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Abstract

Self-organizing models develop realistic cortical structures
when given approximations of the visual environment as in-
put, and are an effective way to model the development of
face recognition abilities. However, environment-driven self-
organization alone cannot account for the fact that newborn
human infants will preferentially attend to face-like stimuli
even immediately after birth. Recently it has been proposed
that internally generated input patterns, such as those found in
the developing retina and in PGO waves during REM sleep,
may have the same effect on self-organization as does the
external environment. Internal pattern generators constitute
an efficient way to specify, develop, and maintain function-
ally appropriate perceptual organization. They may help ex-
press complex structures from minimal genetic information,
and retain this genetic structure within a highly plastic sys-
tem. Simulations with the CRF-LISSOM model show that
such preorganization can account for newborn face prefer-
ences, providing a computational framework for examining
how genetic influences interact with experience to construct
a complex system.

Introduction
Faces appear to be very special objects for a human new-
born (see Slater and Kirby 1998 for a review). Newborns
will preferentially turn their eyes or head towards face-like
stimuli within a few minutes after birth (Goren, Sarty, and
Wu 1975; Johnson and Morton 1991). The more attractive
the face, the more readily they do this (Slater et al: 1998).
Attractive faces are close to the mathematical average of
the population, which suggests that newborns prefer pro-
totypical instances of faces (Langlois and Roggman 1990).
Yet newborns have not yet had any experience with faces,
so it is unclear how they could have learned such a pro-
totype. Furthermore, since newborns will even imitate fa-
cial expressions in others (Meltzoff and Moore 1997), they
must have some machinery that can not only recognize fa-
cial expressions but also translate them to specific motor
commands. Together, these capabilities suggest that there
is a genetically-specified ability in humans (and presumably
other primates) to detect and process face-like stimuli. Giv-
en that face shapes differ substantially across phylogeny, this
ability must have a species-specific, genetically-determined
foundation.

How can each organism encode a specification for such a
specific function? Clearly there is not enough space avail-
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able in the genome of a mammal to directly specify any
sizable percentage of the connections in its nervous system
(105 genes vs. 1015 connections; Shatz 1996.) Moreover,
given the enormous post-natal flexibility of the nervous sys-
tem (reviewed in Hirsch 1985), including the fact that infant
face perception shows rapid learning in the first few hours
and days after birth (Slater and Kirby 1998), how can the
genetic specification be expressed within such a highly plas-
tic system?

This article considers how self-organizing models, which
have ordinarily focused on environment-drivendevelopment
(see Swindale 1996 for a review), can also help explain
genetically-driven development. Since newborn studies sug-
gest that face detection has a strong genetic component, we
will focus on that ability. The thesis is that pre-natal de-
velopment uses the same learning mechanisms which ex-
tract regularities from the visual environment, but it uses
them to extract regularities in training inputs generated in-
ternally under genetic control (Jouvet 1998; Marks et al:

1995; Roffwarg, Muzio, and Dement 1966; Shatz 1996). In-
stead of precisely specifying the organization of the brain,
the genome simply encodes a developmental process that is
based on genetically-determined patterns presented to a gen-
eral self-organizing mechanism.

Using the RF-LISSOM self-organizing model (Recep-
tive-Field Laterally Interconnected Synergetically Self-Or-
ganizing Map) we have previously shown how orienta-
tion maps in the primary visual cortex can form based on
spontaneously-generated retinal waves (Bednar and Miikku-
lainen 1998). This paper introduces CRF-LISSOM, which
extends RF-LISSOM with a simple model of the eye so that
it can be tested with natural photographic images. We then
demonstrate how patterns found during REM sleep can ac-
count for a newborn’s apparently innate predisposition for
faces. These simulations represent a first step towards un-
derstanding genetic expression in a highly adaptive system.

CRF-LISSOM Model
The architecture for the CRF-LISSOM model is shown
in figure 1, and will be briefly reviewed below. (For
the detailed equations, see Sirosh, Miikkulainen, and Bed-
nar 1996.) The model consists of a hierarchy of two-
dimensional layers of neurons whose connections adapt
through Hebbian learning. The input to the model is an ac-
tivity pattern on a sheet of photoreceptors or PGO generator
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Figure 1: The CRF-LISSOM model. A schematic diagram
of the CRF-LISSOM network, with connections shown for a single
cortical neuron and for an ON-center and OFF-center ganglion cell.
Activity propagates from the photoreceptor layer (bottom) up to
the cortex and then spreads laterally within the cortex; weights are
adapted when the activity settles.

output (e.g. figure 2a). The cells in the ON- and OFF-center
layers compute their responses as a scalar product of their
receptive fields and a fixed Difference-of-Gaussian weight
vector (e.g. figure 2b-c). The ON and OFF layers, also
known as input channels, were not present in RF-LISSOM,
since the earlier model was designed to work directly with
the output of the LGN. Like the ON and OFF cells, each cor-
tical neuron also computes its initial response as a weighted
sum of activity in its receptive field. After initial activation,
the neural responses repeatedly propagate within the neural
layer through the lateral connections, and evolve into co-
herent activity “bubbles” (figure 2d-e). After the activity
stabilizes, weights of the active neurons are adapted by a
normalized Hebb rule.

This model was initially developed to account for environ-
ment-driven self-organization in the primary visual cortex,
where the input layer consists of photoreceptors in the reti-
na, the middle layer of ON- and OFF-center ganglion cells,
and the top layer of the cortical neurons (the LGN is by-
passed for simplicity). Given elongated Gaussian patterns as
input, the model shows how orientation columns and lateral
connections between them form. The neural layer in CRF-
LISSOM is very general, so the model can also be used for
most of the cortical and subcortical areas that are organized
as topographic maps. Different developmental phenomena
can be modeled by manipulating properties of the input.

For the face-detection experiments, the input to the mod-
el is assumed to arise from ponto-geniculo-occipital (PGO)
waves generated during rapid-eye-movement (REM) sleep.
Developing embryos spend a large percentage of their time

(d) Response before training (e) Response after training

(b) ON channel (c) OFF channel

(a) Generated pattern

Figure 2: Training Patterns for Face Detection. (a) For train-
ing, the input consisted of simple three-dot configurations at ran-
dom locations and random nearly-vertical orientations; these pat-
terns were chosen based on the experiments of Johnson and Morton
(1991). (b-c) The ON and OFF channels compute their responses
based on this input, and (d-e) the cortical neurons compute their
responses based on the output of the ON and OFF channels. Ini-
tially, the neurons are unselective (d), but after self-organization,
they respond only to patterns similar to the three-dot stimuli (e).

in what appears to be REM sleep, which suggests a major
developmental role for this process (Roffwarg, Muzio, and
Dement 1966). During and just before REM sleep, PGO
waves originate in the pons of the brain stem and travel to the
LGN, visual cortex, and a variety of subcortical areas (see
Callaway et al: 1987 for a review). PGO waves are strongly
correlated with eye movements as well as with vivid visual
imagery in dreams, suggesting that they activate the visu-
al system as if they were visual inputs (Marks et al: 1995).
PGO waves elicit different distributions of activity in dif-
ferent species (Datta 1997), and interrupting them has been
shown to increase the influence of the environment on de-
velopment (Marks et al: 1995).

All of these characteristics suggest that PGO waves may
be providing species-specific training patterns for develop-
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(a) Initial map (b) Trained map

Figure 3: Prenatal development of the face map.The afferent weights for the OFF-center cells for every fourth neuron in the cortex
are shown by grayscale coding. Initially, the weight pattern is unselective, and is identical for both ON and OFF weights (a). After many
iterations of the self-organizing algorithm, the OFF-center weights (b) have come to represent the inputs it has seen, and the neurons now
respond only to patterns similar to the three-dot stimuli. The ON-center weights became approximately the photographic inverse of the
OFF-center weights, and the lateral weights have a short-range, approximately Gaussian shape throughout self-organization.

ment (Jouvet 1998). However, due to limitations in experi-
mental imaging equipment and techniques, the spatial shape
of the PGO wave activity patterns has not yet been measured
(Rector et al: 1997). This paper predicts that if these patterns
have certain simple properties (shown in figure 2a), they can
account for the measured face-detection performance of hu-
man newborns.

Three assumptions and extensions were made to the CRF-
LISSOM model to account for the development of face de-
tection. First, in line with recent neurobiological evidence
that shows that much of the adult cortical face processing
circuitry is present in the infant (Rodman 1994), newborn
face detection is assumed to require only cortical circuitry,
most likely in human area V4v and nearby areas (Haxby et
al: 1994). Even though multiple cortical areas are likely to
be involved, for simplicity a single functional layer is used
in this model. Second, until more details are learned about
how PGO waves affect the cortex, it is reasonable to assume
that this pathway has similar properties as the pathway from
the retina. Therefore, the same structure of topographic in-
put and ON/OFF middle layer is used in the model. Third,
to keep the size of the model manageable, the PGO patterns
are assumed to vary little in size and orientation, and are
presented statically. With larger maps, moving patterns and
larger variations can be taken into account (Sirosh and Miik-
kulainen 1996; Sirosh, Miikkulainen, and Bednar 1996).

The input patterns consisted of multiple (3-4) triples of
2-D Gaussian dots on a 132�132 array representing the
PGO waves. These stimuli are an implementation of the
genetically-encoded template postulated by Johnson and
Morton (1991), but they are used as a cortical training stim-
ulus rather than as hard-wired sub-cortical function. Each

triple was placed at a random location at least 30 units away
from others, with a random angle from a narrow (� = �/36
radians) normal distribution around vertical. A pair of
66�66 ON-center and OFF-center cell layers received input
from the PGO array. Each ON/OFF cell had a fixed Dif-
ference of Gaussians (DoG) receptive field (RF) within the
PGO array (center�=1.0, surround�=1.6; ratio is from Mar-
r 1982). The cortical layer consisted of 48�48 neurons that
received input from the ON/OFF cell layers and from their
neighbors within the cortical layer. The receptive field for
each neuron was placed at the location in the central 48�48
portion of the ON/OFF cell layer corresponding to the lo-
cation of the neuron in the cortex, giving every neuron a
complete set of afferent (input) connections. Initially, the
afferent weights were random and the lateral weights had a
smooth Gaussian profile; all weights adapted through Heb-
bian learning as patterns were presented on the PGO layer.
The learning rates and other parameters were similar to those
of Sirosh, Miikkulainen, and Bednar (1996), scaled for this
cortex size.

Results
In 20,000 presentations, the ordered configuration shown in
figure 3b emerged. As one would expect, the neurons in the
cortical layer developed receptive fields that closely resem-
ble the training inputs used (figure 2a). The cortical map
was then tested with the same schematic stimuli on which
human newborns have been tested (Goren, Sarty, and Wu
1975; Johnson and Morton 1991). Assuming that the new-
born attends most strongly to those stimuli that are most ef-
fective at activating his visual processing system (including
face-selective areas), the activations in the network can be
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Figure 4:Human newborn vs. model response to schematic images.The graph at left shows the result of a study of human newborns
tested with two-dimensional moving patterns within one hour of birth; the one at right shows the results from a separate study of newborns an
average of 21 hours old (Johnson and Morton 1991). Each pair of bars shows the average newborn eye and head tracking, in degrees, for the
image pictured below it; eye and head tracking showed similar trends here and thus either may be used as a measure. Since the procedures
and conditions differed between the two studies, only the relative magnitudes should be compared. The second row of images shows the
OFF-center activations in the CRF-LISSOM model; the ON-center cells responded as suggested by figure 2b. The bottom row shows the
settled response of the cortical layer. Remarkably, the settled response in the model reflects the same relative preferences for all stimuli as in
the newborn. Overall, the study at left demonstrates that the newborn and the network both respond to face-like stimuli more strongly than to
simple control conditions. The study at right shows what features of the face-like pattern are essential. In all cases, the CRF-LISSOM model
shows behavior remarkably similar to that of the newborns, and gives detailed computational insight into why these behaviors occur.

compared directly with the infant’s looking preferences.
Remarkably, the responses of the pre-trained network

turned out to match to the measured stimulus preference of
newborns very well, with the same relative ranking in each
case (figure 4). For both newborns and the model, a checker-
board pattern (4d) is the most effective, because it activates
a very large region of neurons that mutually reinforce each
other, despite the pattern being a poor match for a face.
(Of course, in a newborn, other object processing areas are
presumably even more effectively stimulated by a checker-
board, and thus such a pattern would be salient even if it did
not activate face detection areas.) A simple three-square-dot
pattern (4e) is also more effective than the more face-like
pattern (4f ), suggesting that the details of the input features
are irrelevant. An oval-dot pattern evokes somewhat lesser
activity than the other face-like stimuli since it has less ener-
gy in the spatial frequency range tested here (figure 4g); the
difference is slight for the model due to the limited resolu-
tion of the model retina. These results provide computation-
al support for the speculation of Johnson and Morton (1991)
that the newborn could simply be responding to a three-dot
face-like configuration, rather than performing sophisticated
face detection. Internally-generated patterns provide an ac-
count for how such “innate” machinery can be constructed.

The model also shows some interesting spurious respons-
es. Figure 4e shows two extra responses (the lighter blobs)
caused by fortuitous matches with the three-dot receptive

fields – e.g. the “mouth” dot can also match the right eye
blob of a receptive field, while the face border matches the
left eye and the mouth regions. These false matches actually
serve to make the pattern even more salient. This prediction
could be tested in newborns using stimuli with a single dot in
one of the three positions; the newborn should respond more
strongly to a pattern with a dot in the mouth position than to
one in either eye position (assuming the training pattern has
equal-sized dots and is processed using ON/OFF channels
like those in the model).

Presumably, an ability to detect faces in natural images
underlies the newborn’s preference for schematic faces, so
the CRF-LISSOM network was also tested with natural
stimuli. As shown in figure 5, the pre-trained map also per-
forms remarkably well on natural images. The map responds
strongly to most human faces of the right size, and does
not respond to most other stimuli, except when they con-
tain accidental three-dot patterns. The model predicts that
human newborns will have a similar pattern of responses in
the face-selective brain regions if they are using a template
with three equal-sized dots processed with ON- and OFF-
center cells. Conversely, if human newborns show different
responses, then it is likely that they are using a more sophis-
ticated template, the shape of which can be recovered from
the responses. Such experiments could constitute an impor-
tant validation of the model, and further our understanding
of the development of face detection in general.
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Figure 5:Model response to natural images. The top row shows the central 96�96 portion of a 132�132 image presented to the input
layer (data from Rowley, Baluja, and Kanade 1998). As in figure 4, the second row shows the activation of the OFF-center cells, while the
bottom row shows the response of the pre-natally trained network. The position of the network activation corresponds to the retinal position
of the object to which it is responding. The pre-natally trained network is indeed activated for most real faces (a-d) and for some non-face
patterns present in nature scenes (i) and complicated backgrounds (d). Just as important, the network is not activated for most man-made
objects (f-g) and natural scenes (h); it is also inactive for faces with broad smiles (e). The model predicts that newborns would show similar
responses.

Discussion and future work

The CRF-LISSOM simulations show that internally-gen-
erated patterns and self-organization can together account
for newborn face detection. Pattern-generation represents
a synthesis of the strengths of genetic specification and
environment-driven learning. Once the genetically-specified
component has ensured that the newborn pays attention to
faces, experience with real faces drives the development of
more sophisticated abilities. Preliminary further work has
shown that the pretrained map does learn from natural im-
ages more quickly and more effectively than does a map
with a random or uniform initial state.

The results reported in this paper suggest constraints on
the types of patterns that may be used by the PGO pattern-
generating system. For instance, if the patterns use the three
equal-sized dots proposed by Johnson and Morton (1991),
the system will not perform well on broad, fixed smiles; this
prediction could be tested in the human newborn. More di-
rect confirmation of the pattern-generation approach would
come from imaging measurements of the actual activity pat-
terns produced during REM sleep. Very recent advances
in imaging hardware have made limited measurements of
this type possible (Rector et al: 1997), and imaging of the
pons is planned for the near future (R. M. Harper, personal
communication). So it may soon be possible to test the as-
sumptions and the predictions of the model directly in the
developing animal.

Johnson and Morton (1991) originally proposed that new-
born face detection occurred subcortically, and a face-
selective subcortical pathway has recently been found in the
adult (Morris, Ohman, and Dolan 1999). However, it is
not known whether this pathway is present in infants, while
face-selective inferior temporal cortex cells have been found
in the youngest primates yet studied (6 weeks old; Rodman

1994). Thus since the current evidence points to a cortical
mechanism, only cortical face-selective regions were mod-
eled here. Incorporating subcortical influences would com-
plicate the model, but the same principles of pattern genera-
tion and self-organization would apply.

Since PGO waves continue into adulthood, internal pat-
tern generation may also have a lifelong role in maintain-
ing brain function while the system adapts to environmental
stimuli, particularly when subcortical pathways are consid-
ered. For instance, the patterns may help sustain connections
between the phylogenetically older regions that provide ba-
sic visual functionality (such as the superior colliculus, the
pulvinar, and the amygdala) and the more comprehensive
object processing performed in the various sensory and mo-
tor areas of the neocortex. Presenting similar patterns to sep-
arate areas simultaneously would strengthen the connections
between them, ensuring that despite pervasive adaptation
they continue to work together in their genetically-specified
roles. Thus ongoing internal pattern generation and self-
organization may help explain how multiple highly-plastic
processing streams are integrated into a coherent system.

From a larger information-processing perspective, pattern
generation combined with self-organization may represent
a general way to solve difficult problems like face detection
and recognition. Simple inputs, easy to specify and generate,
combined with simple learning mechanisms that also learn
from the environment, together allow a complex system to
be specified and developed. (Here “complex” is used in the
sense of Gell-Mann’s effective complexity, measuring the
total amount of regularity of all types; Gell-Mann and Lloyd
1996). The specification for the system need only encode a
process for constructing an individual along with interaction
from its environment, rather than meticulously specifying
the individual itself. Yet even so the result can incorporate
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the full complexity of the environment as well asa priori
information about the desired function of the system, with
seamless integration between the two. This approach could
be used for engineering complex artificial systems, e.g. for
handwritten character recognition, speech recognition, and
language processing.

Conclusion
We propose that internally-generated patterns represent a
general mechanism that allows an organism to specify, de-
velop, and maintain complex functional structures. CRF-
LISSOM simulations have shown how initial orientation
maps and face-selective maps could develop from non-
visual inputs. Future work will examine how these genet-
ic factors interact with learning in the adult, as well as how
distinct cortical areas can develop simultaneously. Such ex-
periments with self-organizing models should greatly im-
prove our understanding of the balance between environ-
mental and genetic determinants of individuality, and should
increase our ability to construct complex artificial systems.
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