
MOISHEZON SPACES IN RIGID GEOMETRY

BRIAN CONRAD

Abstract. We prove that all proper rigid-analytic spaces with “enough” algebraically independent mero-

morphic functions are algebraic (in the sense of proper algebraic spaces). This is a non-archimedean analogue

of a result of Artin over C.

1. Introduction

1.1. Motivation. We begin with a review some relevant notions in complex-analytic and non-archimedean
geometry so as to put the main result in context. Let X be a proper complex-analytic space. It is a classic
result of Remmert [R, Thm. 2] that if X is reduced and irreducible then the field of meromorphic functions on
X is finitely generated over C with transcendence degree at most dimX. In general, X is called Moishezon
if each of its irreducible components Xi (endowed with reduced structure) has meromorphic function field
M (Xi) with transcendence degree over C equal to dim(Xi). (We refer to [C1, §2] for the definition and
basic properties of irreducible components of rigid-analytic spaces.) In [M1], Moishezon showed that any
Moishezon space is related to the analytification X an of a proper C-scheme X via a proper birational
correspondence, and he gave examples that do not arise in the form X an for proper C-schemes X .

Moishezon established other stability properties of the category of Moishezon spaces, such as under images
and closed subspaces, and in [M2] he proved Chow’s Lemma and resolution of singularities for reduced
Moishezon spaces by using blow-up along smooth centers. The problem of enlarging the category of schemes
to make a good notion of “algebraicity” for Moishezon spaces therefore became the problem of developing
an algebro-geometric theory of contractions along closed subvarieties.

Such a contraction operation generally cannot be done within the category of schemes, so in the series of
papers [M3] Moishezon independently developed a theory of mini-schemes, contemporaneously with Artin’s
similar theory of algebraic spaces; his aim was to eventually establish a suitable contraction result for mini-
schemes so that he could then prove that Moishezon spaces are algebraic in the sense of proper mini-schemes
over C. The required contraction theorem was later proved by Artin [A2, 6.11] for algebraic spaces. The
combined work of Moishezon (including his analytic resolution of singularities) and Artin explained the
similarities between Moishezon spaces and proper C-schemes: analytification of proper algebraic spaces over
C sets up an equivalence of categories with the category of Moishezon spaces. That is, all Moishezon spaces
have a unique and functorial underlying algebraic structure in the sense of GAGA for proper algebraic spaces
over C. (In [A2, §7], Artin gave another proof of this result, bypassing Moishezon’s work on resolution for
Moishezon spaces.)

To make sense of a non-archimedean version of Artin’s theorem, it is necessary to construct an analyti-
fication functor on proper algebraic spaces over non-archimedean fields k (and to check that the GAGA
theorems carry over). This amounts to constructing quotients by certain étale equivalence relations in rigid
geometry. Briefly, suppose that R ⇒ U is an étale equivalence relation in schemes such that the diagonal
R → U × U is quasi-compact and the quotient sheaf U /R for the big étale site is an algebraic space X
locally of finite type over k. The problem is to determine if the étale equivalence relation Ran ⇒ U an admits
a quotient (suitably defined) in the category of rigid-analytic spaces over k, in which case such a quotient
(and its existence) is independent of the choice of étale chart for X and so may be denoted X an. (See [CT,
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§2] for a more detailed discussion of this definition of analytification, as well as its functorial dependence on
X when it exists.)

In the complex-analytic case this quotient problem is very easy to study, and if X is an algebraic space
locally of finite type over Spec C then a necessary and sufficient condition for the analytification of X to
exist is that X is locally separated over Spec C (in the sense that its quasi-compact diagonal map ∆X /C is an
immersion). In the non-archimedean case, this quotient problem is rather more subtle. An initial indication
of the difficulties is the surprising fact that although (as over C) local separatedness remains a necessary
condition for analytifiability [CT, 2.2.5], it fails to be sufficient. Counterexamples are given in [CT, 3.1.1]
over any non-archimedean field k, including the scalar extension to k of certain smooth algebraic spaces of
dimension 2 over the prime field. By using Berkovich spaces (and local techniques for studying them [T1],
[T2]), these difficulties were overcome in [CT, 4.2.1], where it was shown that every separated algebraic space
locally of finite type over k is analytifiable in the sense of rigid geometry. (This is a consequence of a general
existence result [CT, 4.2.2] for quotients of étale equivalence relations R ⇒ U in Berkovich’s category of
k-analytic spaces.) The GAGA formalism carries over [CT, 3.3].

1.2. Main result. Since Remmert’s theorem on the structure of meromorphic function fields in the proper
complex-analytic case remains valid over k (due to Bosch [B2]), it is natural to carry over the definition of
a Moishezon space to the case of proper rigid spaces over k. It is straightforward to check (as over C) that
if X is a proper algebraic space over k then its analytification X an (in the sense of [CT]) is a Moishezon
space over k. Thus, it is reasonable to ask if there is an analogue of Artin’s theorem in the non-archimedean
case. The affirmative answer is our main result:

Theorem 1.2.1. The functor X  X an from proper algebraic spaces over k to proper rigid spaces over k
is an equivalence onto the full subcategory of Moishezon spaces.

The intervention of inseparability issues when char(k) = p > 0 is the primary new feature. This leads
to a larger role for flatness than in Moishezon’s work, as well as the use of certain algebraic yet complete
ground field extensions with possibly infinite degree (such as k → kp

−m
for m ≥ 1). Also, Berkovich spaces

arise in an essential way in our proof of Theorem 1.2.1, even though they do not appear in the statement.
Finally, a key ingredient at the end is Artin–Popescu approximation for algebraic equations over excellent
rings, applied to the local rings on good k-analytic spaces (which are excellent by a recent result of Ducros
[D2]).

We begin by studying meromorphic function fields in §2; this consists largely of known results, which
we gather for the convenience of the reader. In §3 we overcome several difficulties in positive characteristic
to establish the non-archimedean version of Moishezon’s theory. Finally, in §4 we combine the results in
§3 with variants on ideas of Artin to prove the algebraicity of Moishezon spaces in rigid geometry. As we
mentioned in §1.1, there are two approaches to the algebraicity result over C: (i) Moishezon’s strategy via
analytic resolution (proved by him) and algebraic contractions (later proved by Artin), (ii) Artin’s later
direct approach [A2, §7] which avoids resolution of singularities and so is better-suited to adaptation to the
non-archimedean case in arbitrary characteristic. This second approach guides our arguments in §4.

1.3. Erratum. I would like to take this opportunity to correct a minor error in my paper [C1]. In the final
part of [C1, 4.1.1] it should have been assumed that the ground field k is discretely-valued, and so in [C1,
4.2.2, 4.2.3] this assumption should be required. The error was to appeal to an argument with an infinite
product of (normalized) units on the open unit disc to “prove” the triviality of line bundles on the open unit
disc. Such a product argument makes sense for a discretely-valued ground field, but over a more general
non-archimedean ground field there are convergence problems and it is not true that such line bundles are
trivial. In fact, over Cp one can construct an effective divisor in the open unit disc that is not the divisor
of zeros of an analytic function (and so the corresponding invertible ideal sheaf is not globally trivial). See
[FvP, 2.7.8] for how to construct such examples using that Cp is not spherically complete.

1.4. Conventions. In the rigid-analytic setting, the ground field k is taken to be complete with respect to
a fixed nontrivial non-archimedean absolute value (i.e., it is a non-archimedean field). When working with
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Berkovich spaces we allow for the possibility that the absolute value on k is trivial. In general, an analytic
extension field K/k is one that is complete with respect to a fixed absolute value extending the one on k.
Algebraic spaces are locally of finite type over k (and maps between them are k-maps) unless otherwise
stated, and their diagonals over Spec k are always assumed to be quasi-compact; in fact, only separated
algebraic spaces are relevant in this paper.
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2. Meromorphic function fields

2.1. Basic properties and definitions. As in the case of locally ringed spaces [EGA, IV4, §20], if X is a
rigid space then the sheaf of meromorphic functions MX on X is the localization of OX at the multiplicative
subsheaf SX ⊆ OX consisting of regular local sections; i.e., SX(U) is the set of s ∈ OX(U) such that
multiplication by s on OX |U is injective (or equivalently, for reduced X, s has a nowhere dense zero locus in
U). This localization contains OX as a subsheaf of algebras, and for any f ∈ MX(U) the associated ideal
sheaf of denominators

(2.1.1) Df (V ) = {s ∈ OX(V ) | sf ∈ OX(V )}
for V ⊆ U is easily seen to be coherent. The coherent ideal Df locally contains a section of SX , and for any
two coherent ideals I and J on X that locally contain sections of SX the product ideal does too. For any
such coherent ideal I we naturally have Hom(I ,OX) ⊆MX(X), and there is a natural global isomorphism

(2.1.2) lim−→Hom(I ,OX) 'MX(X)

where I ranges over the directed system (by reverse inclusion) consisting of coherent ideals on X that locally
contain an OX -regular section. This constraint on I says exactly that Ix has positive OX,x-depth for all
x ∈ X, and it is equivalent to check this property on completed stalks for all x ∈ X.

The description of MX(X) in (2.1.2) has several consequences. First, by rigid GAGA for proper algebraic
spaces [CT, 3.3], the analytification functor from proper algebraic spaces over k to proper rigid spaces over k
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naturally commutes with the formation of the k-algebra of global rational/meromorphic functions. Second,
for each affinoid open U = Sp(A) in X the A-algebra MX(U) is uniquely isomorphic to the total ring of
fractions of A, and MX,x is the total ring of fractions of OX,x for all x ∈ X. Hence, if π : X̃ → X is
the normalization of a reduced space X then there is a unique isomorphism MX = π∗(M eX) over the map
OX → π∗(O eX). By using results in [C1, §2] we can also carry over arguments in the complex-analytic case
[CAS, 9.1.2] to show that MX(X) is a field when X is reduced and irreducible.

To work with normalizations when studying meromorphic functions, a key ingredient is the Riemann
extension theorem for normal rigid spaces. This result was first proved by Lütkebohmert [Lüt, Thm. 1.6]
under a hypothesis of geometric normality (in the sense of [C1, 3.3.6]), and then by Bartenwerfer [Bar, §3]
in general by an independent method. It is also possible to deduce the general case from the geometrically
normal case by using general results concerning ground field extension functors in rigid geometry [C1, §3]
and the excellence of affinoid algebras and local rings on rigid spaces ([K3], [C1, §1]). Here is the result.

Theorem 2.1.1 (Bartenwerfer). If X is a normal rigid space over k and Z ⊆ X is a nowhere dense analytic
set then any bounded analytic function h on U = X − Z uniquely extends to X.

To define a rigid-analytic pullback map for meromorphic functions in the reduced case, the following
result is convenient and can be proved exactly as in the complex-analytic case [CAS, 8.4.3] with the help of
Theorem 2.1.1; cf. [Ber1, 3.3.18].

Corollary 2.1.2. Let f : X → Y be a map between reduced rigid spaces, with respective nowhere dense
analytic non-normal loci N(X) and N(Y ). If the analytic set f−1(N(Y )) in X is nowhere dense then f

uniquely lifts to a map X̃ → Ỹ between the normalizations.

If π : X → Y is a surjective map between connected normal rigid spaces then there is a unique map of
sheaves of algebras π∗ : MY → π∗(MX) over OY → π∗(OX), and if π is proper and birational (in the sense
that π restricts to an isomorphism over Y − Z for a nowhere dense analytic set Z ⊆ Y with nowhere dense
preimage in X) then Theorem 2.1.1 permits the same argument as in the complex-analytic case [CAS, 8.1.3]
to be used to show that the map π∗ : MY → π∗(MX) is an isomorphism. In particular, global meromorphic
functions on X are identified with global meromorphic functions on Y when π is proper and birational, even
if X and Y are merely reduced (and possibly reducible).

For our work with meromorphic functions, it will be convenient to be able to assign Weil divisors to
invertible meromorphic functions. Let us briefly review how this goes on a normal rigid space S. Consider
an invertible meromorphic function g ∈MS(S)×. By the excellence of affinoid algebras ([K3], [C1, 1.1.1]), the
locus Reg(S) of s ∈ S such that OS,s is regular is the complement of an analytic set in S with codimension≥ 2.
Let Z∞(g) and Z0(g) be the closed subspaces of S cut out by the ideal sheaves of “denominators” of g and 1/g
in the sense of (2.1.1). These closed subspaces meet Reg(S) in effective Cartier divisors. Define the analytic
set D0(g) ⊆ Z0(g) (resp. D∞(g) ⊆ Z∞(g)) to be the union of the codimension-1 irreducible components of
Z0(g) (resp. Z∞(g)) that meet Reg(S). Since S −D∞(g) is a normal space in which Z∞(g) −D∞(g) has
codimension ≥ 2, the analytic function g on S − Z∞(g) extends to S − D∞(g) by Theorem 2.1.1. Hence,
D∞(g) = Z∞(g) as subsets of S. Working with 1/g likewise gives that D0(g) = Z0(g) as analytic sets in S, so
D0(g) and D∞(g) each admit a natural structure of Weil divisor with positive multiplicities. It is clear that
D0(g) and D∞(g) have no irreducible components in common, so the Weil divisor div(g) := D0(g)−D∞(g)
determines D0(g) and D∞(g). We respectively call D0(g) and D∞(g) the zero locus and polar locus of g on
S, and also the zero part and polar part of div(g).

Lemma 2.1.3. Let s be a point in a rigid-analytic space S, and Z ⊆ S an analytic set through s ∈ S. Then
s has a base of open neighborhoods U ⊆ S such that the set {Zi,U} of irreducible components of Z ∩ U is in
bijective correspondence with the set of minimal primes of OZ,s via Zi,U 7→ ker(OZ,s � OZi,U ,s).

In the complex-analytic case, this lemma follows from [CAS, 4.1.3, 9.2.3]. We do not know if U in the
lemma can be taken to be affinoid; already in the special case Z = S with OS,s a domain, the existence of a
base of irreducible affinoid neighborhoods of s seems to be rather non-trivial; see [P, Cor. 4.7].
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Proof. The proof is identical to the complex-analytic case, but in that case the ingredients are somewhat
scattered throughout [CAS, 9.1, 9.2], so we give the details here for the convenience of the reader. (A related
argument in the setting of Berkovich spaces is given in [D2, 0.11–0.14], combined with the global theory of
irreducible components of Berkovich spaces developed in [D2, §4]).

By standard coherence arguments, after shrinking of S around s we may define reduced analytic sets Zi
in Z which cover Z and are cut out by coherent ideals in OZ whose stalks at s are the minimal primes of
OZ,s. In particular, each OZi,s is a domain, so its normalization is a (local) domain. Hence, by [C1, 2.1.1],
the finite surjective normalization pi : Z̃i → Zi has a unique point over s. But the irreducible components of
Zi are (by definition in [C1]) the images of the connected components of Z̃i, so there is a unique irreducible
component Z ′i of Zi passing through s.

Since the set of irreducible components of Zi is locally finite [C1, 2.2.1(3)], the union of any set of
irreducible components of Zi is an analytic set in Zi and hence in S. Thus, the union Yi of irreducible
components of Zi distinct from Z ′i is an analytic set in Zi. Let Y = ∪Yi, so the Zariski-open locus Zi−(Zi∩Y )
in Zi around s has normalization that is the complement in Z̃i of a proper analytic set (by [C1, 2.2.1(2),(3)]).
Such a complement in a connected normal rigid space is connected (by Theorem 2.1.1 applied to idempotents),
so each Zi−(Zi∩Y ) has connected normalization and hence is irreducible (cf. [C1, 2.2.3]). Thus, U := S−Y
is an open neighborhood of s such that Z ∩U is covered by the irreducible analytic sets Zi,U := Zi− (Zi∩Y )
whose coherent ideals in OZ,s are the minimal prime ideals. In particular, there are no inclusions among the
Zi,U , so the Zi,U are the irreducible components of Z ∩ U (by [C1, 2.2.8]). �

Since all local rings on irreducible rigid spaces have the same dimension (see the discussion immediately
preceding [C1, 2.2.3]), it follows that under the correspondence in Lemma 2.1.3 the dimension of Zi,U
coincides with the dimension of the quotient of OZ,s by the corresponding minimal prime ideal. Applying
this for codimension-1 analytic sets in admissible open subsets of the normal rigid space S, it follows that
the formation of div(g) is local on S (if we allow that irreducible components of a Weil divisor may become
reducible under localization) and is compatible with passage to local rings on S. Hence, by normality
of S, div(g) has vanishing polar part if and only if g ∈ OS(S), and div(g1g2) = div(g1) + div(g2) for
g1, g2 ∈MS(S)×. In particular, div(g) determines g up to multiplication by OS(S)×.

This procedure carries over verbatim to associate Weil divisors to trivializations of the invertible MS-
module MS⊗L for any line bundle L on S (the preceding being the case L = OS). An interesting example
is L = ΩnS/k if S is k-smooth with pure dimension n, as we will use in Step 4 of the proof of Theorem 3.3.2.

Example 2.1.4. If X is a reduced rigid space then any morphism X → P1 that is not identically equal to
∞ on any irreducible component of X is naturally identified with a meromorphic function on X. For later
purposes, we wish to review a technique of removing the indeterminacy locus of an arbitrary meromorphic
function on X so as to promote it to a morphism to P1 (since we will need to generalize the method to
the case when X is not reduced; see Remark 4.4.5.) Choose f ∈ MX(X). We seek to construct a proper
birational map π : X ′ → X from a reduced rigid space X ′ so that when f is viewed in MX′(X ′) = MX(X)
it arises from a morphism X ′ → P1. One approach is to work with the blow-up of X (in the sense of [C2,
4.1.1]) along the coherent ideal sheaf Df of denominators of f . The following direct geometric construction
seems better-suited to generalization to the non-reduced case, as we will require later (see Remark 4.4.5).

Let U ⊆ X be the dense Zariski-open complement of the analytic set cut out by the coherent ideal sheaf
of denominators of f . In U × P1 there is a reduced analytic set Γ given by the graph of f , and Γ projects
isomorphically onto U . The desired X ′ will be the unique analytic set in X × P1 containing Γ as a dense
Zariski-open subspace, but we shall need to work locally to see that such a global analytic set exists.

There is certainly at most one reduced analytic set X ′ in X × P1 that meets the Zariski-open U × P1

in Γ as a dense Zariski-open subspace of X ′, and the same holds if U is replaced with a dense Zariski-open
subset V ⊆ U (and Γ is replaced by Γ|V ). This unique characterization of X ′ localizes well on X, so for
the proof of existence of X ′ we may work locally on X. Hence, we can assume f = a/b with a, b ∈ OX(X)
and b nowhere a zero-divisor on OX . The Zariski-open subset {b 6= 0} in X is dense and contained in U .
The closed subspace Y ⊆ X ×P1 defined by at1 = bt0 (for homogeneous coordinates t0, t1 on P1) has pure
codimension 1 and its restriction over {b 6= 0} is the graph of f = ab−1 over {b 6= 0}. Each irreducible
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component of this graph over {b 6= 0} is a dense Zariski-open subspace in a unique irreducible component of
Y , so take X ′ to be the reduced union of these components of Y .

2.2. Remmert’s theorem. The inspiration for considering Moishezon’s theory in rigid geometry is the
following analogue of a classical theorem of Remmert over C.

Theorem 2.2.1. If X is a proper, reduced, and irreducible rigid space over k then the field MX(X) of
meromorphic functions on X is a finitely generated extension of k with transcendence degree at most dimX.

See [Ber1, §3.6] for a discussion of this result in the framework of k-analytic spaces, also using a proof
modeled on the complex-analytic case. A proof was given by Bosch in [B2], but it is difficult to find a copy
of that reference, so for the convenience of the reader we provide a sketch of a proof that is probably the
same as Bosch’s proof.

Proof. The complex-analytic analogue is proved in [CAS, 10.6.1–10.6.7], and when that method is adapted
to the non-archimedean setting (with the help of rigid GAGA, Corollary 2.1.2, and some straightforward
modifications to account for both the use of the Tate topology rather than a classical topology and the
phenomenon of inseparability when k has positive characteristic) we get a slightly weaker result: MX(X) is
a purely inseparable algebraic extension of a finitely generated field over k with transcendence degree d at
most dimX. (To briefly explain the difficulty with inseparability, the details of which are not essential for
what follows, we use the notation in [CAS, 10.6]. The place where inseparability enters in the lemma is [CAS,
10.6.6], where the map ν : Yf → Y between projective normal (rigid-analytic) varieties has geometrically
connected fibers and so induces a finite extension on meromorphic function fields that is purely inseparable.
In positive characteristic there arises the new difficulty of showing that this map of function fields is actually
an isomorphism, as otherwise the first theorem in [CAS, 10.6.7] would have a weaker conclusion, involving
not ι(MY (Y )) but rather its its perfect closure in MX(X), so the remainder of the argument would collapse.)

To overcome these inseparability problems, we use Stein factorization. (See the second part of the proof
of [Ber1, 3.6.8] for an alternative argument.) Choose a transcendence basis {t1, . . . , td} for MX(X) over
k, so MX(X)/k(t1, . . . , td) is an algebraic extension. The procedure used in the complex-analytic proof
provides (via straightforward adaptation to the non-archimedean case) a pair of normal connected proper
rigid spaces X ′ and Y with Y projective, as well as surjective maps µ : X ′ → X and η : X ′ → Y such that µ
is birational, η is its own Stein factorization, and the subfield MY (Y ) ⊆MX′(X ′) = MX(X) over k contains
t1, . . . , td. In particular, MX′(X ′) is algebraic over MY (Y ). We will show that MY (Y ) is algebraically closed
in MX′(X ′) = MX(X), so this algebraic extension is trivial. This would give that MX(X) = MY (Y ). By
GAGA and the projectivity of Y , the field MY (Y ) is finitely generated over k with transcendence degree
dimY , so we would therefore be done.

Let K be an intermediate finite extension in the algebraic extension MX′(X ′)/MY (Y ), and let the finite
map h : Y ′ → Y be the normalization of the projective Y in K (in either the algebraic or analytic senses,
which are compatible [C1, 2.1.3]). Our goal is to prove K = MY (Y ), or equivalently that the finite covering
map h is an isomorphism. We claim that η : X ′ → Y uniquely factors through h via a map X ′ → Y ′

inducing the inclusion K ⊆ MX′(X ′) on meromorphic function fields. The uniqueness is clear since Y ′ is
projective, and for existence we let K = h∗(MY ′) on Y . Again using projectiveness, GAGA provides an
evident isomorphism of sheaves of algebras K⊗MY (Y ) MY ' K (where we abuse notation by writing K and
MY (Y ) to denote the associated constant sheaves on Y ). Thus, we get an OY -algebra map

θ : K →MX′(X ′)⊗MY (Y ) MY → η∗(MX′)

over the map OY → η∗(OX′). Hence, local sections of the subsheaf h∗(OY ′) ⊆ K are carried into local
sections of η∗(MX′) that are integral over OX′ . By normality of X ′, it follows that θ carries h∗(OY ′) into
η∗(OX′), and by finiteness of h this sheaf map arises from a unique morphism X ′ → Y ′ that does the job.

Our problem now is to show that if a finite surjection h : Y ′ → Y between connected normal rigid spaces
is intermediate to the map η : X ′ → Y that is its own Stein factorization (so X ′ → Y ′ is surjective) then h
is an isomorphism. Pullback of functions provides inclusions

OY ↪→ h∗(OY ′) ↪→ η∗(OX′)
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whose composite is the canonical map that is an isomorphism since η is its own Stein factorization. Thus,
the first inclusion is an equality, and since h is finite this gives Y ′ = Y as desired. �

3. Moishezon spaces

3.1. Behavior under alterations. By GAGA for proper algebraic spaces over k [CT, 3.3], analytification
is a fully faithful functor from proper algebraic spaces over k to proper rigid spaces over k. If X is a proper
algebraic space over k then since X contains a dense open subscheme it follows (via the compatibility of
analytification with respect to the formation of irreducible components with the reduced structure [CT,
2.3.3]) that the upper bound in Theorem 2.2.1 is attained by the irreducible components (endowed with
reduced structure) of X an. In other words, exactly as over C, analytification carries proper algebraic spaces
to rigid spaces satisfying the following definition.

Definition 3.1.1. A rigid space X over k is Moishezon if it is proper and each irreducible component Xi

of X, endowed with its reduced structure, satisfies trdegk(MXi(Xi)) = dimXi.

Our ultimate goal is to prove that the Moishezon property characterizes the essential image of analytifi-
cation of proper algebraic spaces over k. That is, we will prove that all Moishezon spaces are algebraic in
the sense of (proper) algebraic spaces. It is necessary to first record how the Moishezon condition behaves
with respect to alterations, which we define as follows.

Definition 3.1.2. A map f : X → Y between irreducible and reduced proper rigid spaces over k is an
alteration if dimX = dimY and f is surjective.

The analogy with algebraic geometry and the complex-analytic case suggests that an alteration should be
generically finite, and so we first use formal models to check that this is true.

Lemma 3.1.3. Let f : X → Y be a proper surjection between non-empty rigid spaces with the same pure
dimension d ≥ 0. There is a nowhere dense analytic set Z ⊆ Y such that Y − Z is the set of y ∈ Y such
that f−1(y) is finite. In particular, f is finite over Y − Z.

Proof. By [K2, 3.7] (or [D1, 3.5]), the locus of x ∈ X such that x is isolated in Xf(x) is a Zariski-open
locus U ⊆ X, so Z = Y − f(X − U) is the desired analytic set in Y provided that Z is nowhere dense in
Y . By working locally on Y and using its global decomposition into irreducible components we see that
it suffices to show Z 6= Y . Equivalently, we seek a point x ∈ X that is isolated in Xf(x). In view of the
dimension hypotheses, this would follow from a generic flatness result for reduced rigid spaces analogous to
the well-known version for reduced noetherian schemes. Due to lack a suitable reference for such a result,
we give an argument using formal models.

We can assume that Y is quasi-compact and quasi-separated (e.g., affinoid), so there is a formal model
f : X → Y for the map f , with X and Y each R-flat and quasi-compact. In the proof of [C3, Thm. A.2.1]
it is shown that the special fibers X0 and Y0 over k̃ have pure dimension d. By using rig-points of formal
models, we see that the map f0 between these special fibers is surjective since f is surjective. Any surjective
map between finite-type schemes with the same pure dimension over a field must be finite over a dense open
in the target, so we get a dense open V0 ⊆ Y0 such that f0 is finite over V0. Thus, for the corresponding
open subset V ⊆ Y the map f−1(V) → V is finite. The admissible open V = Vrig ⊆ Y is non-empty and
f−1(V )→ V is finite. �

Example 3.1.4. We now show that the Moishezon property is insensitive to alterations. Let f : X → Y
be an alteration between irreducible and reduced proper rigid spaces. We will prove that f induces a finite
extension between meromorphic function fields, so X is Moishezon if and only if Y is Moishezon.

Without loss of generality, X and Y are normal (use Corollary 2.1.2 to pass to the induced map between
normalizations if necessary). In the birational case we have already observed immediately below Corollary
2.1.2 (via adaption of complex-analytic arguments) that the induced pullback map between meromorphic
function fields is an isomorphism. In the general case, consider the Stein factorization X → Y ′ → Y of f .
Since Y ′ is reduced and irreducible, the normality of X forces Y ′ to be normal.
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The finite map π : Y ′ → Y to the normal Y makes π∗(MY ′) into a locally free finitely generated sheaf
of modules over MY , and its rank is constant since Y is connected. Thus, the sheaf-theoretic characteristic
polynomial expresses MY ′(Y ′) as an algebraic (hence finite) extension of MY (Y ). We can therefore rename
Y ′ as Y so as to assume that f is its own Stein factorization. By Lemma 3.1.3 there is a nowhere dense
analytic set Z ⊆ Y such that f is finite over Y −Z, so it is an isomorphism over Y −Z due to being its own
Stein factorization (and the proper analytic set f−1(Z) ⊆ X is nowhere dense because X is irreducible).
Hence, f is birational, so MY (Y ) = MX(X).

The following useful corollary of the proof of Theorem 2.2.1 and the preceding example is analogous to a
result [M1, Ch. I, Thm. 1] that gets Artin’s inductive proof of algebraicity of Moishezon spaces off the ground
over C. It essentially says that Moishezon spaces are birational to projective schemes; a vast generalization
will be given in Corollary 4.1.2.

Corollary 3.1.5. Let X be an irreducible and reduced Moishezon space. There exists a connected normal
proper rigid space X ′ and a connected normal projective rigid space X ′′ for which there are proper birational
maps X ← X ′ → X ′′.

Note that X ′ is necessarily Moishezon by Example 3.1.4. See [Ber1, 3.6.6] for a result similar to Corollary
3.1.5 that applies without a Moishezon hypothesis and gives a proper surjection f : X ′ → X ′′ inducing an
isomorphism of meromorphic function fields without controlling birationality properties of f . The content
in our proof of Corollary 3.1.5 is to check that such birationality must hold in the Moishezon setting.

Proof. We can replace X with its normalization so that X is normal. Take X ′ as in the proof of Theorem
2.2.1 (so X ′ → X is proper and birational), and take X ′′ = Y in that notation. The proper surjective map
X ′ → Y = X ′′ was shown to induce an equality on meromorphic function fields in that proof. Since X is
Moishezon, the field MX(X) = MX′(X ′) has transcendence degree over k equal to the common dimension
d of X and X ′. The projective X ′′ has the same meromorphic function field, which is then equal to the
underlying algebraic rational function field of X ′′, so its transcendence degree is dimX ′′. Thus, dimX ′′ = d
and it remains to prove that X ′ → X ′′ is birational. More generally, as we explained in Example 3.1.4 using
Lemma 3.1.3, a proper surjection f : X ′ → X ′′ between irreducible and reduced rigid spaces is birational if
X ′′ and X ′ have the same dimension and f is its own Stein factorization. �

The next corollary (which we shall use later to overcome inseparability problems) is a consequence of
Corollary 3.1.5 and relates local geometric properties of certain morphisms to algebraic properties in a
global meromorphic function field.

Corollary 3.1.6. Let X be an irreducible and reduced Moishezon space with dimension n > 0, and assume
that MX(X) is separable over k. Let f1, . . . , fn ∈ MX(X) be a separating transcendence basis over k. Let
X ′ → X be a proper birational map from an irreducible and reduced rigid space X ′ such that each fi viewed
as a meromorphic function on X ′ comes from a morphism fi : X ′ → P1. The map (f1, . . . , fn) : X ′ → (P1)n

is étale on a non-empty Zariski-open locus in X ′. In particular, the Zariski-open k-smooth locus Xsm in X
is non-empty and the meromorphic differential form

df1 ∧ · · · ∧ dfn ∈ Γ(X,MX ⊗ ΩnX/k)

restricts over Xsm to a global basis of the invertible MXsm-module of meromorphic n-forms.

By Example 2.1.4, an X ′ as in this corollary always exists.

Proof. Since X ′ is Moishezon, we may rename X ′ as X. If π : X1 → X is a proper and birational map
from an irreducible and reduced Moishezon space such that the result is known for X1, say with the map
X1 → (P1)n étale away from a proper analytic subset Z1 ⊆ X1, then the map X → (P1)n is étale on
the Zariski-open overlap of the non-empty X − π(Z1) with any non-empty Zariski-open locus in X over
which π is an isomorphism. Hence, by Corollary 3.1.5 we can assume that X is normal and admits a
proper and birational map onto a reduced and irreducible rigid space P that is projective. In particular,
MP (P ) = MX(X) is separable over k. The algebraic theory of separable function fields provides a non-
empty Zariski-open locus W in P on which the fi’s (viewed in MP (P )) are analytic functions whose product
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morphism to (P1)n is étale. The desired Zariski-open locus in X may be taken to be the preimage of the
overlap of W with a non-empty Zariski-open in P over which X → P is an isomorphism. �

3.2. Ground field extension. If X is a proper rigid space over k and k′/k is a finite extension then for
X ′ = k′⊗kX (viewed as a rigid space over k or k′) the natural projection π : X ′ → X induces an isomorphism
k′ ⊗k MX ' π∗(MX′), and hence it induces a k′-algebra isomorphism k′ ⊗k MX(X) 'MX′(X ′). Thus, if
k′/k is finite separable (so X ′ is reduced when X is) then X is Moishezon if and only if X ′ is (over k or over
k′). The same equivalence holds for any finite extension k′/k: the general finite case is immediately reduced
to the purely inseparable case, which is part of the next lemma. For later purposes in positive characteristic
it is important to also consider a related comparison problem with certain complete and purely inseparable
ground field extensions of possibly infinite degree, so we incorporate such generality into this lemma.

Lemma 3.2.1. Assume char(k) = p > 0, and let k′/k be an analytic extension with k′ ⊆ kp
−n

for some
n ≥ 0. A proper rigid space X over k is Moishezon over k if and only if X ′ = k′⊗̂kX is Moishezon over k′. If
X is a reduced Moishezon space then the natural map (k′⊗kMX(X))red →MX′red

(X ′red) is an isomorphism.

A notable instance where Lemma 3.2.1 may be applied is k′ = kp
−n

.

Proof. Let {Xi} be the set of irreducible components of X, endowed with reduced structure. By [C1,
3.3.4, 3.4.2], the collection {(k′⊗̂kXi)red} is the set of such components of X ′, so we can assume that X is
irreducible. We may also assume that X is reduced, and so to compare the Moishezon property for X and
X ′ the problem is to prove equality of the transcendence degrees of MX′red

(X ′red) and MX(X) over k. The
extension MX(X)→MX′red

(X ′red) over k is algebraic because the method of proof of Theorem 2.1.1 shows
that every pn+mth-power in MX′red

(X ′red) lies in MX(X) for m ≥ 0 large enough such that the nilradical on
X ′ is killed by the pm-power map.

For the comparison of meromorphic function fields when X is reduced and Moishezon, it is equivalent
to solve the analogous problem for an irreducible and reduced proper rigid space that is related to X by a
proper birational map (in either direction). Corollary 3.1.5 thereby reduces the problem to the case when X
is projective, so the GAGA-isomorphism for meromorphic function fields reduces us to the trivial analogous
algebraic problem. �

Remark 3.2.2. We emphasize that we do not have a result as in Lemma 3.2.1 when using general non-algebraic
complete extensions k′/k (such as a completed perfect or algebraic closure). For this reason, in arguments
below with char(k) = p > 0 we will have to restrict ourselves to repeatedly making extensions of the type
kp
−n
/k with n ≥ 0 rather than making a single extension to the (perfect) completion k̂p of the perfect closure

kp of k. Also, if k′/k is an arbitrary analytic extension and X is a reduced Moishezon space over k then the
only method we know to prove that the natural injective k′-algebra map (k′ ⊗k MX(X))red →MX′red

(X ′red)
identifies the target with the total ring of fractions of the source is to deduce it from GAGA after we have
proved that every Moishezon space over k is the analytification of a proper algebraic space over k.

3.3. Images and subspaces. Now we turn to proving non-archimedean versions of two further properties
of Moishezon spaces that were used in Artin’s work over C.

Lemma 3.3.1. If f : X → Y is a surjective map between irreducible proper rigid spaces over k and X is
Moishezon then so is Y .

This is the analogue of [M1, Ch. I, Thm. 2], and the only essential new issue is to make the argument
work in positive characteristic. We shall use Example 3.1.4 and formal models to handle this.

Proof. Let δ = dimY and d = dimX. We wish to reduce to the case d = δ. We can assume that X and
Y are reduced, and by Corollary 3.1.5 we can assume that there is a proper birational map f ′ : X → Y ′

to a target Y ′ that is projective (so dimY ′ = d). By Corollary 2.1.2 we can replace each space with its
normalization. The property of being Moishezon or not is unaffected by an analytic scalar extension K/k

that is either of finite degree or satisfies K ⊆ kp
−m

with m ≥ 0 and char(k) = p > 0 (see Lemma 3.2.1), so
by [C1, 3.3.1, 3.3.6, 3.4.2] we can make such a scalar extension (and pass to the normalizations of underlying
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reduced spaces) to reduce to the case when Y is geometrically irreducible and geometrically normal over k.
In particular, Y remains normal and connected after any finite extension on k.

Since Y is geometrically reduced, after an additional finite extension of k there is a flat formal model Y

for Y such that the k̃-fiber Y0 is reduced [BL, 1.3]. Let f : X → Y be a formal model of f , so by generic
flatness over the reduced target Y0 we know that the map f0 is flat over a Zariski-dense open V0 ⊆ Y0.
Let V ⊆ Y be the corresponding Zariski-open formal subscheme. By standard flatness arguments, the map
f−1(V) → V is flat modulo π for any nonzero π ∈ mR. Hence, f is (topologically) flat over V, so V = Vrig

is a non-empty admissible open in Y such that f−1(V ) → V is flat. In particular, d ≥ δ. Assume that
d > δ (so d > 0). We can choose a proper analytic set Z ′ ⊆ Y ′ so that for Z = f ′

−1(Z ′) ⊆ X the map
X −Z → Y ′ −Z ′ is an isomorphism. Since X is irreducible, (X −Z)∩ f−1(V ) is non-empty. Thus, we can
choose v ∈ V so that Xv ∩ (X−Z) is non-empty. By flatness of f−1(V ) over V and equidimensionality of X
and Y , the fiber Xv has pure dimension d− δ > 0. The Cohen-Macaulay locus in any rigid space is a dense
Zariski-open set because affinoid algebras are excellent [C1, §1] (here we use that an affinoid algebra A is
CM at a maximal ideal m if and only if OSp(A),m is CM, since both local rings have the same completion).
Thus, we can choose x ∈ Xv ∩ (X −Z) at which Xv is Cohen-Macaulay. Replacing k with a finite extension
is compatible with the formation of the CM locus and allows us to assume that x ∈ X(k), so x maps to a
point y′ ∈ Y ′(k).

Under the isomorphism OX,x ' OY ′,y′ the ideal mvOX,x goes over to an ideal J ⊆ OY ′,y′ , so OY ′,y′/J is a
CM ring with dimension d−δ > 0. In any CM complete local noetherian ring (A,m) with positive dimension,
each of the finitely many associated primes of A has image in m/m2 that is a proper linear subspace. Thus,
when this cotangent space is viewed as an affine space over the residue field it has a dense Zariski-open locus
such that any element of m reducing to a rational point in this locus is a regular element of A (i.e., is not in
any associated prime). There are such rational points when the residue field of A is infinite. Applying this
to the completion of OY ′,y′/J , since the cotangent space of OY ′,y′ is spanned over k by the local equations of
projective hyperplanes through y′ (with respect to a fixed projective embedding of Y ′ over k) we can choose
a k-rational hyperplane H through y′ in the ambient projective space such that Xv ∩ f ′−1(Y ′ ∩ H) is cut
out in Xv by a regular element in the maximal ideal OXv,x. Hence, X ∩ f ′−1(Y ′ ∩ H) is Y -flat at x with
relative dimension (d− δ)− 1.

Normal rigid spaces are locally irreducible, so some irreducible component X1 of X∩f ′−1(Y ′∩H) through
x ∈ X − Z must have image in the normal connected Y that contains an open around v, and hence X1

surjects onto Y . Since f ′ : X → Y ′ is an isomorphism over Y ′ − Z ′, and Y ′ ∩H has pure codimension 1 in
the irreducible projective Y ′, there is a unique irreducible component Y ′1 of Y ′ ∩H ′ such that f ′ restricts to
a proper birational map f1 : X1 → Y ′1 when X1 and Y ′1 are given their reduced structures. The projective
Y ′1 is obviously Moishezon, so X1 is also Moishezon by Example 3.1.4 . We can therefore replace f ′ with f1

and replace f : X → Y with X1 → Y to decrease d by 1 without changing Y . Continuing in this way, we
eventually get to the case when d = δ. Example 3.1.4 now implies that Y is Moishezon since X is. �

The following deeper result corresponds to [M1, Ch. I, Thm. 3].

Theorem 3.3.2. Any closed subspace of a Moishezon space over k is Moishezon.

Proof. The general strategy of Moishezon’s proof over C carries over, except that we need to modify the
argument to address inseparability issues that arise when k has positive characteristic. This requires several
technical improvements on the method, so for this reason we shall give the entire proof (which occupies the
rest of §3.3). A ubiquitous feature of the proof in positive characteristic p is the use of (possibly infinitely
many) scalar extensions of the type kp

−n
/k with n ≥ 0. Such extensions are needed to ensure geometric

reducedness and geometric normality; see the examples above [C1, 3.3.1] for the insufficiency of using finite-
degree purely inseparable extensions for this purpose, and see Remark 3.2.2 for why we cannot get by using
the single ground field extension k → k̂p or k → k̂.

Step 1: reduction to hypersurfaces. Let Y → X be a closed immersion into a Moishezon space X
over k. To prove that Y is Moishezon, we can assume that X and Y are irreducible and that Y 6= X, so
the pure dimension d of X is positive. Let X ′ = BlY (X) be the blow-up of X along Y (in the sense of
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[C2, 4.1.1]), and let Y ′ = Y ×X X ′. Since X is irreducible and X − Y = X ′ − Y ′ is not contained in a
proper analytic set in X ′ (due to Y ′ being Cartier in X ′), it follows from the global theory of irreducible
components that X ′ is irreducible (with dimension d). Hence, Y ′ has pure dimension d− 1. Note also that
X ′ is Moishezon since pullback from MX(X) provides d algebraically independent meromorphic functions.
The proper map X ′ → X hits all of X − Y , so X ′ surjects onto X. Thus, since Y is irreducible, some
irreducible component Y ′0 of Y ′ maps onto Y . By Lemma 3.3.1 applied to Y ′0 → Y , the Moishezon property
for the subspace Y ⊆ X is reduced to that of the hypersurface Y ′0 ⊆ X ′. Hence, we may assume that Y ⊆ X
is reduced and irreducible with codimension 1.

We may make a finite separable extension on k to get to the case when Y and X are geometrically
irreducible over k, and then make a scalar extension by some kp

−n
when char(k) = p > 0 so that Y and

X are geometrically reduced over k as well, with X having normalization that is geometrically normal
(and geometrically irreducible) over k. By Example 3.1.4 we can replace X with its normalization and Y
with an irreducible component of its preimage in this normalization. Running through the same reduction
arguments again, we can get to the case where Y is geometrically reduced and geometrically irreducible and
X is geometrically normal and geometrically irreducible over k.

Step 2: meromorphic functions regular near a hypersurface. Moishezon’s method for constructing
enough algebraically independent meromorphic functions on Y is to restrict meromorphic functions on X
whose polar divisor does not contain Y in its support. We shall use the same idea, but new complications
arise in positive characteristic. As a preliminary step, we review how to restrict suitable meromorphic
functions to a hypersurface.

In general, if j : H ↪→ S is a closed immersion into a normal rigid space S over k with H reduced of
pure codimension 1 then there is a natural OS-subalgebra MS,H ⊆MS whose sections are the meromorphic
functions with no generic pole along H. More precisely, MS,H is the subsheaf of sections of MS whose
coherent ideal sheaf of denominators has zero locus in S that intersects H in a nowhere dense subset of
H. The formation of MS,H is local on S, and we can define a natural restriction map MS,H → j∗(MH)
of OS-algebras as follows. For any admissible open U ⊆ S and any f ∈ MS,H(U), locally on U we can
express f as a ratio of analytic functions with denominator b whose restriction to U ∩H has nowhere dense
zero locus (equivalently, since H is reduced, b|U∩H is invertible as a meromorphic function when viewed on
U ∩H). It is therefore clear how to define MS,H → j∗(MH) via restriction of numerators and denominators
of fractions.

For later purposes with extension of the ground field it will be convenient to give a global description
of the induced map on global sections from the k-algebra AS,H = MS,H(S) to the meromorphic function
algebra MH(H). In terms of ideal sheaves of denominators we have

AS,H = lim−→Hom(J ,OS),

with J ranging through the directed system (by reverse inclusion) of coherent ideal sheaves on S that are
nonzero (hence nowhere zero) on each connected component of S and are the unit ideal somewhere along
each irreducible component of H. Each such J has a coherent pullback ideal JH on the reduced H such
that JH locally has an OH -regular section, so we get a natural k-algebra map

AS,H → lim−→Hom(JH ,OH)→MH(H)

that is the map induced by MS,H → j∗(MH) on global sections. The kernel mS,H of this k-algebra map is
the ideal of elements g ∈ AS,H such that g|H ∈MH(H) vanishes (which, for g ∈MS(S)×, says exactly that
H is contained in the zero locus of g). The k-subalgebra AS,H/mS,H ⊆ MH(H) is denoted κS(H), and if
H is irreducible then this is clearly a subfield. It is analogous to the residue field at the generic point of an
irreducible hypersurface in a normal algebraic k-scheme.

Observe that if S and H are both irreducible and S is Moishezon then mS,H must be nonzero, for otherwise
we get a k-embedding of fields MS(S) = AS,H ↪→ MH(H) whose source has transcendence degree dimS
that exceeds the transcendence degree of its target. In particular, consideration of Weil divisors shows that
if S and H are irreducible and S is Moishezon then the formation of the order of vanishing along H is a
nontrivial discrete valuation ordH on MS(S) (perhaps with proper image in Z) having valuation ring AS,H
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and maximal ideal mS,H . Explicitly, if g ∈MS(S)× then ordH(g) is the coefficient of H in the Weil divisor
div(g) on the normal rigid space S. The residue field of ordH is κS(H) ⊆MH(H).

Lemma 3.3.3. Let S be a geometrically normal and proper rigid space, H ⊆ S a geometrically reduced
closed subspace with pure codimension 1, and k′/k an extension that is finite or satisfies k′ ⊆ kp−m for some
m ≥ 1 with char(k) = p > 0. Let S′ = k′⊗̂kS and H ′ = k′⊗̂kH. Consider the natural comparison maps

(3.3.1) k′ ⊗k MS(S) 'MS′(S′), k′ ⊗k MH(H) 'MH′(H ′)

that carry k′ ⊗k AS,H into AS′,H′ compatibly with the restriction maps to k′ ⊗k MH(H) and MH′(H ′).
The induced injective comparison map k′ ⊗k AS,H → AS′,H′ is an isomorphism. In particular, if H is

geometrically irreducible then (k′ ⊗k κS(H))red ' κS′(H ′) for every such k′/k, so if in addition char(k) =
p > 0 and k′ = kp

−m
for sufficiently large m then κS′(H ′) is separable over k′.

Note that the comparison isomorphisms for meromorphic function algebras in (3.3.1) follow from Lemma
3.2.1 (and the trivial case when k′/k is finite separable). Also, the separability claim at the end of Lemma
3.3.3 follows from the elementary fact that if L/k is a finitely generated extension then for sufficiently large
m the field (kp

−m ⊗k L)red is separable over kp
−m

(as we see via descent from the perfect closure of k).

Proof. We have to show that if g′ ∈ k′⊗kMS(S) lies in AS′,H′ then g′ ∈ k′⊗kAS,H . It suffices to separately
treat the cases when k′/k is finite Galois or k′ = kp

−m
with char(k) = p > 0 and m ≥ 1. The Galois case is

trivial by Galois descent (since AS′,H′ is a Galois-stable k′-subspace of MS′(S′) = k′ ⊗k MS(S)), so we can
assume k′ = kp

−m
with m ≥ 1 and char(k) = p > 0. The condition g′ ∈ AS′,H′ says that the polar locus of g′

does not contain H ′. Since g′ ∈MS′(S′) = k′ ⊗k MS(S), to show g′ ∈ k′ ⊗k AS,H we thereby easily reduce
to the analogous problem when k′/k is a finite purely inseparable extension, and then to the special case
k′ = k(c′) with c′p = c ∈ k− kp. Thus, we can uniquely write g′ =

∑p−1
j=0 c

′j ⊗ hj for h0, . . . , hp−1 ∈MS(S).
We want hj ∈ AS,H for all j, which is to say that H is not in the polar locus of any hj . If hj0 lies in AS,H
then we can replace g′ with g′ − (1⊗ hj0) without loss of generality. In this way we can assume that those
hj that are nonzero have H in their polar locus. We seek to show that all hj vanish (so g′ = 0).

Since H is geometrically reduced over k, it has a dense Zariski-open smooth locus. The non-smooth locus
of the geometrically normal S has codimension ≥ 2, so since H has pure codimension 1 we can choose s ∈ H
at which both H and S are smooth. Let t ∈ OS,s be a generator of the height-1 prime p = IH,s. Let
bj := (hj)s ∈ K := Frac(OS,s) for all j, so those bj that are nonzero have negative order along p. We may
assume that there are some nonzero bj ’s, so ν = maxj(− ordp(bj)) > 0. Let h′ = tν−1g′s =

∑p−1
j=0 c

′j ⊗ b′j in
k′ ⊗k K with b′j = tν−1bj ∈ K. All b′j not in OS,s have a simple pole along p and some such b′j exists. Let
s′ be the unique point on S′ = k′ ⊗k S over s. The ring OS′,s′ = k′ ⊗k OS,s is a regular domain since S′ is
k′-smooth at s′. Its fraction field is K ′ = k′⊗kK, and

∑
c′
j⊗ b′j = h′ = tν−1g′s ∈ K ′ has non-negative order

at the unique height-1 prime p′ over p in OS′,s′ since g′ ∈ k′ ⊗AS,H . Thus,
∑
c′
j ⊗ tb′j = t(

∑
c′
j ⊗ b′j) ∈ p′.

But k′ ⊗k (OS,s/p) = OH′,s′ is a domain because H ′ is k′-smooth at s′, so p′ = k′ ⊗k p. Hence, the element
tb′j ∈ OS,s lies in p = tOS,s for all j, so b′j ∈ OS,s for all j. This is a contradiction. �

Step 3: infinite tower of subfields. Returning to our situation of interest at the end of Step 1 with
the geometrically normal and geometrically irreducible Moishezon space X of dimension d > 0 and the
geometrically irreducible and geometrically reduced analytic set i : Y ↪→ X with codimension 1, we have a
k-subalgebra AX,Y ⊆MX(X) that is a discrete valuation ring whose residue field κX(Y ) = AX,Y /mX,Y is
naturally a subfield of MY (Y ) over k obtained by restriction of suitable meromorphic functions on X. The
subfield κX(Y ) is therefore finitely generated over k since MY (Y ) is finitely generated over k. It suffices to
show that the transcendence degree of this subfield over k is equal to d− 1 = dim(Y ). By Lemma 3.2.1 and
Lemma 3.3.3, if char(k) = p > 0 then we may first make a preliminary ground field extension of the type
k → kp

−m
to get to the case when κX(Y ) is k-separable.

The rest of the argument goes similarly to the complex-analytic case, but we need special arguments in
positive characteristic (to handle several complications caused by inseparability). For the convenience of the
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reader, we therefore now give the rest of the argument in our situation rather than referring the reader to
Moishezon’s paper [M1].

The key idea (which will only work after suitable extension of the ground field) is to exploit finite generation
of meromorphic function fields over k to get to the situation (after changing X and Y but not MY (Y )) in
which the discrete valuation ring AX,Y ⊆ MX(X) contains a subfield F over k mapping isomorphically
onto the residue field κX(Y ) ⊆ MY (Y ) (so F is separable over k since we have arranged that κX(Y ) is
k-separable). An argument with separability of completions will show that MX(X) must be separable over
F , and together with k-separability of F it will then follow from a calculation with meromorphic top-degree
differential forms on X (via Corollary 3.1.6) that F has transcendence degree d− 1 over k, as desired.

To carry out this idea, we are going to try to construct a commutative square

Y1
i1 //

��

X1

��
Y

i
// X

such that the following properties are satisfied:
• the vertical maps are proper surjections, the horizontal maps are closed immersions, and the left

vertical map is birational (in the sense that it is an isomorphism over a dense Zariski-open locus in
Y whose preimage in Y1 is dense),

• X1 is geometrically normal and geometrically irreducible with dimension d (so X1 is Moishezon, via
pullback of meromorphic functions on X),

• Y1 is geometrically reduced and geometrically irreducible with dimension d− 1,
• AX1,Y1 contains a subfield over k whose image in κX1(Y1) ⊆MY1(Y1) 'MY (Y ) is κX(Y ).

This procedure can then be repeated infinitely many times, and the rising chain of subfields κXr (Yr) ⊆
MYr (Yr) = MY (Y ) over k must eventually stabilize (since MY (Y ) is finitely generated over k). However, a
caveat is that if char(k) = p > 0 then the preceding description is not quite what we will do: to guarantee
geometric normality and geometric reducedness properties for X1 and Y1 (as is required to repeat the process)
it will be necessary to replace k with kp

−µ1 for some µ1 ≥ 0, so the infinite repetition of the process requires
some care.

Now we come to the actual argument. Since κX(Y ) is separable and finitely generated over k, we can
choose a separating transcendence basis h1, . . . , hs for κX(Y ) over k and a primitive element hs+1 ∈ κX(Y )
over k(h1, . . . , hs), say with φ its separable minimal polynomial of degree δ ≥ 1. Let Hj ∈ AX,Y ⊆MX(X)
represent hj , so H1, . . . ,Hs are algebraically independent over k. Let Φ ∈ k(H1, . . . ,Hs)[t0, t1] ⊆ AX,Y [t0, t1]
be the homogeneous polynomial of degree δ that is obtained from φ by lifting hj to Hj for 1 ≤ j ≤ s (so
Φ(T, 1) lifts φ(T )). We can view Φ as a trivializing meromorphic global section of the line bundle O(δ) over
the normal connected rigid space X × P1 with dimension d + 1. As such, Φ has zero locus X ′ with pure
dimension d. Let U ⊆ X be the Zariski-open complement of the union of the polar loci of the coefficients
of Φ and the non-smooth loci of Y and X. Clearly X ′ ∩ (U ×P1) is the effective Cartier divisor in U ×P1

defined by the vanishing of the nonzero homogeneous polynomial Φ|U in O(U)[t0, t1].
Let Y ′ = (Y ×P1) ∩X ′ ⊆ Y ×P1. The Zariski-open preimage Y ′U ⊆ Y ′ of U ∩ Y ⊆ Y is the zero locus

in the smooth irreducible d-dimensional (U ∩ Y ) × P1 of the nonzero Φ|U∩Y ∈ O(U ∩ Y )[t0, t1], and the
part of Y ′U lying over (U ∩ Y ) ∩ (Y − D∞(hs+1)) has an irreducible component Y ′η given by the graph of
hs+1 over this domain. The component Y ′η arises from a unique global irreducible component Y ′1 of Y ′ which
must be geometrically irreducible (since Y is). We give Y ′1 the reduced structure, so the proper projection
Y ′1 → Y is birational (it is an isomorphism over (U ∩Y )∩(Y −D∞(hs+1))). In particular, Y ′1 is geometrically
irreducible and is smooth away from a proper analytic subset. Let ∆ ∈ k(H1, . . . ,Hs)× be the discriminant of
the separable Φ(T, 1) ∈ k(H1, . . . ,Hs)[T ]. The proper projection X ′ → X is visibly étale at points of Y ′1 that
lie over the (necessarily non-empty) overlap of U ∩Y and the non-empty Zariski-open V ⊆ Y complementary
to the polar loci the coefficients of Φ and the zero locus of ∆. But X and Y are smooth at points of U ∩ Y ,
the map Y ′1 → Y is birational, and Y ′1 is irreducible and reduced, so there is a unique irreducible component



14 BRIAN CONRAD

X ′1 of X ′ containing Y ′1 . By uniqueness of X ′1 and geometric irreducibility of Y ′1 , it follows via Galois descent
(and [C1, 3.4.2]) that X ′1 is geometrically irreducible. If we give X ′1 its reduced structure then X ′1 → X is
étale on a non-empty Zariski-open locus in X ′1 that meets Y ′1 . (This étale property is a special case of the
general fact that a map T ′ → T from a reduced rigid space T ′ with equidimension d onto a normal connected
d-dimensional rigid space T is étale on the Zariski-open complement of the support of Ω1

T ′/T because an
injective finite map from a normal noetherian domain to another noetherian ring is étale if it is unramified
[FK, Ch. I, 1.5].)

Let X ′′1 be the normalization of X ′1, so there is a unique irreducible analytic set Y ′′1 ⊆ X ′′1 mapping
birationally onto Y ′1 (and hence onto Y ). Both X ′′1 and Y ′′1 are geometrically irreducible over k. The
composite map

X ′′1 → X ′1 ↪→ X ′ ↪→ X ×P1 → P1

restricts to hs+1 over (U ∩Y )∩(Y −D∞(hs+1)) ⊆ Y , so it is not identically∞, and it defines a meromorphic
function Hs+1 ∈ MX′′1

(X ′′1 ) that is a root of Φ(T, 1) by definition of X ′. In fact, Hs+1 lies in AX′′1 ,Y ′′1
and the resulting restriction Hs+1|Y ′′1 ∈ MY ′′1

(Y ′′1 ) coincides with the pullback of hs+1 ∈ MY (Y ) due to
how Y ′1 contains a dense Zariski-open locus in the graph of hs+1 over Y − D∞(hs+1). Thus, the inclusion
MX(X)→MX′′1

(X ′′1 ) carries H1, . . . ,Hs ∈ AX,Y to elements of AX′′1 ,Y ′′1 that, together with Hs+1, generate
a subfield k(H1, . . . ,Hs)[Hs+1] ⊆ AX′′1 ,Y ′′1 whose image in the quotient

κX′′1 (Y ′′1 ) ⊆MY ′′1
(Y ′′1 ) 'MY (Y )

is k(h1, . . . , hs)[hs+1] = κX(Y ). If char(k) = p > 0 then X ′′1 may not be geometrically normal and Y ′′1
may not be geometrically reduced. Letting km = kp

−m
for m ≥ 0, for some µ ≥ 0 the normalization X ′′1,µ

of (kµ⊗̂kX ′′1 )red is geometrically normal over kµ, but the underlying reduced space Y ′′1,µ of the pullback of
kµ⊗̂kY ′′1 to this normalization may not be geometrically reduced over kµ. However, there exists µ1 ≥ µ such
that in the geometrically normal rigid space X1 = kµ1⊗̂kµX ′′1,µ over kµ1 the subspace Y1 = (kµ1⊗̂kµY ′′1,µ)red

is geometrically reduced over kµ1 . We can also take µ1 large enough so that κX1(Y1) is separable over kµ1 .
If char(k) = 0 then we define km = k for all m ≥ 0.

If we iterate this procedure infinitely many times then we get a monotonically increasing sequence of
integers 0 = µ0 ≤ µ1 ≤ µ2 ≤ . . . and d-dimensional geometrically normal and geometrically irreducible
Moishezon spaces Xr over kµr equipped with (d − 1)-dimensional geometrically reduced and geometrically
irreducible analytic sets Yr ⊆ Xr and kµr -maps Xr → kµr ⊗̂kµr−1

Xr−1 inducing birational maps Yr →
kµr ⊗̂kµr−1

Yr−1 for all r ≥ 1 such that X0 = X, Y0 = Y , κXr (Yr) is kµr -separable, and the compatible
identifications MYr (Yr) ' kµr ⊗k MY (Y ) induce containments

kµr ⊗kµr−1
κXr−1(Yr−1) ⊆ κXr (Yr)

for r ≥ 1. Moreover, this subfield of κXr (Yr) over kµr can be isomorphically lifted to a kµr -subalgebra
Fr ⊆ AXr,Yr . Observe that Y is Moishezon if and only if some Yr is Moishzeon.

Step 4: coefficient field and differential forms. Let k∞ = lim−→ kµr (k∞ = k in characteristic 0), so

Lr = k∞ ⊗kµr κXr (Yr) ⊆ k∞ ⊗k MY (Y )

is a rising sequence of subextensions of the finitely generated extension k∞ ⊗k MY (Y ) of k∞. Such a
sequence must terminate, so there exists an r ≥ 0 such that Lr+1 = Lr. Hence, the kµr+1 -subalgebra
kµr+1 ⊗kµr Fr ⊆ AXr+1,Yr+1 maps isomorphically onto κXr+1(Yr+1). In particular, upon replacing (X,Y, k)
with (Xr+1, Yr+1, kµr+1) (as we may), we reach the situation in which the k-subalgebra AX,Y ⊆ MX(X)
contains a k-subalgebra F that maps isomorphically onto the quotient κX(Y ) ⊆ MY (Y ). Note that this
forces F to be a field that is k-separable (since κX(Y ) is k-separable).

In this situation we will prove that F has transcendence degree d − 1 over k, as desired. The crucial
technical observation is that even in case of positive characteristic, MX(X) is automatically separable over
F . To prove this, consider the nontrivial discrete valuation ordY on MX(X) given by generic order along
Y ; this has image νZ ⊆ Z for a unique ν ≥ 1. Choose a uniformizer t ∈ mX,Y , so ordY (t) = ν and the
completion of MX(X) with respect to this valuation is identified with F ((t)) as an F -algebra. In particular,
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since F ((t)) is separable over F (as for any field), so is MX(X). Moreover, dt 6= 0 in Ω1
MX(X)/F since its image

in Ω1
F ((t))/F is nonzero. Thus, we can choose a separating transcendence basis of MX(X) over F containing

t, say {G1, . . . , Ge, t} (with e ≥ 0), and by replacing each Gj with Gj/t
ordY (Gj)/ν for each j we can ensure

that Gj ∈ AX,Y for all j. Since F/k is separable, we may also choose a separating transcendence basis
H1, . . . ,Hs ∈ F ⊆ AX,Y over k. The collection {G1, . . . , Ge, t,H1, . . . ,Hs} is a separating transcendence
basis for MX(X) over k, so 1 + e+ s = d. We want to prove that s = d− 1, or equivalently e = 0.

By Corollary 3.1.6, the top-degree meromorphic differential form

ω0 = dG1 ∧ · · · ∧ dGe ∧ dt ∧ dH1 ∧ · · · ∧ dHs

on X is nonzero. Since the irreducible and reduced Y meets the Zariski-open k-smooth locus Xsm of X, we
can define the generic order ordY (ω) ∈ Z along Y for any nonzero global meromorphic top-degree differential
form ω on X. Fix a choice of n ≥ 0, so for each Gj ∈ AX,Y ⊆ F [[t]] (if e > 0) we have Gj = γj + tn+1gj for
some γj ∈ F [t] and gj ∈ AX,Y . Thus,

(3.3.2) dGj = dγj + (n+ 1)tngjdt+ tn+1dgj
in Ω1

MX(X)/k. The same identity holds as meromorphic 1-forms on X by means of the natural MX(X)-linear
map

Ω1
MX(X)/k → Γ(X,MX ⊗ Ω1

X/k).
If e > 0 then for each 1 ≤ j ≤ e we have

dγj ∧ dt ∧ dH1 ∧ · · · ∧ dHs ∈ Ωs+2
F (t)/k,

but Ωs+2
F (t)/k = 0 because F (t)/k is separable with transcendence degree s+ 1. Thus, inserting the formulas

(3.3.2) into the definition of ω0 (if e > 0) kills the contributions from each dγj and dt in dGj . Hence,

ω0 = te(n+1)dg1 ∧ . . . dge ∧ dt ∧ dH1 ∧ . . . dHs.

Since no gj or Hi has a generic pole along Y , and nor does t, it follows that the generic order of the nonzero
ω0 along Y is at least e(n+ 1). But n ≥ 0 was arbitrary, so e = 0 as desired. �

4. Algebraicity of Moishezon spaces

4.1. Main result. We have already seen that analytification identifies the category of proper algebraic
spaces over k with a full subcategory of the category of Moishezon spaces over k. Artin’s argument in the
complex-analytic case will now be adapted to prove that this is an equivalence, as follows.

Theorem 4.1.1. Every Moishezon space over k is the analytification of a proper algebraic space over k.

Using Chow’s Lemma for algebraic spaces [Kn, IV, 3.1] and the invariance of meromorphic function fields
under proper birational maps in the reduced case, we deduce the following generalization of Corollary 3.1.5.

Corollary 4.1.2. A proper rigid space X over k is Moishezon if and only if there exists a birational map
P an → X from a projective k-scheme P .

In [A2, §7], Artin proves the complex-analytic analogue of Theorem 4.1.1 by using input from work of
Moishezon for which we have proved non-archimedean analogues in §3. The main tool in Artin’s argument
is a general theorem on modifications of finite type separated algebraic spaces along closed subspaces, all
over a base S that is an algebraic space of finite type over a field or excellent Dedekind domain. For the
complex-analytic applications Artin works with S = Spec C, and we want to use analogues of the same
arguments with S = Spec k. There are some mild complications caused by the fact that k may be imperfect.

For example, Artin uses a lifting criterion for adic S-maps from Spf(A) to formal algebraic spaces over
S, with A a complete discrete valuation ring whose residue field κ satisfies the condition that Specκ → S
is of finite type. For S = Spec C only the case A = C[[t]] arises. However, for S = Spec k the residue field
k′ of such an A is a finite extension of k that may be inseparable (if k is imperfect). In such cases A may
not be k-isomorphic to k′[[t]]. This leads to some minor changes in the use of formal lifting arguments for
such A. We shall now go through Artin’s argument, focusing almost entirely on where some new technical



16 BRIAN CONRAD

ingredients are required in the non-archimedean setting. Throughout our discussion, we consider the base
space S in Artin’s theory to be Spec k for a fixed non-archimedean field k, and all algebraic spaces will be
understood to be locally of finite type and separated over k (and morphisms between them will be over k as
well) unless otherwise specified.

4.2. Formal modification. As in Artin’s work, a modification of rigid spaces over k is a pair consisting of a
proper map f : X ′ → X between such spaces and a closed immersion Y ↪→ X such that f is an isomorphism
over X−Y . (It is not required that Y is nowhere dense in X or that f is surjective, so we could take Y = X
but that is not useful.) We will be especially interested in the case when X and X ′ have some common
dimension d (though they may be reducible) and Y and Y ′ = f−1(Y ) have dimension < d. The notion of
modification is defined for algebraic spaces in exactly the same way.

Consider a proper map f : X ′ → X between algebraic spaces and let Y ⊆ X be a closed subspace. There
is an induced map f : X′ → X between the associated (locally noetherian and separated) formal algebraic
spaces over Spec k obtained by completing along Y and Y ′ = f−1(Y ) respectively. In [A2, §1], Artin studies
the notion of formal modification, a property for f that is closely related to (f, Y ⊆ X) being a modification.
There is one aspect of this notion that requires some extra care in the non-archimedean case, so we now
recall how it is defined in general.

Let f : X′ → X be a proper k-map between locally noetherian and separated formal algebraic spaces (over
k) such that the underlying ordinary algebraic spaces (modulo an ideal of definition) are locally of finite type
over k.

Definition 4.2.1. The proper map f : X′ → X is a formal modification if the following three conditions hold
locally over X:

(1) the coherent Cramer and Jacobian ideals C (f) and J (f) on X′ contain ideals of definition of X′,
(2) the diagonal ∆X′/X : X′ → X′ ×X X′ (which is a closed immersion, due to the separatedness of these

formal algebraic spaces) has associated coherent defining ideal I on X′ ×X X′ that is locally killed
by some power of the pullback of an ideal of definition of X,

(3) for every complete discrete valuation ring R over k with residue field k′ of finite degree over k, any k-
morphism g : Spf(R)→ X as formal algebraic spaces lifts through f to a morphism g′ : Spf(R)→ X′.

We will not need to do anything new with condition (1) in this definition, so we omit a discussion of
how the Cramer and Jacobian ideals are defined. (See [A2, §1].) The complications with this definition in
comparison with its analogue over C are in condition (3). To explain this, consider a map f : X ′ → X
between proper complex-analytic or rigid-analytic spaces and let Y ⊆ X be a (possibly non-reduced) closed
subspace with pullback Y ′ ⊆ X ′. This yields compatible maps fn : X ′n → Xn between the respective
corresponding infinitesimal neighborhoods of Y ′ and Y in X ′ and X for all n ≥ 0. Assume that the spaces
X ′n and Xn are analytifications of proper algebraic spaces for all n ≥ 0, so we get a map between proper
formal algebraic spaces f : X′ → X obtained by algebraization of the maps fn. In [A2, 7.7], Artin proves over
C that if f is a modification in the complex-analytic sense then f is a formal modification (over Spec C).
The verification of conditions (1) and (2) in Definition 4.2.1 works verbatim in the non-archimedean case,
but for condition (3) some problems arise, as follows.

Artin’s proof that the formal morphism f associated to a complex-analytic modification f satisfies the
lifting property in (3) (with k = C) appeals to some work of Spallek on analytic approximation over R
and C, and uses two additional facts: for R as in (3) automatically R ' C[[t]] as C-algebras (since C is
algebraically closed), and any countable inverse limit of non-empty affine finite type C-schemes has a C-
point (because C is uncountable and algebraically closed). To make this work in the non-archimedean case,
if char(k) = 0 then for the analytic approximation part one can replace Spallek’s work with Artin’s work on
analytic approximation in characteristic 0 [A1, 1.2]. In [B1], Bosch adapts Artin’s analytic approximation
techniques, and in [B1, §2] it is noted that this yields a proof of [A1, 1.2] in any characteristic, so the analytic
approximation part carries over in general. As long as k is algebraically closed, the other parts of Artin’s
verification of (3) for f carry over verbatim. For a general k we have to circumvent the possibility that R
may not even admit a coefficient field over k (if k′/k is inseparable). To do this, we will reduce to the settled
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case of an algebraically closed ground field as follows. Let K/k be a completed algebraic closure. Artin’s
method of constructing lifts via jets can be applied after the formal algebraic spaces being considered over
k are pulled back over SpecK = Spf K. We shall exploit this by applying the following lemma.

Lemma 4.2.2. In order that a map g : Spf(R) → X as in Definition 4.2.1(3) satisfies the lifting property
there, it suffices to make a lift after composing g with Spf(R

′
)→ Spf(R) for a flat local (perhaps not finite)

extension of complete discrete valuation rings R→ R
′
.

Before we prove the lemma, let us see how to use it in our situation over k. We take such an R
′

to be
a factor ring of the normalization of (K⊗̂kR)red, where we use the completed tensor product in the sense
of commutative algebra, giving K and k the discrete topology. By the known lifting result for the induced
K-morphism Spf(R

′
) → Spf(K⊗̂kX) over the algebraically closed non-archimedean ground field K, the

criterion in the lemma implies that the lifting problem over k has an affirmative solution. (This lemma is
also implicitly used in the proof of [A2, 1.13] with a general complete discrete valuation ring R and finite
étale local extensions R→ R

′
.)

Proof. To verify the sufficiency of constructing a lift of g : Spf(R)→ X through the map f : X′ → X after a
flat local extension on R, consideration of the pullback of f along g reduces us to settling the following claim:
if Z is a proper formal algebraic space over Spf(R) for a complete discrete valuation ring R and if the closed
immersion ∆Z/ Spf(R) has defining ideal that is killed by a power of a uniformizer of R then Z → Spf(R)
admits a section if it does so after a flat local extension R → R′ where R′ is a complete discrete valuation
ring. We can kill the mR-torsion in OZ to reduce to the case when Z is R-flat (since R′ is R-flat), and then
its diagonal has vanishing defining ideal. That is, Z → Spf(R) is a proper flat monomorphism of formal
algebraic spaces, so it is a flat closed immersion. That is, either Z = Spf(R) or Z is empty. The condition
of having a section after a flat local base change on R is then the condition that Z = Spf(R), in which case
there is trivially a section. �

4.3. Passage to irreducible case. We now commence with the proof of algebraizability of Moishezon
spaces by inducting on the dimension d, the case d = 0 being clear. Thus, let X be a Moishezon space
with dimension d > 0. We first wish to reduce the algebraicity problem for X to the irreducible case. To
this end, assume that X is reducible and let {Ci} be the set of irreducible components of X. Rather than
endowing each Ci with its reduced structure in general, we seek to construct a structure of closed analytic
subspace on the subset Ci such that on the subset Xi = X − (∪j 6=iCj) ⊆ Ci that is open in X the open
subspace structure induced from that on Ci makes it an open subspace of X. Roughly speaking, when Xi is
given the open subspace structure in X, we seek to extend this to a closed subspace structure on Ci in X.
This operation is akin to scheme-theoretic closure in algebraic geometry, and it is a non-standard analytic
operation. (For example, the potential presence of essential singularities along Ci−Xi has to be ruled out.)
Due to lack of a reference, we now record a general construction of this type (as also seems to be implicitly
used without explanation in the complex-analytic case in [A2, §7]).

Lemma 4.3.1. Let X be a complex-analytic or rigid-analytic space, let V ⊆ X be a Zariski-open subspace,
and let Z ↪→ V be a closed immersion. Assume that Zred is a dense Zariski-open subspace in a reduced
analytic set Y ↪→ X. Let j : Z → X be the canonical map, and let I be the coherent ideal sheaf of locally
nilpotent sections of OZ .

Assume that the subsheaf j∗(I ) ⊆ j∗(OZ) is locally killed by a finite exponent. The kernel K = ker(OX →
j∗(OZ)) is coherent and the closed analytic subspace Y ′ ↪→ X cut out by K meets V in Z as analytic spaces.
Moreover, Y ′red = Y (so the Zariski-open immersion Z = Y ′ ∩ V ↪→ Y ′ is dense).

We view Y ′ as serving the role of a Zariski-closure of Z in X, the point of the lemma being that this makes
sense analytically and its formation is local on X. The purpose of the hypothesis that Z has topological
closure equal to an analytic set Y is to eliminate essential singularities, as otherwise it can happen that
K = 0 even if Z is nowhere dense in X. (The curve w = e1/z in V = C× ×C with X = C2 gives such an
example in the complex-analytic case.)
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Proof. We may work locally on X, so we can assume that X is Stein/affinoid and that j∗(I ) has Nth power
equal to 0 within j∗(OZ) for some N ≥ 1. Define the ideal

I = {a ∈ OX(X) | a|Z = 0} = {a ∈ OX(X) | a|V ∈ IZ(V )}

in OX(X). This generates an ideal sheaf J over X, and J is coherent: this is obvious in the rigid-analytic
case (since I is finitely generated in that case), and in the complex-analytic case it follows from the fact that
any rising chains of coherent subsheaves of a coherent sheaf on a complex-analytic space is locally stationary
[CAS, 5.6.1]. Since OX → OX/J induces a surjection on global sections, we may replace X with the
zero-space of J to reduce to the case I = 0. In this case we claim that IY consists of locally nilpotent
sections, so Y has the same underlying space as X and hence we are done by taking Y ′ = X in our present
situation.

To prove the required nilpotence, since X is Stein/affinoid it suffices to show that each s ∈ Γ(X,IY ) is
nilpotent. But certainly s|Zred = 0, so s|Z is a locally nilpotent function on Z. Hence, sN |Z = 0 by the
choice of N above, so sN ∈ I = 0. �

In the motivating situation with a reducible Moishezon space X of dimension d, we can apply Lemma
4.3.1 with Z = V = Xi (as an open subspace of X) and Y = Ci with its reduced structure. This provides
each Ci with a closed subspace structure C ′i ⊆ X extending the open subspace structure on Xi. Thus, for
Y := ∪i<j(C ′i ∩C ′j) with its natural closed subspace structure in X, we have dimY < d and the natural map

f : X ′ :=
∐

C ′i → X

is an isomorphism over X−Y , with Y ′ = f−1(Y ) also of dimension < d. Since X is Moishezon, by Theorem
3.3.2 the analytic spaces X ′, Y ′, and Y are Moishezon. Each infinitesimal neighborhood X ′n and Xn of Y ′

and Y in X ′ and X respectively is likewise Moishezon, and so X ′n and Xn are algebraic for all n ≥ 0 by the
inductive hypothesis. By GAGA, the family of analytic maps fn : X ′n → Xn algebraizes to define a proper
map of formal algebraic spaces f : X′ → X. By the discussion in §4.2 (especially concerning the analogue of
[A2, 7.7]), f is a formal modification. Grant the algebraicity of Moishezon spaces in the irreducible case in
dimension d, so by combining this with the inductive hypothesis in dimension < d we see that X ′ =

∐
C ′i is

algebraic, say X ′ = X ′an for a proper algebraic space X ′ over k.
By Artin’s theorem on algebraization of formal contractions of algebraic spaces [A2, 3.1], up to unique

isomorphism there is a modification of separated algebraic spaces (ϕ : X ′ →X ,Y ⊆X ) of finite type over k
such that the associated formal modification ϕ̂ is equal to f. Since separated algebraic spaces of finite type over
k are analytifiable [CT, 4.2.1], the analytification (ϕan,Y an ⊆X an) makes sense and by [CT, 2.3.1] the map
ϕan is proper. Thus, this pair is trivially a modification in the category of rigid spaces. We seek to prove that
X is isomorphic to X an, so X is algebraic, and for this we observe that (f, Y ⊆ X) and (ϕan,Y an ⊆X an)
are analytic modifications yielding the same (algebraizable) formal modification f. More specifically, the
equality ϕ̂ = f of formal modifications provides compatible isomorphisms Xn ' (Xn)an = (Xn)an carrying
fn to ϕan

n for all n, so we can invoke the following analogue of a weak form of [A2, 7.9(i)].

Lemma 4.3.2. Let f (1) : X ′ → X(1) and f (2) : X ′ → X(2) be modifications of separated rigid spaces with
respect to closed subspaces Y (i) ⊆ X(i). Assume that (f (i))−1(Y (i)) is a common closed subspace Y ′ ⊆ X ′,
and that there is given an isomorphism h : X(1) ' X(2) of formal analytic completions satisfying h◦f(1) = f(2),
which is to say a compatible family of isomorphisms hn : X(1)

n ' X(2)
n satisfying hn◦f (1)

n = f
(2)
n for all n ≥ 0.

Finally, assume that some X(i) is the analytification of a separated algebraic space locally of finite type over
k, and that Y (i) arises from a closed subspace of the same algebraic model. There is a unique isomorphism
h : X(1) ' X(2) satisfying h ◦ f (1) = f (2) and inducing h.

We will prove this lemma in §4.7 (to which the interested reader may now turn). Artin’s proof of a
stronger result in the complex-analytic case in [A2, 7.9(i)] is too local to work in the rigid-analytic case,
and to overcome this problem we shall use Berkovich spaces. These complications are the reason that we
assume that each X(i) is separated and some X(i) is algebraic, hypotheses that are not present in the
complex-analytic analogue [A2, 7.9(i)].
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4.4. Meromorphic sections. Now we can assume that the d-dimensional Moishezon space X is irreducible.
Consider an analytic modification (f : X ′ → X,Y ⊆ X) with an irreducible X ′ and Y having underlying
space not equal to that of X (so dimY < d). The pullback map between meromorphic function fields of Xred

and X ′red provides d algebraically independent meromorphic functions on X ′red over k, so X ′ is Moishezon.
If X ′ is algebraic then by the uniqueness of analytic contractions in Lemma 4.3.2 and Artin’s existence
result for algebraization of formal contractions of algebraic spaces [A2, 3.1] as already cited, the algebraicity
of X will follow. To construct such an analytic modification of X (with X ′ algebraic), we first require a
generalization of Corollary 3.1.5 in which the reducedness hypothesis is eliminated. The following theorem
(analogous to [A2, 7.16]) gives such a generalization, and its proof occupies the rest of §4.4.

Theorem 4.4.1. Let X be an irreducible Moishezon space with dimension d > 0. There exists a nowhere
dense closed subspace Y ⊆ X and a modification (f : X ′ → X,Y ⊆ X) with irreducible X ′ such that there
is also a modification (f ′′ : X ′ → X ′′, Y ′′ ⊆ X ′′) with X ′′ irreducible and projective of dimension d and
dimY ′′ < d.

Following Artin, to prove this theorem we induct on r such that N r+1 = 0, with N the coherent nilradical
in OX . We will not give the entire argument, but rather will just focus on those aspects that have to be
treated differently in the rigid-analytic case (generally due to admissibility problems). The case r = 0 is
settled by Corollary 3.1.5, and (as in [A2, 7.16]) to carry out the induction we need a notion of meromorphic
section of a coherent sheaf on a general rigid space. The definition of meromorphic sections that is used
by Artin in the complex-analytic case is too local to be used in rigid geometry, so we now give a different
definition that is equivalent to Artin’s in the complex-analytic case but avoids locality problems (and also
leads to simpler arguments even in the complex-analytic case).

Let X be a complex-analytic or rigid-analytic space and let Y ↪→ X be an analytic set. (We do not
assume Y to have empty interior in X, but it does so in applications.) Let F be a coherent sheaf on X. We
define the sheaf F(X,Y ) of meromorphic sections of F along Y to be

F(X,Y ) = lim−→H om(I n
Y ,F )

for a coherent ideal sheaf IY that cuts out Y ; the global choice of IY clearly does not matter (e.g., we could
use the unique radical choice). This definition is not the same as Artin’s, but in Remark 4.4.2 we will show
that it is equivalent to his definition in the complex-analytic case. Our definition will be used to deduce
non-archimedean analogues of some basic facts that are used in Artin’s proof over C. Beware that if X is
non-reduced then the natural map OX → (OX)(X,Y ) may have a nonzero kernel, even if Y is nowhere dense
in X. In particular, if F = OX and Y is nowhere dense in X but X is non-reduced then there may not be
a realization of F(X,Y ) as an OX -subalgebra of the sheaf MX of meromorphic functions on X as defined in
§2.1. This will not create any problems.

Let i : U = X − Y → X be the natural open immersion, so we get a natural map

F(X,Y ) → i∗(F(X,Y )|U ) = i∗(F |U ).

We claim that this map is injective, so F(X,Y ) is functorially identified with a subsheaf of i∗(F |U ). Indeed,
if s ∈ Γ(V,F(X,Y )) for some open V ⊆ X and s|V ∩U = 0 then by working over a suitable collection of opens
Vj covering V and renaming such a Vj as X we can assume that IY is globally generated and that s arises
from a map of coherent sheaves h : I n

Y → F for some n such that h|U = 0 as a map from OU to F |U . Thus,
the image of the map h over X is a coherent sheaf on X that vanishes on U , so by shrinking more on X it
is killed by Im

Y for some m ≥ 0. The map h therefore kills the subsheaf I n+m
Y ⊆ I n

Y , so in the direct limit
sheaf F(X,Y ) the section s vanishes as desired.

Remark 4.4.2. Though it is not logically necessary for our purposes, let us prove the equivalence of our
definition of F(X,Y ) with Artin’s definition in the complex-analytic case. (The reader may ignore this
verification.) It was just shown how to identify our notion of F(X,Y ) with a subsheaf of i∗(F |U ), and Artin’s
definition is also as a subsheaf of i∗(F |U ). Both definitions commute with localization on X, so to identify
these subsheaves it suffices to compare their global sections. According to Artin’s definition, if we let IY

denote the unique radical coherent ideal sheaf on X that cuts out Y (as we may also use in the above
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definition of F(X,Y ) as a direct limit sheaf) then a global meromorphic section s of F with respect to Y is
an element s ∈ Γ(X, i∗(F |U )) = Γ(U,F ) such that for each y ∈ Y and local section f of IY on an open V
around y in X there is an n ≥ 0 such that fns ∈ Γ(V ∩U,F ) extends to Γ(V,F ). The global sections of the
subsheaf F(X,Y ) ⊆ i∗(F |U ) according to our definition certainly satisfy this requirement. For the reverse
inclusion, it therefore suffices to compare stalks at all points of the complex-analytic space X. The situation
at any point x ∈ U is trivial (both subsheaves coincide with F |U on U), and for x ∈ Y we have (under our
definition)

(F(X,Y ))x = lim−→Hom(I n
Y,x,Fx) = Γ(Spec OX,x − Spec OY,x, F̃x),

where OY,x := OX,x/IY,x, F̃x denotes the coherent sheaf on Spec OX,x associated to Fx, and the second
equality is a standard formula of Deligne for the module of sections of a quasi-coherent sheaf over an open
subscheme of an affine noetherian scheme. If f1, . . . , fr are generators of the ideal IY,x then Spec OX,x −
Spec OY,x is covered by the open affines Spec OX,x[1/fj ], so

(F(X,Y ))x = ker(
∏
j

Fx[1/fj ]→
∏
i,j

Fx[1/fifj ]).

But according to Artin’s definition, a meromorphic section s of F along Y on an open neighborhood in
X containing the point x ∈ Y has the property that (after shrinking around x ∈ Y ) there exists m ≥ 1
for which fmj s over U extends to a local section sj of F around x in X for each j. The collection of
fractions sj/fmj ∈ Fx[1/fj ] clearly satisfies the requirements to lie in the above kernel, and so s ∈ (F(X,Y ))x
inside of (i∗(F |U ))x. This verifies that our definition of F(X,Y ) and Artin’s definition of F(X,Y ) coincide as
subsheaves of i∗(F |U ) in the complex-analytic case.

Now we use our definition of F(X,Y ) to replace two stalkwise arguments of Artin that cannot be applied
in the rigid-analytic case. The first argument concerns [A2, 7.18(i)], as follows.

Lemma 4.4.3. Let X be an analytifiable (e.g., separated) algebraic space and i : U →X an open immer-
sion with closed complement Y (given the reduced structure, say). For any coherent sheaf F on X , the natu-
ral map of OX an-modules (i∗(F |U ))an → ian

∗ (F an|U an) is an isomorphism onto the subsheaf (F an)(X an,Y an).

Proof. By Deligne’s formula

lim−→Hom(Jn,M) ' Γ(SpecR− SpecR/J, M̃)

for any noetherian ring R and R-module M , we have i∗(F |U ) = lim−→H om(I n
Y ,F ). The formation of

Hom-sheaves between coherent sheaves is trivially compatible with analytification, so it remains to check
that analytification (relative to the Tate-étale topology on rigid spaces in the non-archimedean case, as
defined in [CT, 2.1]) is compatible with the formation of direct limits. This is a simple exercise in universal
mapping properties and the adjointness of pushforward and pullback of sheaves of modules with respect
to the analytification morphism of locally ringed topoi ˜(X an)ét → X̃ét (as considered in [CT, 3.3] in the
non-archimedean case). �

The second place where the notion of meromorphic sections plays a role is in the verification of the
exactness of the sequence [A2, (7.20)] that is defined as follows. Let X be Moishezon and let N be a
coherent ideal sheaf on X such that N 2 = 0 and the zero-space X of N has the form X 'X

an
for a proper

algebraic space X . Let U = SpecA be a dense affine open subscheme of X , so U
an

is a dense Zariski-open
subspace of X. Let Y := X −U

an
be its complement, say with the reduced structure. There is a naturally

associated complex

(4.4.1) 0→ N(X,Y ) → O(X,Y ) → O(X,Y ) → 0

arising by functoriality applied to the exact sequence 0→ N → OX → OX → 0.

Lemma 4.4.4. The sequence (4.4.1) is exact.

We give a proof that replaces the stalkwise argument of Artin with another argument that works in both
the complex-analytic and rigid-analytic categories (using Remark 4.4.2 in the complex-analytic case).
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Proof. Left-exactness of (4.4.1) is clear from the definition of sheaves of meromorphic sections along an
analytic set. Thus, it suffices to prove that lim−→E xt1(I n

Y ,N ) = 0. This is a direct limit of coherent sheaves, so
it is easy to see that it vanishes if and only if its stalks are zero. The stalk at x ∈ X is lim−→Ext1

OX,x(I n
Y,x,Nx),

which obviously vanishes if x 6∈ Y . Hence, we can assume x = y ∈ Y . Let V = Spec OX,y − Spec OY,y. The
direct limit of Ext1’s at x = y is identified with H1(V, Ñy), where Ñy is the coherent sheaf on Spec OX,y
associated to Ny. But Ny is naturally an OX,y-module since N is a square-zero ideal in OX and OX =
OX/N , so this degree-1 coherent cohomology may be computed on V = Spec OX,y − Spec OY,y. Hence, it
is enough to prove that V is affine. Since the reduced Y is a closed subspace of X = X

an
with X a proper

algebraic space, by GAGA for algebraic spaces it has the form Y = Y
an

for a unique reduced closed subspace
Y ⊆ X . The natural map Spec OX,y → Spec OX ,y is an affine morphism under which V is the preimage
of V := Spec OX ,y − Spec OY ,y, so it suffices to prove that V is affine. But V = Spec OX ,y ×X SpecA by
definition of Y in terms of A above, and the open immersion of algebraic spaces SpecA → X is an affine
morphism since X is separated. �

The following remark provides a global procedure that replaces a step near the end of Artin’s proof of (the
complex-analytic analogue of) Theorem 4.4.1, where he uses the preceding results on meromorphic sections
to globally remove indeterminacies in a rational morphism defined by a collection of meromorphic functions
(with a definition of meromorphic function that is inconsistent with our definition of MX in the non-reduced
case, though equivalent to ours in the reduced case and better-suited for the present purposes).

Remark 4.4.5. By using the Zariski-closure construction in Lemma 4.3.1, the discussion of globally removing
indeterminacies in a rational map in Example 2.1.4 can be carried out without reducedness hypotheses. To
be precise, in the setup of that example, we make no reducedness assumptions on X and we let U ⊆ X be
a dense Zariski-open subspace on which a morphism f : U → P1 is given. We assume that fred := f |Ured

is meromorphic on Xred (i.e., fred comes from (OXred)(Xred,Xred−Ured)(Xred) ⊆ MXred(Xred), but perhaps f
does not arise from MX(X)). Then Example 2.1.4 provides a reduced analytic set X ′ ⊆ X × P1 meeting
Ured × P1 = (U × P1)red in the graph of fred, with Γfred ⊆ X ′ a dense Zariski-open subspace. We apply
Lemma 4.3.1 to the dense Zariski-open subspace V = U × P1 in X × P1 with Z = Γf and Y = X ′. This
provides a closed immersion X̃ ′ ↪→ X ×P1 with underlying reduced space X ′ such that X̃ ′ ∩ (U ×P1) = Γf
as closed subspaces of U × P1. Thus, the second projection f ′ : X̃ ′ → P1 is a morphism extending f via
the first projection X̃ ′ → X that is an isomorphism over U . By iterating this procedure, we can handle
a collection of several such f at once by building a morphism to (P1)n. This argument also works in the
complex-analytic case.

4.5. Formal dilatations. Arguing as at the beginning of §4.4, it follows from Lemma 4.3.2 and Theorem
4.4.1 that to prove the algebraicity of irreducible Moishezon spaces X of dimension d it remains to consider
the case when there is a modification (f : X → P, Y ⊆ P ) with P irreducible and projective of dimension d
and dimY < d. We call X a dilatation of P (with respect to Y ). By GAGA, each infinitesimal neighborhood
Pn of Y in P in algebraic. Moreover, the pullback Xn of Pn along f is Moishezon by Theorem 3.3.2, and
dimXn < d since each Xn is a proper analytic subset in X. Thus, the induction on dimension implies that
each Xn is algebraic. The analytic maps fn : Xn → Pn therefore algebraize to define a map between proper
formal algebraic spaces f : X → P, and by §4.2 this is a formal modification. Let P be the projective
k-scheme that algebraizes the projective rigid space P , and let Y ⊆P be the corresponding algebraization
of Y ⊆ P . By Artin’s existence result on algebraization of formal dilatations [A2, 3.2], there is a unique
modification of algebraic spaces (g : X → P,Y ⊆ P) for which the associated formal modification g of
P is f. Thus, the analytic modification (gan : X an → P, Y ⊆ P ) also gives rise to f. To prove X ' X an,
thereby completing the proof of Theorem 4.1.1, it remains to prove an analogue for analytic dilatations of
the uniqueness result in Lemma 4.3.2 for analytic contractions. Such a result is provided by the following
analogue of a weak form of [A2, 7.9(ii)].

Lemma 4.5.1. Consider a pair of analytic modifications f (i) : X ′(i) → X with respect to a common closed
subspace Y ⊆ X. Let Y ′(i) = (f (i))−1(Y ), and assume that there is given an isomorphism h′0 : Y ′(1) ' Y ′(2)
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over Y that lifts to a compatible family of isomorphisms between infinitesimal neighborhoods h′n : X ′(1)
n '

X ′
(2)
n over Xn for all n ≥ 0.
Assume that each X ′

(i) is separated and that some f (i0) is the analytification of a proper map between
separated algebraic spaces locally of finite type over k, with Y ′(i0) ⊆ X ′(i0) arising from a closed subspace of
the algebraic model for X ′(i0). There is a unique X-isomorphism h′ : X ′(1) ' X ′(2) inducing the h′n’s.

The proof of Lemma 4.5.1 is given in §4.8 (building on arguments using in §4.7 to prove Lemma 4.3.2). In
the complex-analytic analogue [A2, 7.9(ii)] it is not necessary to assume that some f (i0) algebraizes (nor that
the X(i)’s are separated). However, the only way we can see to circumvent the locality aspects of that proof is
to work with k-analytic spaces in the sense of Berkovich, and the available analytic approximation results of
Artin (and Bosch) that are used in Artin’s argument in the complex-analytic case are not applicable to local
rings on good k-analytic spaces. Hence, rather than approximate formal solutions to analytic equations we
prefer to approximate formal solutions to polynomial equations, and that is why we impose the hypothesis
(sufficient for our purposes) that some f (i) is algebraic. The ability to make such algebraic approximations
will rest on the excellence of local rings on good k-analytic spaces [D2, 2.6].

4.6. Passage to schemes. To conclude the proof of algebraicity of Moishezon spaces, it remains to prove
Lemma 4.3.2 and Lemma 4.5.1. Before we take up these two proofs, we note that a basic source of com-
plications in the arguments to follow is that we lack a method to characterize when a local k-algebra map
OX,x → OX′,x′ between local rings on good k-analytic spaces (in the sense of Berkovich) arises from a map
between germs (X ′, x′) → (X,x). The only way we know to bypass this problem is to put ourselves in
situations where the source local ring (i.e., the target germ) is algebraic. This is why we had to impose alge-
braicity hypotheses in Lemmas 4.3.2 and 4.5.1. It will also be convenient to replace certain algebraic spaces
with schemes, and the following preliminary lemma will be used to carry out this passage from algebraic
spaces to schemes in the proofs of Lemmas 4.3.2 and 4.5.1.

Lemma 4.6.1. Let X be a separated algebraic space locally of finite type over k, and let X = X an be its
analytification in the sense of k-analytic spaces. For any x ∈ X there exists an étale map U → X from a
(separated) scheme such that the analytified map U → X admits a point u ∈ U over x for which the natural
map of germs (U, u)→ (X,x) is an isomorphism.

Moreover, if X ′ is a good k-analytic space and x′ ∈ X ′ is a point then a map of k-analytic germs
(X ′, x′)→ (X,x) is uniquely determined by the induced local k-algebra map OX,x → OX′,x′ .

We refer the reader to [CT, 4.2.2] for the analytifiability of such algebraic spaces in terms of k-analytic
spaces. Note that since X is a Berkovich space (rather than a rigid-analytic space), for x ∈ X typically
[k(x) : k] is not finite and so (due to the construction of X) it is not obvious how to relate x to a point
on the algebraic space X in general; this issue arises in the proof below. We do not address the issue of
determining when a given local k-algebra map between local rings on good k-analytic spaces arises from a
map between k-analytic germs because this existence problem seems to be nontrivial even when the target
k-analytic germ lies on the analytification of an algebraic k-scheme.

Proof. To find such a U , we first explain how to construct a canonical map of sets |X| → |X | between
underlying sets of points; in the scheme case this will coincide with the map on sets arising from the universal
property of k-analytification in the sense of locally ringed spaces over k [Ber2, 2.6.1]. The subtlety in the
case of analytification for algebraic spaces is that we have defined the analytification functor on algebraic
spaces as merely a (canonical) construction with reasonable functorial properties rather than characterizing
it by a universal mapping property. (The topos-theoretic characterization via universal properties in [C]
does not seem to yield a simpler approach for our present purposes.)

Make an initial choice of étale chart R0 ⇒ U0 for X , so the k-analytification R0 ⇒ U0 is an étale
equivalence relation with k-analytic quotient X. In particular, |U0| → |X| is surjective. We claim that if
ξ ∈ X is a point then any two points u, u′ ∈ U0 over ξ have images in |U0| over the same point of |X |.
This will give a well-defined map of sets |X| → |X | that is easily seen to be independent of the chart
(and hence recovers the usual such map when X is a scheme). Our claim is that the natural map of sets
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|U0| ×|X| |U0| → |U0| × |U0| lands in the subset |U0| ×|X | |U0|. But |U0×X U0| → |U0| ×|X| |U0| is surjective
(as for any fiber product of k-analytic spaces) and U0×X U0 = R0 = Ran

0 , so by factoring |R0| → |U0|× |U0|
through the canonical (surjective) map

|R0|� |R0| = |U0 ×X U0|� |U0| ×|X | |U0|
we deduce the claim. It follows from the construction that the formation of the map of sets |X| → |X | is
functorial in X and is compatible with passage to Zariski-open subspaces of X . (More specifically, this
map is continuous with respect to Zariski topologies.)

The construction of the map |X| → |X | works more generally if X is assumed to be analytifiable (in
the sense of k-analytic spaces) rather than separated. It is an important technical remark that if X ′ →X
is a map between such analytifiable algebraic spaces over k and if X ′ → X is the induced map between
the analytifications then the natural map of sets |X ′| → |X| ×|X | |X ′| is surjective. To see this, we first
recall that the formation of these analytifications commutes with any analytic extension of the base field
[CT, 2.3.5, §4.1], so it suffices to prove surjectivity in the case of k-rational points. By functoriality of
analytification this case is trivial.

Let x ∈ |X | be the image of x. By [Kn, II, 6.4] we can choose an étale map h : U → X from a
(separated) scheme so that there is a point u ∈ |U | over x with k(u) = k(x). Using Zariski-localization
on X and U around x and u, we can arrange that u is the unique point over x. Hence, the étale map of
schemes p1 : U ×X U → U pulls back to an isomorphism over u. Since the points u ∈ |U | and x ∈ X
lie over the same point x ∈ |X |, we can choose a point u ∈ U over both u and x. Since analytification of
(analytifiable) algebraic spaces is compatible with the formation of fiber products [CT, 2.2.3, §4.1], the map
pan

1 : U ×X U → U is identified with the first projection. Analytification of algebraic schemes commutes
with extension of the ground field, so applying this to p1 and the field extension k → H (u) gives (via a
calculation with the canonical H (u)-point over u in the H (u)-analytic space U⊗̂kH (u)) that

(pan
1 )−1(u) = (p−1

1 (u)⊗k(u) H (u))an 'M (H (u))

as H (u)-analytic spaces. In other words, pan
1 pulls back to an isomorphism over u ∈ U . But pan

1 is a base
change of the étale map π : U → X by itself, with u ∈ U over x ∈ X, so it follows that π must also pull back
to an isomorphism over x. It then follows from the étaleness of π that (U, u) ' (X,x), by [Ber2, 3.4.1].

To prove that a map of good k-analytic germs (X ′, x′) → (X,x) to an algebraic target X = X an is
uniquely determined by the induced map of analytic local rings, it now suffices to consider the case when X
is a scheme, and even an affine scheme. By standard arguments with coherent ideal sheaves we can assume
X = AN

k = Spec k[T1, . . . , TN ] for some N ≥ 1. In this case we can identify morphisms X ′ → X with
ordered N -tuples in OX′(X ′). Thus, if f, g : X ′ ⇒ X are two maps satisfying f(x′) = g(x′) = x and they
induce the same pullback map on local rings then the corresponding map (f, g) : X ′ → X × X kills the
coherent ideal (T1 − TN+1, . . . , TN − T2N ) of the diagonal after shrinking X ′ around x′. This shows that f
and g coincide near x′, as desired. �

4.7. Uniqueness of analytic contractions. We now prove Lemma 4.3.2. Uniqueness is clear since the
map h is determined set-theoretically and on complete local rings. Moreover, if h exists as a morphism
then it must be an isomorphism. Indeed, h is automatically separated since each X(i) is separated, and
hence h is proper (since h ◦ f (1) = f (2) is proper and f (1) is proper with X(1) = f (1)(X ′) ∪ Y (1) and
h : Y (1) ' Y (2) ⊆ X(2), so [T1, 4.5, 4.6] may be applied). The map h has finite fibers, so it is finite, and thus
it is an isomorphism since it is bijective and induces isomorphisms on complete local rings. The problem is
therefore merely to construct h as a morphism, so we can switch the roles of X(1) and X(2) if necessary to
arrange that X(2) is algebraic.

For existence we wish to work locally and then pass to k-analytic spaces. (We can associate k-analytic
spaces to rigid spaces satisfying some finiteness conditions, but not to arbitrary rigid spaces. This is why we
first need to localize the problem.) To do this, we first reformulate the assertion to be proved. We suppose
there is given a pair of modifications (f (i) : X ′(i) → X(i), Y (i) ⊆ X(i)) and we let Y ′(i) = (f (i))−1(Y (i)).
Assume that there is given a map of rigid spaces h′ : X ′(1) → X ′

(2) satisfying h′
−1(Y ′(2)) = Y ′

(1), and a
morphism h : X(1) → X(2) satisfying h ◦ f(1) = f(2) ◦ h′. Finally, assume that X(2) = (X (2))an for a separated
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algebraic space X (2), and that Y (2) = (Y (2))an for a closed subspace Y (2) ⊆ X (2). We claim that there
is a unique map h : X(1) → X(2) satisfying h ◦ f (1) = f (2) ◦ h′ and inducing h. This obviously implies the
result that we want to prove, and the uniqueness is once again clear.

We can work locally on X(1) for existence, so we may assume X(1) is affinoid. Let {V (2)
i } be an open

cover of X (2) by quasi-compact opens, so the overlaps W (2)
i = Y (2) ∩ (V (2)

i )an are a Zariski-open cover of
Y (2). Let W (1)

i = h−1
0 (W (2)

i ), so {W (1)
i } is an admissible open cover of the analytic set Y (1) in the affinoid

X(1). By the Gerritzen–Grauert theorem there is a finite collection of rational affinoid opens {U (1)
j } in X(1)

such that {U (1)
j ∩ Y (1)} refines {W (1)

i }. The union U = ∪U (1)
j is a quasi-compact admissible open in the

affinoid X(1) such that Y (1) ⊆ U , so by [Ki, 2.3] there are finitely many affinoid opens Ur in X(1)−Y (1) such
that {Ur, U (1)

j }j,r is an admissible cover of X(1). It suffices to solve the problem over each of the constituents
of this covering. The case Y (1) = ∅ is trivial, and in general we are reduced to the case when h0(Y (1)) is
contained in the analytification of a quasi-compact open subspace of X (2). We may therefore replace X(2)

with such a subspace, so X (2) is separated and of finite type and X(1) is affinoid.
Under the equivalence of categories in [Ber2, 1.6.1] between the category of paracompact Hausdorff strictly

k-analytic spaces and a full subcategory of the category of quasi-separated rigid-analytic spaces over k, let
X(i) be the good separated strictly k-analytic space corresponding to X(i). Let F (i) : X′

(i) → X(i) likewise
correspond to f (i), Y(i) ⊆ X(i) correspond to Y (i) ⊆ X(i), and H ′ : X′

(1) → X′
(2) correspond to h′. In

particular, F (i) is proper by [T1, 4.5], so each X′
(i) is a good separated strictly k-analytic space. Let

Hn : X
(1)
n → X

(2)
n correspond to hn, so Hn ◦ F (1)

n = F
(2)
n ◦ H ′n for all n ≥ 0. We will construct a map

H : X(1) → X(2) inducing each Hn and satisfying H ◦F (1) = F (2) ◦H ′. Such an H corresponds to the desired
map h : X(1) → X(2).

More generally, it suffices to solve this construction problem for H in the category of good separated
strictly k-analytic spaces, with X(2) arising from a separated algebraic space of finite type over k but X(1)

not necessarily k-affinoid. In this setting the desired map H is at least uniquely determined set-theoretically
if it exists, so its uniqueness follows as in the rigid case.

It suffices to carry out the construction of H locally on X(1). The problem is trivial over X(1) − Y(1)

since F (1) is an isomorphism over this Zariski-open locus. Thus, it suffices to solve the existence problem
on an open around y1 in X(1) for each y1 ∈ Y(1). To circumvent the problem of constructing maps of
germs of good k-analytic spaces inducing a given local k-algebra map between the corresponding local
rings, we want to next reduce to the case when X (2) is a scheme. By Lemma 4.6.1 there is an étale map
U → X (2) from a (separated) scheme such that the associated analytic étale map π : U → X(2) has a
point u over y2 = H0(y1) ∈ Y(2) for which (U, u) ' (X(2), y2) via π. Let V ⊆ X(2) be an open around y2

over which π restricts to an isomorphism near u. The open pullback H ′
−1((F (2))−1(V)) in X′

(1) contains
H ′
−1((F (2))−1(y2)) ⊇ (F (1))−1(y1), so since F (1) : X′

(1) → X(1) is proper we can find an open W ⊆ X(1)

around y1 such that (F (1))−1(W) ⊆ H ′−1((F (2))−1(V)). Thus, if we replace X(1) with W then we can arrange
that H ′ factors through (F (2))−1(V). Further shrinking lets us assume that H0 (and hence every Hn) factors
through V. But we chose V around y2 so that π : U→ X(2) restricts to an isomorphism from an open around
u onto V. Hence, we can now replace X (2) with U . This brings us to the case when X (2) is a scheme.
Beware that X ′(2) is still merely an algebraic space, not necessarily a scheme.

The local construction of the required map H : X(1) → X(2) near y1 ∈ Y(1) (with y2 = H0(y1) ∈ Y(2))
can be carried out by simplifying Artin’s pointwise construction in the complex-analytic case, as we shall
now explain. (There is also an important technical point whose justification was omitted in Artin’s proof,
relevant in both the non-archimedean and complex-analytic cases, that is addressed in Lemma 4.7.1 below.)
Let O(i) = OX(i),yi and define

O ′
(i) = (F (i)

∗ OX′(i))yi ' lim−→H0(U(i),OX′(i)),

where the limit is taken over all open subsets U(i) ⊆ X′
(i) containing the subset (F (i))−1(yi). This is a finite

O(i)-algebra since F (i) is proper. Since H ′ carries the F (1)-fiber over y1 into the F (2)-fiber over y2, pullback
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along H ′ induces a k-algebra map

(4.7.1) O ′
(2) → O ′

(1)
.

Finally, define

Õ ′
(i)

= lim←−(F (i)
∗ (OX′(i)/I

n
Y(i)OX′(i)))yi ,

so by Kiehl’s version of the theorem on formal functions [K1] (which carries over to the complex-analytic
case and the k-analytic case) this is naturally identified with the IY(i),yi-adic completion of O ′(i).

Letting O
(i)

denote the IY(i),yi-adic completion of the local noetherian ring O(i), since yi ∈ Y(i) we see

that the flat map O(i) → O
(i)

is faithfully flat. But the compatibility of completion with finite maps between
noetherian rings implies (via Kiehl’s version of the theorem on formal functions) that the natural map

O
(i) ⊗O(i) O ′

(i) → Õ ′
(i)

is an isomorphism. Hence, since the finitely generated kernel ideal of O(i) → O ′(i) is killed by a power of
IY(i),yi (due to F (i) being an isomorphism over X(i) − Y(i)), so it is unaffected by the faithfully flat scalar

extension O(i) → O
(i)

, we conclude that the natural k-algebra map

(4.7.2) O(i) → O
(i) ×fO′(i) O ′

(i)

is an isomorphism.
The compatible maps Hn : X

(1)
n → X

(2)
n induce a k-algebra map O

(2) → O
(1)

, and we claim that this
restricts to a local map of local k-subalgebras ϕ : O(2) → O(1). This follows from the description (4.7.2)
of each O(i) as a fiber product ring and the fact that the maps Hn covered by the maps H ′n induce (via

the theorem on formal functions in Kiehl’s form) a map Õ ′
(2)
→ Õ ′

(1)
that is compatible with (4.7.1).

Let y2 ∈ Y (2) be the image of y2, so composing ϕ with the canonical map θy2 : OX (2),y2
→ O(2) gives

a local k-algebra map OX (2),y2
→ O(1). This is induced by a k-map of germs of locally ringed spaces

(X(1), y1)→ (X (2),y2) since X (2) is a locally finite type k-scheme. Hence, by shrinking X(1) we can arrange
that there is a k-map Halg : X(1) → X (2) carrying y1 to y2 and inducing ϕ ◦ θy2 on local rings. Since
Y(2) ⊆ X(2) is the pullback of Y (2) ⊆X (2) under the analytification morphism X(2) →X (2), shrinking some
more around y1 allows us to arrange that H−1(Y(2)) = Y(1), where H : X(1) → X(2) is the k-analytic map
associated to Halg via the universal property of analytification (in the sense of k-analytic spaces). Beware
that we do not yet know that H(y1) = y2 or that H is related to ϕ on local rings.

For each n ≥ 0 the induced map of infinitesimal neighborhoods Hn : X
(1)
n → X

(2)
n must agree with Hn

on some open subspace Vn ⊆ X
(1)
n around y1 because (again via the universal property of analytification)

it suffices to check equality after composition with the natural analytification map X
(2)
n → X

(2)
n , for which

it is enough to verify the equality by computing on local rings (due to the second part of the self-contained
Lemma 4.6.1). Such equality on local rings follows from how Halg was constructed in terms of ϕ ◦ θy2 . In
particular, H(y1) = y2 and by replacing X(1) with an open subset meeting Y(1) in V0 we can arrange that
H(y) = H0(y) for all y ∈ Y(1). Hence, the two maps

H ◦ F (1), F (2) ◦H ′ : X′
(1)
⇒ X(2)

coincide set-theoretically everywhere. We claim that these agree as morphisms on (F (1))−1(U) for some
open U in X(1) around y1. By properness of F (1) it suffices to check equality on the germ (X′(1)

, y′1) for each
y′1 ∈ (F (1))−1(y1). By the universal property of analytification, since H(y1) = y2 it suffices to show that for
each such y′1, composition with the canonical map X(2) →X (2) yields maps of germs (X′(1)

, y′1)⇒ (X (2),y2)
that coincide. But these latter two maps of germs are given on local rings by H ′

∗ ◦ (F (2))∗ ◦ θy2 and
(F (1))∗ ◦ H∗ ◦ θy2 = (F (1))∗ ◦ (Halg)∗ = (F (1))∗ ◦ ϕ ◦ θy2 . Since H ′

∗ ◦ (F (2))∗ = (F (1))∗ ◦ ϕ as maps
O(2) ⇒ OX′(1),y′1

by construction of ϕ, so we have equality of maps of local rings, we get the required
equality of maps of germs by the second part of Lemma 4.6.1.
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Under the identification of Y(1) with the underlying topological space of X
(1)
n for all n ≥ 0, the only

remaining problem is to find a single open subspace V ⊆ Y(1) around y1 that may be taken to be the
underlying topological space of Vn for all n ≥ 0. Once such a V is found, for a choice of open W ⊆ X(1)

meeting Y(1) in V the map H|W will be the desired local solution to our problem around the initial arbitrary
choice of point y1 ∈ Y(1). The existence of such a V is not explained in Artin’s complex-analytic proof, so
we justify it in both analytic categories by applying Lemma 4.7.1 below to the pullback of the diagonal in
X′

(2) × X′
(2) under the compatible family of maps (Hn,Hn) : X′

(1)
n → X′

(2) × X′
(2), completing the proof of

Lemma 4.3.2.

Lemma 4.7.1. Let X be a complex-analytic, rigid-analytic, or good k-analytic space, and let Y ↪→ X be
a closed immersion with associated coherent ideal sheaf I ⊆ OX . Let {Xn} be the associated system of
infinitesimal neighborhoods of Y . Let Z be a formal closed subspace of the associated formal analytic space
X̂, by which we mean a compatible family of coherent ideal sheaves Kn ⊆ OXn for all n ≥ 0.

Choose x ∈ Y and assume (Kn)x = 0 for each n ≥ 0. Then there exists an open subset V ⊆ Y around x
such that Z = X̂ over V , which is to say that Kn|V = 0 for all n ≥ 0.

Proof. Let W ⊆ X be a neighborhood of x of the following type: a compact Stein set with a Hausdorff Stein
neighborhood in the complex-analytic case, an admissible affinoid open in the rigid-analytic case, and a
k-affinoid domain in the good k-analytic case. In particular, the functor Γ(W, ·) is exact on coherent sheaves
on X and A = Γ(W,OX) is a noetherian ring. Moreover, the exactness of this functor ensures that for the
ideal I = Γ(W,I ) in A, the natural ring map A/In+1 → Γ(W ∩ Y,OXn) is an isomorphism and this ring
generates OXn |W∩Y . Thus, the compatible family {Kn} corresponds to an ideal J in the I-adic completion
B of A.

Let p ⊆ B be the prime ideal associated to evaluation at x, so this arises from a unique prime ideal q of
A containing I. (These are maximal ideals in the complex-analytic and rigid-analytic cases.) The natural
map A∧q → O∧X,x is faithfully flat (even an isomorphism in the complex-analytic and rigid-analytic cases), so
each Bp/p

r+1Bp is a quotient of the local subring (A/Ir+1)q ⊆ O∧Xr,x. Thus, the initial vanishing hypothesis
on (Kn)x for each n ≥ 0 says that J maps to 0 in each Bp/p

r+1Bp, so J has vanishing image in Bp. Hence,
there is some b ∈ B− p such that bJ = 0. But b mod IB ∈ A/I = Γ(W ∩ Y,OY ) is a unit near x, so there is
a smaller choice W ′ ⊆W around x such that for A′, B′, I ′, and J ′ defined similarly to A, B, I, and J (using
W ′ in place of W ) we have that b mod IB has unit image in B′/I ′B′ = A′/I ′ = Γ(W ′ ∩ Y,OY ). Since B′ is
I ′-adically separated and complete, the image of b in B′ is a unit in B′. But J ′ = JB′ by the Stein/affinoid
properties of W and W ′, so J ′ is killed by a unit. Hence, J ′ = 0. Any open around x in W ′ ∩ Y therefore
serves as the required V . �

4.8. Uniqueness of analytic dilatations. Finally, we prove Lemma 4.5.1. As in the proof of Lemma 4.3.2
in §4.7, the uniqueness of h′ as a morphism is immediate and it is automatically an isomorphism if it exists.
Thus, we may swap the f (i)’s if necessary so that f (2) is the analytification of a proper map between separated
algebraic spaces locally of finite type over k and Y (2) arises from analytifying a closed subspace of the algebraic
model for X(2). We then generalize the statement to be proved exactly as we did in §4.7: we are given a pair of
analytic modifications of separated rigid spaces (f (i) : X ′(i) → X(i), Y (i) ⊆ X(i)) and a map h : X(1) → X(2)

satisfying h−1(Y (2)) = Y (1), and for Y ′(i) := (f (i))−1(Y (i)) ⊆ X ′(i) we assume that we are also given a map
of formal analytic completions h′ : X′

(1) → X′
(2) satisfying f(2) ◦h′ = h◦ f(1), where h : X(1) → X(2) is induced

by h. Assuming that f (2) is the analytification of a proper map F (2) : X ′(2) → X (2) between separated
algebraic spaces locally of finite type over k and that Y (2) = (Y (2))an for some closed subspace Y (2) ⊆X (2)

such that F (2) is an isomorphism over X (2) −Y (2), we seek to construct a map h′ : X ′(1) → X ′
(2) inducing

h′ such that f (2) ◦ h′ = h ◦ f (1); such an h′ is clearly unique if it exists. Since we are given the map h
downstairs and are trying to construct h′ upstairs, by an even easier argument than in §4.7 we can reduce
to the case when X ′(2) and X (2) are of finite type over k and X(1) is affinoid. We may thereby reduce to
the analogous construction problem in the setting of good strictly k-analytic spaces, and uniqueness in this
case goes as in §4.7.
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Exactly as in the complex-analytic case, by an argument with the Artin–Rees lemma and the second
part of Lemma 4.6.1 we see that it suffices to prove that for each x′1 ∈ Y′

(1) and n ≥ 0 there is a map
of germs H ′ : (X′(1)

, x′1) → (X′(2)
, x′2) over h inducing H′n, where x′2 ∈ Y′

(2) is the image of x′1 under the
common topological map of the H′n’s. Thus, we are reduced to the following problem. Let X be a separated
algebraic space of finite type over k and let Y ⊆X be a closed subspace; define X to be the (good, strictly
k-analytic) analytification X an in the sense of k-analytic spaces, and similarly for Y = Y an. Let X ′ → X
be a separated map of finite type, Y ′ the pullback of Y , and W a good k-analytic space over X. Let Z ⊆W

be the pullback of Y ⊆ X, and assume that there is given an X-map h : W→ X′ between the corresponding
formal completions (i.e., compatible Xn-maps hn : Wn → X′n between infinitesimal neighborhoods for all
n ≥ 0). For each n ≥ 0 and w ∈ Z with image x′ ∈ Y′ under h0 and image x ∈ X, we claim that there exists
an (X, x)-map of k-analytic germs (W, w)→ (X′, x′) lifting hn.

This assertion only involves k-analytic germs, so by applying Lemma 4.6.1 twice (first to (X, x) and then
to (X′, x′)) we easily reduce to the case when X and X ′ are schemes. We may also assume that the schemes
X and X ′ are affine. Via the universal property of analytification of algebraic k-schemes [Ber2, 2.6.1], an

X -map W → X ′ whose restriction to Z factors as Z
h0→ Y′ → Y ′ (the final map being the canonical one)

corresponds to an X-map of k-analytic spaces W→ X′ that carries w to h0(w) = x′. Hence, we can replace h

with the composite map g : W→ X̂ ′ to the completion of X ′ along Y ′ (and x′ with its image x′ in Y ′) so
as to reduce ourselves to the situation in which the target objects are algebraic schemes and formal schemes
rather than k-analytic spaces and formal k-analytic spaces.

Choose a presentation X ′ ' SpecA[T1, . . . , TN ]/(v1, . . . , vm) over the coordinate ring A of X . Since the
Y -map g0 : Z → Y ′ carries w to x′, the desired map of germs (W, w) → (X ′,x′) over (X ,x) amounts to
an ordered N -tuple f1, . . . , fN ∈ OW,w that is a simultaneous zero of the vi’s such the image of the fj ’s in
OWn,w is as specified by the Xn-map gn for all n. If J ⊆ A is the ideal of Y in X = SpecA then J ·OW,w is
the proper ideal corresponding to (Z, w) in (W, w), so we are given that the system of polynomial equations
v1 = · · · = vm = 0 over A has a solution in the J-adic completion of the A-algebra OW,w and we seek a
solution in OW,w that lifts a specified solution modulo J ·OW,w. By a standard argument as in the proof of
[A1, 1.3] (expressing the congruence condition modulo J ·OW,w in terms of an auxiliary system of polynomial
equations with additional variables corresponding to a choice of A-module generators of J), we can dispense
with the congruence condition at the expense of introducing more Ti’s and enlarging the collection of vj ’s.
We still have a solution in the J-adic completion, and hence in the mw-adic completion, so by Popescu’s
generalization of Artin approximation to arbitrary excellent rings [S] it suffices to prove that the henselian
local noetherian ring OW,w is excellent. This excellence is a recent result of Ducros [D2, 2.6].
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