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Abstract 

We estimate the DGD τ(ω) over the complete system bandwidth from FIR filter taps in coherent receivers with 

digital equalization, obtaining accurate DGD values even in presence of higher order PMD. 

 

 

Introduction 

Optical performance monitoring (OPM) plays an 

important role to estimate the signal quality and 

derive channel parameters to control equalizer 

properties [1]. To reach high transmission speeds in 

robust optical networks, coherently demodulated 

polarization multiplexed (CP) QPSK has been 

proposed together with digital signal processing for 

equalization and data recovery [2]. The FIR filter, 

approximating the inverse channel impulse response 

by blind convergence [3], provides significant 

information about parameters such as chromatic 

dispersion (CD), differential group delay (DGD), 

OSNR [4] and even polarization dependent loss 

(PDL) and polarization state transformations (PST). 

In [4] we showed an estimation of the DGD from FIR 

filter taps with <τ(ω)> set experimentally by a DGD 

emulator. In this paper we present the estimation of 

the DGD spectrum τ(ω) over the complete system 

bandwidth with an accurate estimate of the average 

DGD <τ(ω)>, even in presence of higher order PMD. 

We validate our results by extensive simulations. 

Properties of the Filter Impulse Response 

After the 90°-hybrid, the ADC and the clock recovery, 

we receive a digital representation of the optical field, 

defined in 4 dimensions with respect to the real and 

the imaginary part in each polarization X and Y. 

Operating at low channel powers, we can describe 

the channel as a concatenation of linear elements 

accumulating CD, PMD and low-pass (LP) filtering. If 

the equalizer (Fig. 1) is fully matched to compensate 

for linear channel impairments, its tap weights define 

the inverse of the channel impulse response.  

Figure 1: Complex FIR butterfly structure with exemp-

lary real-valued implementation of hxx (left) and detail 

of tapped delay line with filter coefficients (right) 

Due to the real valued implementation, we can ave-

rage over alike components to increase the accuracy 
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and for hXY, hYX, hYY analogously to obtain 
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With the aid of a DFT, we compute the filter transfer 

function Hfilt = DFT(h) = 1/Hch, which corresponds to 

the inverse channel transfer function. 

From the literature we know 
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where U
H refers to the inverse PMD matrix and D-1 

contains the linear channel transfer function including 

LP filtering and the effect of CD. Neglecting PDL, we 

can decompose the desired transfer functions aided 

by the unitary property of UH with |u|2+|v|2=1 
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giving u and v. It can be shown that [5] 
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where τ(ω) denotes the DGD spectrum and the index 

ω denotes the derivation with respect to frequency. 

The digital spectral domain from [–B, +B] is defined 

by the ADC rate of 2 samples per symbol (B = baud 

rate) with a resolution given by the number of T/2 

spaced taps in the FIR filter. Knowing u and v, we 

could actually calculate back on the complete PMD 

vector in the Stokes space by [5] 
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However, for realistic numbers of taps (#taps<30) the 

low resolution prevents accurate results. 

Due to the reversed low pass filtering by the term  

1/D-1, U
H is degraded towards the bandwidth limits 

(compare fig. 3). So we confined the estimation of 

<τ(ω)> to a bandwidth of [-0.75B, +0.75B] leading to 

an accurate estimation. 
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Figure 2: Mn with significant higher order PMD 

Numerical Results 

Simulations were carried out according to the 

experimental setup described in [2] with 111Gbit/s 

CP-QPSK (27.5 GBaud) transmitted over a linear 

channel with concatenated elements of PMD, CD and 

LP filtering. For a given mean PMD, 20 segments with 

randomly rotating Jones matrices in between 

accumulate to the total PMD. The actual τ(ω) and 

<τ(ω)> are calculated from the resulting DGD 

spectrum. A complex butterfly 21-tap FIR filter bank 

equalizes the channel impulse response after blind 

convergence at OSNR=15 dB leading to BER≈3⋅10
-4

 

well bellow the FEC limit. 

For the given bandwidths, Fig. 2 shows the root mean 

square magnitude Mn of the first 4 orders of PMD [6].  

We carried out 1000 simulations for each mean PMD 

of [2, 5, 10, 20, 30] ps in combination with CD ranging 

up to 1000 ps/nm. For CD=800 ps/nm an example of 

u, v, τ(ω) andτestim(ω) in case of <τ(ω)>=19 ps is given 

(fig. 3). For the same value of CD and a mean PMD 

of 20 ps, <τestim(ω)> vs. <τ(ω)> shows a precise 

estimation up to values of <τ(ω)>=20 ps, while larger 

values lead to a higher deviation (fig. 4).  

Figure 5, which refers to a total amount of 30000 

simulations, shows the standard deviation within each 

combination of mean PMD and CD. The estimation is 

robust against CD, but degrades for large values of 

mean PMD, where especially large values of <τ(ω)> 

above 20 ps contribute to the deviation (compare     
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 Figure 3: Example of u, v (top), τ(ω), τestim(ω) (bottom) 
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Figure 4: Estimation of <τ(ω)> 
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Figure 5: Standard deviation of <τestim(ω)> for each 

combination of CD and mean PMD  

fig. 4). Taking into account only cases, where <τ(ω)> 

is lower than 20 ps, the standard deviation over all 

estimations is below 3 ps, which is highly precise. In 

continuous operation of FIR equalizers, the coefficient 

update follows polarization rotations, which vary 

faster than the DGD. So we receive different filter 

realizations for the same DGD. Thus, the estimation 

of large values of <τ(ω)> could be strongly improved 

by averaging over several consecutive estimations. 

Conclusions 

We have shown an accurate method to estimate the 

DGD spectrum τ(ω) from FIR filter taps in digital 

equalizers of coherent receivers. Avoiding faulty 

samples at the bandwidth edges, we can estimate the 

average DGD <τ(ω)> precisely up to 20 ps within this 

bandwidth, even in presence of higher order PMD 

and large values of CD.  
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