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Abstract This paper presents a simple, original, self-referenced single-end method to measure accurately 
Brillouin Gain coefficient in optical fibers. Measurements performed on Corning SMF28 optical fiber confirmed 
theoretical description. 

 

Introduction 
Stimulated Brillouin scattering (SBS) in optical fibers 
is a nonlinear effect that has been thoroughly 
investigated for many years [1]. For many 
applications, such as optical fiber communication 
systems or high-power fiber lasers, SBS effect 
induces optical power limitations. On the other hand, 
SBS effect can be advantageously exploited in 
numerous applications such as slow-light, Brillouin 
fiber ring lasers or distributed optical sensors. A 
precise knowledge of Brillouin gain coefficient gB is 
required to determine the fiber sensitivity to SBS. A 
significant variation in gB coefficient appears in 
literature. In this paper we present a new method to 
measure  with an accuracy of ~2% never reached 
until now to the best of our knowledge. 
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Overview of amplified spontaneous Brillouin 
scattering theory 
When an incident wave (so-called pump wave at 
ν0 frequency) propagates inside a long optical fiber 
(high total birefringence) following z-axis, the Stokes 
and anti-Stokes backscattered photon numbers (NS 
and NAS) can be determined as a function of 
frequency shift ν from the pump wave, by the 
following 2 equations (neglecting linear losses): 
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where ( )νg  is the Brillouin gain spectrum, Pp is the 
pump power and n  the average thermal phonon 
number ( 600≈n  at n = 10GHz). According to the 
theory related in [2], A is not the optical mode 
effective area but the acousto-optic coupling effective 
area (A computation can be found in [3]). Neglecting 
pump depletion, each equation leads respectively to 
an expression of Stokes and anti-Stokes photon 
numbers where L is the optical fiber length: 
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Experimental set-up 
A self-heterodyne detection is generally used for 
measurement of amplified spontaneous Brillouin 
scattering [4]. Unfortunately, the detected Stokes and 
anti-Stokes waves in the electrical domain are 
overlapped. Since 1>>n , we could access to  
which corresponds to the maximum of the Brillouin 
gain 
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where γ is the transfer function gain of the 
experimental set-up (detector sensitivity, optical 
losses, etc.). However in that case, an accurate 
determination of  requires a precise estimation of 
γ parameter, which is difficult to evaluate. 
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To separate Stokes and anti-Stokes parts of the 
spectrum, we propose to add an acousto-optic 
frequency shifter in one arm of the heterodyne 
detection as shown in Figure 1. Since coherent 
detection is polarization dependant, a polarization 
scrambler is inserted in the LO path. Using a 
polarization controller in pump path, we have verified 
the pump polarisation doesn’t affect measurement. 

 

(1) 

Figure 1: Experimental set-up for self-referenced 
Brillouin gain coefficient measurement (νB  is the 
Brillouin frequency and ν a  the modulation frequency 
of the acousto-optic frequency shifter) 
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As the frequency shift is MHz111=aν , Stokes and 
anti-Stokes spectra are separated in the electrical 
spectrum by an amount of MHz2222 =⋅ aν . Since 
Brillouin linewidth is about 40MHZ, we can 
consider them fully separated. So, it is possible to 
simultaneously evaluate the maxima of the Stokes 
and anti-Stokes power spectral densities. Unlike the 
previously evocated case leading to (3), we use the 
ratio between these 2 values:  
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which is independent of the experimental set-up 
transfer function gain γ  (parameter sensitive to the 
external conditions). It provides our method with a 
high degree of precision and a high reliability in  
determination. 
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Experimental verification of the theory 
To validate the proposed method, we used the 
previously exposed experimental set-up to determine 
the Brillouin gain coefficient at 1560 nm of a Corning 
SMF-28 fiber as accurately as possible. We used a 
65m-long fiber span to perform that experiment.  

 
Figure 2: Measured electrical power spectral density 
of a SMF-28 (L=65m), for several pump powers. 
Stokes spectrum is the right part and anti-Stokes the 
left one. 

As expected, the Stokes and anti-Stokes spectra 
appear separated by an amount of 222MHz in Figure 
2. In addition, the measurements confirm the 
evolution of Stokes and anti-Stokes spectra as a 
function of pump power described in equations (2). 

Deduction of the SMF-28 Brillouin gain coefficient  
From curves of Figure 2, we extract the maximum 
values of Stokes and anti-Stokes PSDs using a peak 
detection method (here we used the theoretical 
equations (2) to fit measurements assuming ( )νg  has 
a Lorentzian shape) to determine the ratio of these 
2 PSDs at the Brillouin frequency shift. From 
measurements, we plot in Figure 3 the quantity:  
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Figure 3: Y as a function of pump power. The slope 
gives directly gB coefficient. 

as a function of pump power. Y is clearly proportional 
to pump power via the Brillouin gain coefficient as 
predicted by relationship (4). 
So for the Brillouin gain coefficient of SMF-28 fiber, 
we found a value of . Assuming 
we knew perfectly the fiber length (65m) and 

Bg 11 11.68 10 m.W−= × −

=A 87µm2 (from [2]), the accuracy on that value is 
about 2%. Quite different results can be found in 
literature, from  [5] to Bg 11 11.3 10 m.W−= × −

Bg 11 12.6 10 m.W− −= ×  [6,7] measured using different 
techniques such as pump/probe methods or Brillouin 
linewidth evolution with pump power. 

In addition to be self-referenced, and unlike previous 
methods, our technique requires only 2 PSDs 
measurements with different pump powers. Pump 
power ratios can be measured very simply with a 
coupler and an optical power meter placed between 
the attenuator and the circulator. 

Conclusions 
We proposed a new self-referenced single-end 
method to measure Brillouin gain coefficient gB in 
optical fibers. In a Corning SMF-28 fiber, we 
evaluated this coefficient to be  
with an uncertainty of 2%. The technique can be 
extended (with some precautions) to any type of 
single-mode fiber using a short span, typically small 
enough to neglect the fiber attenuation and the pump 
depletion (less than 1km).  

Bg 11 11.68 10 m.W− −= ×
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