented in 
Fig.5. The color composite image of the study area, of raw 
bands 4, 3 and 2 in red, green and blue respectively, is shown in 
Fig.6. 
 
 

 
 

Figure 5. Location of study area in Chibi County, Hubei 
Province 

 
 

 
 

Figure 6. The color composite image of the study area 
 

We applied the same UFCLS method in experiment 1 to 
process the data of the study area. Ten endmembers were 
extracted from the subscene. The classification image of 
vegetation, or the abundance fractions image of vegetation 
endmember, is presented in Fig.7. In the same way, we 
compare the classification image of vegetation with NDVI, 
shown in Fig.8. There are the same results with experiment 1. 
Furthermore, we find that the pixel classification image of 
vegetation agrees much more with the color composite image of 
raw bands 4, 3 and 2 in red, green and blue respectively in Fig.6, 
in which the red area generally denotes vegetation cover, than 
with the NDVI image. For example, the A region of rectangle 
in Fig.7 maybe had less vegetation than its surrounding region, 
which is seen clearly in Fig.6 than in Fig. 8. The B and C 
region of rectangle in Fig.7 are shown nearly in black, that 
indicates there were not vegetations in the regions, but in Fig.8 
we can not find the result. The same regions are shown in close 
to turquoise in Fig.6. We know in this color composite image a 
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red region denotes vegetation cover, so it also indicates there 
were non-vegetation in the two regions. 
 
 

                  
 

Figure 7. The classification                Figure 8. NDVI image 
image of vegetation 

 
 

5. COMPARE UFCLS METHOD WITH CSMA 

Constrained spectral mixture analysis (CSMA) was supposed 
by Liu Zhengkai et.al(1996). Using the CSMA algorithm, we 
can solve the linear spectral mixture model (1) through gradient 
iteration. For the two constraints, ASC and ANC, adding merit 
functions to the object function is applied in CSMA. So the 
constrained object function is defined as 
 
 

ε= E 2
＋A1g1(F)+A2g2(F)                                         (8) 

 
 

where E 2 denotes 2-norm in the error matrix E, i.e., the least 

squares error, and g1(F) and g2(F) are the merit functions of 
ASC and ANC respectively. Here A1 and A2 are constants; 
when they are given very large values, the minimum of ε is the 

minimum of E 2 under the two constraints of ASC and ANC. 

So the iterative equation is presented as follows 
 
 

( 1)k
nα

+
＝

( )k
nα －δ(

2

n

E
α

∂
∂

＋A1
1
( )

n

Fg
α

∂

∂
＋A2

2
( )

n

Fg
α

∂

∂
)    (9) 

 
 

where ( )k
nα  denotes the abundance fraction of the n-th 

endmember in the k-th iteration, and δ is the iterative step, 
which is generally given a small value in the range of 0 to 1.  
 
We applied the CSMA method to estimate the abundance 
fractions of the six endmembers in the study area of experiment 
1 (Fig.1). The classification result of the endmember m2 is 
presented in Fig.4(c). Compared it with NDVI (Fig.4(b)), it is 
shown that their similarities are not better than that of the m2 
generated by UFCLS and NDVI, especially in the bottom of the 
image there are some distinct differences. And it did not 
classified the shade areas correctly as the UFCLS did, in Fig. 
4(a) and 4(c) denoted by the circles. 
 
Considering the consumption of the computing time, the 
UFCLS is also better than the CSMA. The latter consumed nine 
minutes to process the data of 51×51 pixels, but the former 
consumed less than one minute. The endmember signature 

matrix M is required when using the CSMA method, so it does 
nothing if the endmember signature matrix M is unknown. The 
values of the three parameters, δ, A1 and A2 in the equation (9), 
are obtained by repeating to do experiments, here δ=8×10－
8/(3n+1), A1= 6n×105 and A2= n×104. The EL generated by the 
CSMA, i.e., the average value of relative error, defined by EL＝

1

1 (
L

i N i
i

E D
n =
∑ ) , n denoting the total of spectral bands, was 

18.5%, and that of the UFCLS was only 1.6%.  
 
 

6. CONCLUSION AND DISCUSSION 

The UFCLS method has been used for the inversion of linear 
spectral mixture model. The pixels classification was done 
through estimating the abundance fractions of endmembers. 
And the results indicated its effects are good. In our 
experiments the results of classification were verified only by 
the NDVI image, so the verification will be done by the 
measurement data of the land cover in the next study.  
 
Compared the pixels classification results using the UFCLS 
with that of using the CSMA, it was shown that the former is 
better than the latter whether considering the effects of 
classification or the consumptive computing time. If the values 
of the three parameters, δ, A1 and A2 in the CSMA, are adjusted 
farther, the effects of classification will be improved and the 
consumptive time will be shorten. However, maybe this is just 
its disadvantage, because it is very difficult to find the proper 
values of these parameters.  
 
The classification errors in the shade areas were increasing 
whether using the UFCLS or using the CSMA, which indicates 
the shade should be selected as an endmember in the inversion 
of the linear spectral mixture model.  
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