DESCENT FOR NON-ARCHIMEDEAN ANALYTIC SPACES

BRIAN CONRAD AND MICHAEL TEMKIN

1. INTRODUCTION

In the theory of schemes, faithfully flat descent is a very powerful tool. One wants a descent theory
not only for quasi-coherent sheaves and morphisms of schemes (which is rather elementary), but also for
geometric objects and properties of morphisms between them. In rigid-analytic geometry, descent theory for
coherent sheaves was worked out by Bosch and Gortz [BG, 3.1] under some quasi-compactness hypotheses
by using Raynaud’s theory of formal models, and their result can be generalized [C, 4.2.8] to avoid quasi-
compactness assumptions (as is necessary to include analytifications of faithfully flat maps arising from
algebraic geometry [CT, §2.1]). Similarly, faithfully flat descent for morphisms, admissible open sets, and
standard properties of morphisms works out nicely in the rigid-analytic category [C, §4.2].

In Berkovich’s theory of k-analytic spaces, one can ask if there are similar results. The theory of flatness
in k-analytic geometry is more subtle than in the case of schemes or complex-analytic spaces, ultimately
because morphisms of k-affinoid spaces generally have non-empty relative boundary (in the sense of [Berl,
2.5.7]). In the case of quasi-finite morphisms [Ber2, §3.1], which are maps that are finite locally on the
source and target, it is not difficult to set up a satisfactory theory of flatness [Ber2, §3.2]. The appendix to
this paper (by Ducros) develops a more general theory of flatness for k-analytic maps with empty relative
boundary; this includes flat quasi-finite maps, smooth maps, and (relative) analytifications of flat maps
between schemes locally of finite type over a k-affinoid algebra.

Let f : X — Y be a map of k-analytic spaces, and let Y’ — Y be a surjective flat map. For various
properties P of morphisms that are preserved by base change (proper, finite, separated, closed immersion,
etc.) we say that P is local for the flat topology if f satisfies P precisely when the base change f': X' — Y’
does. For example, consider the property of a morphism f : X — Y being without boundary in the sense that
for any k-affinoid W and morphism W — Y, the base change X Xy W is a good k-analytic space (i.e., each
point has a k-affinoid neighborhood) and the morphism of good spaces X xy W — W has empty relative
boundary in the sense of [Berl, p. 49]. This property is preserved by k-analytic base change, but it is not
at all obvious from the definitions if it is local for the flat topology. Similarly, if Y is a k-analytic space and
it has a flat quasi-finite cover Y’ — Y such that Y’ is good then it is natural to expect that Y is good but
this does not seem to follow easily from the definitions since the target of a finite surjective morphism with
affinoid source can be non-affinoid [Liu]. It is also natural to ask if goodness descends even when Y/ — Y is
merely a flat cover.

Finally, one can also ask for analogous descent results with respect to extension of the ground field. That
is, if f: Y’ — Y is a map of k-analytic spaces and if K/k is an arbitrary analytic field extension then we
ask if f satisfies a property P precisely when fr : Y/, — Yk satisfies this same property. Likewise, if Yi
is good then is Y good (the converse being obvious)? This latter question seems to be very non-trivial,
and in general the problem of descent through a field extension is much harder than descent through flat
surjections. The purpose of this paper is to apply the theory of reduction of germs (as developed in [T2]) to
provide affirmative answers to all of the above descent questions.
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Remark 1.1. What we are calling a morphism without boundary is called a closed morphism in [Ber2, 1.5.3(ii)]
and [T2]. It is a non-trivial fact [T2, 5.6] that whether or not f : X — Y is without boundary can be checked
locally for the G-topology on Y. This locality is very useful when checking that an abstractly constructed
map is without boundary, and it is the reason that for any ground field extension K /k the map fx is without
boundary when f is without boundary. In contrast, the relative notion of good morphism [Ber2, 1.5.3(i)] is
not local for the G-topology on the base (one can construct a counterexample using [T1, Rem. 1.6, Thm. 3.1]),
so we do not consider it to be an interesting concept for its own sake (although morphisms that are either
proper or without boundary are good by definition).

As the proofs will make clear, the essential cases for both kinds of descent situations (flat covers and
extension of the base field) are the property of a k-analytic space being good and the property of a k-
analytic morphism f : Y/ — Y being without boundary. We now state our main results only for these
hardest cases.

Theorem 1.2. Let f: X — Y be a morphism of k-analytic spaces.

(1) If Y = Y s a flat surjection and the base change X' — Y’ of f is without boundary then so is f.
Also, if f is a flat surjection and X is good then so is Y .

(2) If K/k is an analytic extension field and fx is without boundary then so is f. Also, if Y is a good
K-analytic space then'Y is a good k-analytic space.

In §2 we work out the instances of faithfully flat descent that are “easier” in the sense of only requiring
the results already proved in [T2]. Rather more difficult is such descent for the absolute properties of
goodness and strict-analyticity of analytic spaces, which we respectively treat in Corollary 6.2 and (under
some separatedness hypotheses) Theorem 7.7. These harder results rest on a descent theorem for graded
birational spaces (Theorem 6.1) that we prove as a consequence of a lot of work in “graded commutative
algebra” in §4-85. For example, goodness for strictly k-analytic germs (when |k*| # 1) is closely related
to affineness for ungraded birational spaces over the residue field E, so to study descent for goodness one
is led to seek an analogue of affineness in classical birational geometry. As a warm-up, in §3 we digress to
show that affineness for a birational space over k is equivalent to a certain auxiliary integral k-scheme of
finite type having normalization that is proper over an affine algebraic k-scheme. This latter property is a
substitute for affineness in birational geometry, and it is a delicate fact that this property descends through
modifications: such birational invariance fails if the normalizations are omitted, as shown by an elegant
example of de Jong (Example 3.3). de Jong’s counterexample gave us new insight into Q. Liu’s surprising
examples of non-affinoid rigid spaces with affinoid normalization (see Example 3.4), and it also inspired the
intervention of integral closures in both §4 and the proof of our main descent theorem for birational spaces
(Theorem 6.1).

Though we expect our results to be of general interest in k-analytic geometry, perhaps of greater interest
is the techniques of proof. For example, to descend properties after a field extension K/k the essential
difficulty is that the topological fibers of the natural map X — X for a k-analytic space X are of the form
M (A (2)@,K) for € X, and these can have a rather complicated structure since the K-Banach algebra
A (2)®, K can fail to be K-affinoid. We will not try to describe such fibers in their entirety, nor their Shilov
boundary (see [Berl, p. 36]) which may be infinite, but we will prove instead that the fiber over each z € X
contains a “sufficiently generic” point xx. Then we will see that such points can test Xx very well: for
many local properties P, if P fails for some x € X then it fails on Xg at such “generic” points zx € Xg
over z. Corollary 8.5 gives the existence of such xg, and the proof of this corollary rests on a theory of
“transcendence degree” for graded field extensions that we develop in §4.

The proof of Theorem 1.2(2) (see §9) follows the strategy of using such points zx. In addition to descent
for goodness, another absolute property for which descent through a ground field extension K/k is non-trivial
and interesting is the strict analyticity property (under the necessary assumption /|K*| = /|k*|). We treat
this in Theorem 9.1 subject to some separatedness hypotheses. For properties of morphisms, our descent
results through a ground field extension rest on Theorem 1.2(2), and as an interesting application of the
invariance of the closed immersion property with respect to arbitrary analytic ground field extensions we
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conclude the paper by carrying over to k-analytic geometry the basic results for relatively ample line bundles
in the rigid-analytic case [C, §3]. We do not know how to adapt the rigid-analytic arguments of [C, §3] to
work in the k-analytic case (especially without goodness hypotheses), so we do not obtain a new approach
to relative ampleness in rigid geometry.

In the appendix we review basic properties of flatness of analytic morphisms (whose general theory was
developed very recently by A. Ducros in [Duc]), and of a related notion of G-smoothness.

Since our proofs rely extensively on the theory of reduction of germs as developed in [T2], we assume that
the reader is familiar with this work and we will use its terminology and notation, including the theory of
birational spaces over the RZ-graded field k and the “ograded commutative algebra” in [T2, §1]. As usual
in the theory of k-analytic spaces, we permit the possibility that the absolute value on k£ may be trivial.

TERMINOLOGY AND NOTATION. For an abelian group G and a G-graded field k, by a G-graded birational
space over k we mean an object X of the category bir; introduced in [T2]. Such an X consists of a G-

graded field K over k and a local homeomorphism X — P /E where X is a connected, quasi-compact, and
quasi-separated topological space and P /E is the naturally topologized set of G-graded valuation rings of K

containing k. Since P Rk is irreducible and its irreducible closed sets have unique generic points, the same
necessarily holds for X. In particular, by taking X = Pz /i We can view P JFas a G-graded birational

space over k. When the group G is understood from context, we will not mention it explicitly (and will
simply speak of “graded” objects).

For any extension L / K of graded fields over E, restriction of graded valuation rings from L to K induces
a continuous map wi/f(ﬂ; : PZ/E — Pf(/'l%' A morphism Y — X from the birational space Y = (Y — PE/E)

to the birational space X = (X — Pf(/ﬁ) is a pair consisting of a graded embedding K — L over k and a
continuous map Y — X compatible with ¢z IR

An analytic extension K /k is an extension field endowed with an absolute value that extends the given one
on k and with respect to which K is complete. If X is a k-analytic space then X denotes the K-analytic
space X®,K. If z is a point in a k-analytic space X then we write (X, ) to denote the associated germ
(denoted X, in [T2]). A k-analytic space X is locally separated if each x € X admits a neighborhood that is
a separated k-analytic domain. (By [T2, 4.8(iii)], it is equivalent for each RZ,-graded birational space X,

over the R% -graded reduction k to be separated over PE/E in the sense of [T2, §2].)

A k-analytic map f : X — Y is without boundary (or has no boundary) if, for any k-affinoid Y’ and
morphism Y’ — Y, the pullback X’ = X xy Y’ is a good space and the morphism of good spaces X’ — Y’
has empty relative boundary. This concept is called closed in [Berl], [Ber2], and [T2], but we prefer the
change in terminology to avoid confusion with the unrelated topological notion of a closed map and because
the open unit disc is without boundary over .# (k) whereas the closed unit disc is not. The relative interior
Int(X/Y) is the open locus of points € X admitting an open neighborhood V' C X such that V' — Y is
without boundary; the complement 9(X/Y) = X —Int(X/Y) is the relative boundary (so X — Y is without
boundary if and only if (X/Y") is empty).

We refer the reader to Appendix A for a discussion of flatness for morphisms without boundary.

2. FAITHFULLY FLAT BASE CHANGE: PROPERTIES OF MORPHISMS

As an application of the theory of birational spaces, we shall now establish some easier descent results.
In particular, results in graded commutative algebra in [T2] cover our needs in this section. We begin with
a lemma that was recorded (under a mild restriction) in [T2, 5.7]. Since the proof was omitted there and we
now need a more general version, we give the proof in its entirety.

Lemma 2.1. Let ¢ : X — Y and ¢ : Y — Z be morphisms of k-analytic spaces. The relative interiors
satisfy

Int(X/Y) Ny (Int(Y/Z)) C Int(X/2),
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and a point x € Int(X/Z) lies in Int(X/Y) N~ (Int(Y/Z)) if either x € Int(X/Y) or if o is separated on
an open neighborhood of ¥(x). In particular, the inclusion is an equality whenever Int(X/Y) = X or ¢ is
locally separated.

Proof. The inclusion is [Ber2, 1.5.5(ii)], and for the reverse statement at a point x € Int(X/Z) such that ¢ is
separated near 1(x) we can replace our spaces with suitable open subspaces so that ¢ is separated. In this
case the equality is [T2, 5.7], but since we also want to treat the case z € Int(X/Y") without separatedness
conditions on ¢ we give the argument here for the convenience of the reader. We choose x € Int(X/Z) and
let y=1(z) € Y and z = ¢(y) € Z. Consider the induced maps w X, — Y and @ : Y — Z,, of reductions
of germs in the category bir; of birational spaces over the RZ-graded field k. By [T2, 5.2], a morphism
of k-analytic spaces has empty relative boundary near a point of the source if and only if the induced map
of reductions of germs at that point and its image is a proper map in the category birz (in the sense of

properness defined in [T2, §2]). The condition x € Int(X/Z) therefore says exactly that ¢ o Y=o w is
a proper map in biry, and the condition x € Int(X/Y) says exactly that ¢ is proper. By [T2, 4.8(iii)],
separatedness for ¢ near i (x) says exactly that ¢ is a separated map in the category birz (in the sense
defined in [T2, §2]).

Our problem is reduced to checking that if f : X — Y and g : Y — Z are maps in bir; (not maps of
k-analytic spaces!) with g o f proper and either g is separated or f is proper then both f and g are proper.
(Since maps in bir; are analogous to dominant maps of varieties, it is not unreasonable that g should be

proper when go f and f are proper.) By the definition of a birational space over E, Z corresponds to a local
homeomorphism U — P JE where U is a connected, quasi-compact, and quasi-separated topological space
and K / k is an extension of RZ-graded fields. We similarly have that Y and X respectively correspond to
local homeomorphisms U’ — Pz, /E and U" — Py, it and the maps f and g respectively correspond to the
left and right squares in a commutative diagram of topological spaces

v’ U’ U

R

Prip—Prii—Pgrsi

in which the maps along the bottom row are the natural pullback maps induced by maps of graded k- algebras
K — K’ and K' — K" Separatedness of g (if it holds) means that the natural map i : U’ — U *pr :Prik
is injective, and the properness of g o f says that the natural map U” — U XPz 2 PK/,/k is bljectlve This
latter map factors as the composition of natural maps

(2.1) U" = U xpe i Proji = U X o P
in which the second map is the topological (or set-theoretic) base change of the map 4 by the map Pz, Yt
P, .

K'/k

The natural map Pz, B Pz, E along which we form the base change of 7 is surjective, due to the easy
consequence of Zorn’s Lemma that every graded local ring in a graded field F' is dominated by a graded
valuation ring in F' having graded fraction field F. Thus, the base change of ¢ must be injective when i is
injective (i.e., when g is separated), so it is an easy set-theoretic argument to deduce that if g is separated
and g o f is proper then both steps in (2.1) are bijective. For the first step such bijectivity says that f is
proper, and for the second step it says that g is proper (since Pz, E Pz, /E is surjective). This settles the
case when g is separated. If instead f is proper, then in the factorization (2.1) we see that the second step
is bijective (since the first step and the composition are so), and this is a base change of ¢ by a surjection.
Hence, if f is proper then 7 is bijective, which is to say g is proper. |

As an immediate consequence of this lemma we obtain a result on étale equivalence relations that answers
a question that naturally arose in [CT].
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Theorem 2.2. Let p1,ps : R =3 U be a pair of quasi-finite maps of k-analytic spaces such that § = (p1,p2) :
R — U x U is a quasi-compact monomorphism. If U is locally separated in the sense that each uw € U has a
separated open neighborhood then § is a closed immersion.

The case of most interest is when the p; are étale. (Recall that étale maps are quasi-finite; cf. [Ber2,
3.1.1, 3.3.4].)

Proof. The map § is separated since it is a monomorphism, so by the locally Hausdorff property for k-
analytic spaces it follows that ¢ is a compact (i.e., topologically proper) map of topological spaces. We
claim that ¢ is a proper morphism of k-analytic spaces, or equivalently (in view of the topological properness
and [Ber2, 1.5.3, 1.5.4]) that the relative interior Int(R/U x U) with respect to § is equal to R (i.e., ¢ is
without boundary). Once this is proved then 0 is a proper morphism with discrete fibers, so it is finite
[Ber2, 1.5.3(iii)]. But a finite monomorphism of k-analytic spaces X — Y is a closed immersion. Indeed, by
[Ber2, 1.3.7] we can assume X = # (&) and Y = .#(B) are k-affinoid, and since completed tensor products
coincide with ordinary tensor products for finite admissible morphisms of k-affinoid algebras it follows that
the corresponding map Spec(«/) — Spec(%) is a finite monomorphism of schemes. Hence, it is a closed
immersion of schemes, so the finite admissible map of k-affinoid algebras # — & is surjective, as required.

It remains to prove that ¢ is without boundary. By definition of quasi-finiteness in k-analytic geometry
[Ber2, 3.1.1], the quasi-finite maps p; and py are without boundary. The first projection U x U — U is locally
separated since U is locally separated, so by Lemma 2.1 we have that Int(R/U x U) contains Int(R/U) (taken
with respect to p; : R — U), and this latter interior is R. |

We next wish to discuss descent of properties of morphisms with respect to base change along maps
f:Y' =Y with surjective interior in the sense that the open subset Int(Y'/Y) C Y’ maps onto Y. This
includes the case of surjective morphisms without boundary, such as quasi-finite or flat surjections. In general
one cannot expect to have descent results with respect to such base change because surjective morphisms
without boundary can have unpleasant topological properties arising from puncturing a space. We illustrate
this with a simple example.

Ezample 2.3. Let D be the closed unit disk, D* = D — {0}, and D’ the disjoint union D*[[{0}. The
canonical surjective morphism f : D’ — D is a disjoint union of an open immersion and a closed immersion,
so it without boundary. For any map g : X — D, the base change ¢’ : X’ — D’ along f is the disjoint union
of the restrictions of g over D* and over the origin. For example, the base change of f along itself is an
isomorphism X' ~ D’ yet f is neither proper nor étale. Hence, the properties of being proper, finite, étale,
an open immersion, an isomorphism, or a closed immersion do not descend through surjective morphisms
without boundary. Likewise, separatedness does not descend, since if X denotes the non-separated gluing of
D to itself along the identity on D* then the canonical map h : X — D is non-separated but its base change
along f is separated because h has separated pullback over D* and over the origin. Note that these kinds of
examples also arise from analytifications of algebraic k-schemes.

The surjective morphism f : D’ — D without boundary that is used in Example 2.3 has the defect that
no compact neighborhood of the origin in D is the image of a compact set in D’. We say that a continuous
map of topological spaces f : V' — V is compactly surjective if every compact subset of V is the image
of a compact subset of V’. For example, any surjective topologically open continuous map between locally
compact locally Hausdorff spaces is compactly surjective. A notable example is any surjective flat k-analytic
map. It is easy to check that the property of being compactly surjective is preserved under topological base
change when using locally compact locally Hausdorff spaces, and so it is also preserved under base change
in the k-analytic category. Also, any ground field extension functor Z ~» Zk carries compactly surjective
k-analytic maps to compactly surjective K-analytic maps because the natural map Zx — Z is topologically
proper for any k-analytic space Z and any K/k.

Theorem 2.4. Let f : Y/ — Y be a morphism of k-analytic spaces such that the induced map Int(Y'/Y) =Y
1s surjective, and let g : X — Y be any k-analytic morphism, with ¢’ : X' — Y’ the base change of g along
f. The map g is without boundary (resp. quasi-finite, resp. locally separated, resp. surjective) if and only



6 BRIAN CONRAD AND MICHAEL TEMKIN

if the map ¢ is. Furthermore, if Int(Y'/Y) — Y is compactly surjective then g satisfies property P if and
only if ¢’ does, where P is any of the following properties: proper, finite, closed immersion, separated.

Example 2.3 shows the necessity of the compactly surjective hypothesis. In Corollary 6.2 we will prove
an instance of descent for absolute properties in the setting of Theorem 2.4: Y is good if Y’ is good.

Proof. In each case the “only if” implication is clear, and we have to prove the converse. The map Y :=
Int(Y'/Y) — Y is without boundary by definition and surjective by our assumption, and the morphism
X' Xy Y"” — Y is a base change of ¢’. Thus, we can replace f with its interior to reduce all descent
problems to the case when f is without boundary and surjective. It is obvious that if ¢’ is surjective then so
is g. We next descend local separatedness. Choose x € X and let y = g(x) € Y. Choose 2’ € X’ over x and
let y' = ¢'(2’). Since ¢’ is locally separated at 2’ and f and f’ are without boundary, by [T2, 4.8(iii), 5.2]
the commutative diagram

X'y —=Y,

|

X, Y,

in bir; has separated top side and proper maps along the left and right sides. It is then an easy set-theoretic
argument as in the proof of Lemma 2.1 to deduce that the bottom side is separated, so g is separated near
the arbitrary z € X.

If ¢’ is without boundary then the composite morphism X’ — Y’ — Y is without boundary, and since
the morphism X’ — X is without boundary and surjective (as it is the base change of f) we deduce that
g : X — Y is without boundary via Lemma 2.1. This descent result is the key case from which everything
else will be deduced.

By [Ber2, 3.1.10], quasi-finiteness is equivalent to being without boundary and having discrete fibers, so
for the descent of quasi-finiteness it suffices to show that if g : X — Y is any k-analytic map and f: Y’ - Y
is a surjective k-analytic map such that the base change ¢’ : X’ — Y is quasi-finite then g has discrete fibers.
Using base change along y : #(5¢(y)) — Y for any y € Y and renaming .77 (y) as k reduces us to the case
Y=uuk) Uty : #(K)—Y' isapoint of Y’ then X is quasi-finite over K, and we wish to deduce that
X is topologically discrete. But X — X is topologically a quotient map and X is topologically discrete,
so we are done.

For descent of the remaining properties, we may assume that the closed surjective morphism f is compactly
surjective. Grant the descent of properness for a moment. Since a finite map is the same thing as a proper
quasi-finite map, the descent of finiteness follows. If ¢’ is a closed immersion then ¢ is at least finite. By
Nakayama’s Lemma, a finite map is a closed immersion if and only if its non-empty fibers are 1-point sets
corresponding to a trivial field extension. Thus, any finite k-analytic map that becomes a closed immersion
after a surjective k-analytic base change is clearly a closed immersion. Hence, g is a closed immersion when ¢’
is (granting the descent for properness). Stability of the compactly surjective property under k-analytic base
change implies that X’ Xy X' = (X xy X)Xy Y’ — X Xy X is compactly surjective. Thus, by working with
diagonal maps and descent for closed immersions we see that g is separated when ¢’ is separated (granting
the descent for properness).

Finally, we have to show that g is proper when ¢’ is proper. Since a k-analytic map is proper if and only if
it is topologically proper and without boundary, and we know that g must be without boundary (as we have
already proved descent for this property), it suffices to check that if f : Y/ — Y is a compactly surjective
k-analytic map and g : X — Y is any k-analytic map whose base change ¢’ : X’ — Y” is a proper morphism
then g is topologically proper (so in particular, g is topologically separated). It is easy to use base change
along k-affinoid domains in Y to reduce to the case that Y is k-affinoid. Since f is compactly surjective, we
can find a finite collection of k-affinoid domains in Y/ whose images under f cover Y, so we may assume that
Y’ is also k-affinoid. Hence, X’ is a compact Hausdorff space. Since 7w : X' — X is a topologically closed
surjection, it suffices to prove that if 7 : Z’ — Z is a surjective continuous closed map between topological
spaces and Z’ is compact Hausdorff then Z is compact Hausdorff. Obviously Z is compact, and all points
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in Z are closed since all points in Z’ are closed (and = is a closed surjection). Let z1,29 € Z be distinct
points, so the fibers 771(z;) C Z’ are disjoint closed subsets in the compact Hausdorff space Z’. Thus,
there are disjoint opens V{,Vy C Z" around 7~ !(z;) and 7~ *(23). Since 7 : Z' — Z is topologically closed,
Vi =Z—7w(Z' —V/) is an open set in Z containing z;, and V4 NV, is empty because 7 is surjective and

7t (VinVe) CViNnVy =0. [ ]

Simple examples with spectra of finite k-algebras shows that the assumptions of Theorem 2.4 do not
suffice to descend the properties of being a monomorphism or isomorphism. (The same examples work also
in the category of finite k-schemes.) Thus, to descend a few more properties one has to impose a flatness
assumption on f. We refer the reader to the appendix for a discussion of k-analytic flatness.

Theorem 2.5. Let f : X — Y be a k-analytic morphism, Y' — Y be a flat surjective morphism and f' :
X' — Y’ be the base change of f. The following properties hold for f if and only if they hold for f': surjective,
flat, G-smooth, G-étale. Furthermore, if the induced morphism Int(Y'/Y) — Y is compactly surjective, then
the following properties hold for f if and only if they hold for f': isomorphism, monomorphism, étale, open
1MMeErsion.

Proof. The direct implications are all trivial. To descent the properties of the first group we note that they
all are G-local (see the appendix), hence we can assume that X, Y and Y’ are good (or even affinoid). For a
point z € X choose a preimage ' € X’ and let 3’ € Y/ and y € Y be the images of z’. If f’ is flat then the
composition X’ — Y’ — Y is flat, and in particular Ox- . is flat over Oy ,. Since Ox/ . is flat over Ox ,
because flatness is preserved under base changes, we obtain that Ox . is flat over Oy,. This proves that f
is naively flat at x, and to prove that f is actually flat we must prove the same for any good base change of
f, but that can be done precisely in the same way. Descent of G-smoothness is done similarly using the fact
that if A — B is a flat local homomorphism and M is a finitely generated A-module, then M is free over A
if and only if M ® 4 B free over B. The case of G-étaleness now follows. The case of étale maps is deduced
from the fact that étaleness is the same as G-étaleness and quasi-finiteness, and descent of the latter was
established in Theorem 2.4. The case of isomorphisms follows easily by using the finite case from 2.4 and
working over k-affinoid domains in the target. Also, open immersions are the same as étale monomorphisms,
and monomorphisms are maps for which the diagonal is an isomorphism. |

It is more difficult to descend properties with respect to a base field extension and to descend absolute
properties (e.g., to determine if, for a surjective k-analytic morphism Y’ — Y without boundary, Y is good
or strictly k-analytic if and only if Y’ is). To prove these descent statements we need certain facts about
graded birational spaces and graded reductions that are not covered by [T2] and will be proved in §5-6,
building on some additional graded commutative algebra that we develop in §4. To motivate some of these
later considerations, we make a digression in the next section.

3. THE UNGRADED CASE AND SOME EXAMPLES

By [T2, 5.1], a k-analytic germ (X, ) is good if and only if the corresponding (RZ,-graded) birational

space X, in bir; is affine (i.e., corresponds to an open subset P%/E{A} - P%/E for a finitely generated

RZ,-graded k-subalgebra A C # ()). Thus, descent of goodness is related to descent of affineness of
(graded) birational spaces over a graded field. In this section we describe an elementary approach to this
descent problem for birational spaces in the special case of the trivial grading group, so all fields, rings,
birational spaces, etc., in this section are assumed to be ungraded (i.e., we take the grading group G to be
trivial). Recall from [T1, §1] that any graded birational space X = (X — Px/;,) in the category biry for the
trivial grading group naturally “arises” from a k-map 7 : Spec(K) — %', where £ is an integral scheme
of finite type over k and 7 is generic over 2. (Explicitly, if 2" is separated then X C P/, is the open
subset of valuations rings of K containing k and dominating the local ring of a point on Z". The general
case proceeds by gluing over separated opens in 2".) We call such 71 : Spec(K) — 2 a (pointed) integral
scheme model of X. For any two pointed integral scheme models 7; : Spec(K) — 27 of X = (X — Pg/p)
there exists a third such Spec(K) — 2" with 2 is proper over each 2. (Actually, the collection of all such
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pointed £~ with a fixed K/k is an inverse system and X is naturally homeomorphic to the inverse limit of
all such Z".)

Given X and 2" as above and a pair of field extensions K/k and L/l equipped with a map K — L over
a map k — [, there is a naturally induced morphism ¥,k i/x : Pr;i — Pk, and one easily checks that a
pointed integral I-scheme model Spec(L) — % of the birational space Y =X Xpy,, Prsi in the category bir
is given by taking ¢ to be the Zariski closure (with reduced structure) of the image of the natural composite
map 7 : Spec(L) — Spec(K ®; 1) — Z ® l. (Note that 2" ®;, I does not have to be either irreducible
or reduced, and 7 does not have to hit a generic point of 2" ®; l.) If X is affine then Y is affine, since
X =Pgelfi,..., fu} implies that Y = Pr,{f1,..., fu}. It turns out that the converse is true under the
additional assumption that any algebraically independent set over k in [* is algebraically independent over
K. (We will prove in Theorem 5.1(i) that this condition on L/l and K/k is equivalent to the surjectivity of
YL K/k-)

Theorem 6.1 generalizes this converse statement for an arbitrary grading group G, but in the ungraded
case it can be proved much more easily: it is a consequence of the following theorem that gives a criterion
for affineness of birational spaces in the ungraded case in terms of pointed integral scheme models. To
explain this implication, we first note that by Theorem 3.1 affineness descends in two special cases: (i)
l =k, (ii) Il = k(T) and L = K(T) are purely transcendental with a transcendence basis T' = {T;}ier.
Also, the descent is obvious when (iii) K = L and I/k is algebraic, because ¥r/K,1/k is then a bijection. It
remains to note that in general one can choose a transcendence basis T' of | over k and then ¥ /xi/x =
YL KT © VR(T)/K(T) /KT © VK (T)/KkT)/k- Lhus, the general descent of affineness (in the ungraded
case) reduces to the three particular cases as above. Finally, we note that the following theorem should
generalize to graded birational spaces if one uses graded integral schemes in the role of 27, but a theory of
graded schemes has not been developed.

Theorem 3.1. Let X = (X — Pgyy;) be a birational space over a field k, and let Spec(K) — 2~ be a pointed
integral scheme model for X. The birational space X is affine if and only if the normalization of Z is proper
over an affine k-scheme of finite type.

Proof. The “if” direction easily follows from the definition of the functor (Spec(K) — 27) ~ (X — Pg/p)
in [T1, §1]. Indeed, the dominant point Spec(K) — £ lifts to the normalization Z of Z, and since Z is
proper over 2" the pointed integral schemes Spec(K) — 2 and Spec(K) — 2 correspond to isomorphic
objects in biry. We are given that 2" is proper over an affine k-scheme 2 of finite type, so Spec(K) — 2~
and the induced morphism Spec(K) — 2™ have isomorphic images in birg. Thus, if A C K is the finitely
generated coordinate ring of 2 over k then X = Py /1 {A} C Py, is affine in bir,. The converse implication
follows from the next lemma and the fact that any two pointed integral scheme models for an object in birg
admit a common refinement that is proper over both of them. |

Lemma 3.2. Let S and S’ be irreducible and reduced schemes of finite type over a field k, and let T : S’ — 8
be a proper surjection. The normalization S’ of S’ is proper over an affine k-scheme of finite type if and
only if the normalization S of S satisfies the same property.

Our extensive study of graded integral closure in §4 is inspired by the role of normalizations in this lemma.
The results in §4 are the main ingredients in the proof of the key descent theorem for graded birational spaces
given in Theorem 6.1.

Proof. We can and do replace S and S’ with their normalizations. The condition that a k-scheme X be proper
over an affine algebraic k-scheme is equivalent to the simultaneous conditions: (i) the domain A = Ox(X)
is of finite type over k, (ii) the canonical k-map X — Spec(A) is proper. The nontrivial direction is descent
from S’ to S, so assume that S’ is proper over an affine algebraic k-scheme. In particular, S’ is separated.
Since 7 is a proper surjection it follows that Ag has closed image, so S is separated over k. Let A = 05(S)
and A’ = 0g/(5"), so A’ is a k-algebra of finite type and A is a k-subalgebra of A’. If we can show that A’
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is a finite A-module then A must be of finite type over k [AM, 7.8], so in the commutative square

S5

.

Spec(A’) —— Spec(A)

the bottom and left sides are proper, the top is a proper surjection, and the right side is separated and finite
type. Hence, the right side is proper, as required.

To prove that A’ is A-finite, observe that the A-algebra A’ is identified with the global sections of the
coherent sheaf of algebras &' = 7,(0s/) on S. If n € S is the generic point then for any section h of 7’
over a non-empty open U in S, the characteristic polynomial of h,, € Jaf,; over Og, = k(S) has coefficients
in Og(U) since the coherent Og-algebra &7’ is torsion-free and we can work over an affine open cover of U
in the normal scheme S. Thus, A’ is integral over A. But A’ is finitely generated as an A-algebra (it is even
finite type over k), so A’ is finite as an A-module. |

Though the proof of descent of affineness for birational spaces with trivial grading as explained above is
much shorter than the proof required in the general graded case in Theorem 6.1, even in the ungraded case
the argument has hidden dangers. One subtlety is that Lemma 3.2 is false without normalizations! The
following interesting counterexample along these lines was suggested to us by de Jong.

Ezample 3.3. Assume k has characteristic 0 (!), and let S be the integral k-scheme obtained from S’ = P1x Al
by identifying the lines {0} x A and {1} x A! via t s t+1. In other words, replace A! x Al = Spec(k[z,t]) C
S’ with Spec(A) where A C k[z,t] is the k-subalgebra of f € k[z,t] such that f(0,t + 1) = f(1,¢). (An
easy argument in the category of locally ringed spaces shows that S has the expected universal mapping
property in the category of k-schemes.) Since 22 —2 € A and t +x € A, the extension A — k[z,t] is integral
and hence finite, so [AM, 7.8] ensures that A is finitely generated over k. Hence, S is finite type over k.
Obviously A2, = k[z,t],2_, (since (22 — x)k[z,t] C A), so S’ is the normalization of S (in particular, S
is separated) and S’ is proper over the affine k-line, with &g/ (S") = k[t]. Thus, the global functions on S
are those h € k[t] such that h(t) = h(t + 1), so since char(k) = 0 we get €s(S) = k. Since S is not k-proper
it therefore cannot be proper over an algebraic affine k-scheme, though its normalization S’ admits such a
description.

We will later apply descent of affineness for birational spaces (in the graded case, Theorem 6.1) to prove
that the property of being a good analytic space descends through flat surjections and extension of the ground
field. As we mentioned in the Introduction, one should be especially careful when dealing with descent of
goodness because of an example (due to Q. Liu) of a 2-dimensional separated non-affinoid rigid space D
(over any k with |k*| # 1) such that D has an affinoid normalization. This phenomenon has no analogue for
schemes of finite type over fields. While reading Liu’s paper [Liu], we discovered a much simpler example of
the same nature which is a very close relative of de Jong’s example above.

Ezample 3.4. Let k be a non-archimedean field with a non-trivial valuation and residue characteristic zero.
We will work with reductions of k-Banach algebras in the traditional (rather than graded) sense, so now k
denotes the ordinary residue field of k (rather than an RZ-graded field as in §2 and [T2]). The general idea
of Q. Liu is to construct a Cartesian diagram of rings

MCLJZ{
%1% ,%

(so o = o x5 %, aring-theoretic fiber product) where £, %, and & are k-affinoid, 4 is k-Banach, the
embeddings are isometric and all homomorphisms are finite, but the reduction homomorphism v : & — & is
not finite. Then 27 is not affinoid, as otherwise the latter homomorphism has to be finite by [BGR, 6.3.5/1].
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The desired property of 7:2; will be achieved using the fact that surjectivity is not generally preserved by
the reduction functor [BGR, 6.4.2] (though finiteness is preserved [BGR, 6.3.5]). Given such a diagram of
k-algebras, let Y = #(B), Y1 = # (%), and X = # (<), and assume in addition that there exists a
pushout diagram

(3.1) Xi<—X

]

Y1<;Y

in the k-analytic category, with X strictly k-analytic. From the construction we will see that X — X; is
a finite surjective map, so X; is automatically separated and quasi-compact. (Hence, (3.1) also corresponds
to a pushout in the category of separated rigid spaces over k.) Applying Hom(-, A}) to the pushout diagram
gives that 0(X1) = o Xy B = o as k-algebras, and this is not an affinoid k-algebra. It follows that
X1 is a non-affinoid space, yet it has an affinoid finite cover X (corresponding to a normalization in the
rigid-analytic category).

To make our example, let &7 = k{z,y} and Z = &/ /(2® — nz), where 7 € k is a non-zero element with
r = |r| < 1. Thus, & ~ k{yo} x k{y=}, where (yo,yr) is the image of y. In particular, X = .#(&) is
a 2-dimensional closed unit polydisc and Y is a disjoint union of two one-dimensional closed unit subdiscs
Dy = {z =0} and D, = {x = w}. We identify Dy and D, via yg = y. + 1, so identify %, := k{z} as a closed
k-subalgebra of #Z via z — (yo,y. + 1). Let &) = & x4 % be the closed preimage of %, in &/ provided
with the k-Banach norm induced from the Gauss norm on /. Working on the level of abstract rings, it is
immediate that the inclusion homomorphism v : @/ — & is finite and both rings have a common fraction
field. (In particular, 7 is the integral closure of 7, since it is well-known that < is integrally closed.) Thus,
we obtain a Cartesian diagram of rings as above, and our next task is to show that {/; is not ﬁnite

Assume to the contrary that ¢ is finite. Then 2 ~ k[yo] % k[y,] is finite over the image of & in Z. The
latter image is contained in the image of &/ ~ k[z,y] in %, which is easily seen to be equal to k[(yo, yx)]
(this is the key point of the construction: we use that the reduction of the epimorphism &/ — % is not
surjective!). On the other hand, the image of ;c?l in 4 is contained in the image of % in @, which equals
to k[(yo + 1,yx)]. Since the intersection of k[(yo,yx)] and k[(yo + 1,yx)] in Z is k (because char(k) = 0), we
obtain a contradiction to the original assumption that ’LZ is finite.

Let Y1 = # (%) and Y = #(B) = Do || Dx. It remains to show that the pushout X; of the diagram
Y1 « Y — X exists as a strictly k-analytic space and that X; — X is a finite surjection. Set z = Z and
consider the subpolydisc Z := X{z} < X of polyradius (r,1). Since we want to construct X; by identifying
the closed unit subdiscs Dy and D, that are also closed subdiscs in Z, it suffices to show that there exists
a pushout Z; of the diagram Y; « Y — Z in the k-analytic category such that Z; is strictly k-analytic and
three properties hold: Y7 — Z; is a closed immersion, Y =Y; Xz, Z (so Z1 - Y1 =Z -Y),and Z — Z; is
a finite surjection. (Then X; can be constructed by gluing Z; and X —Y along Z —Y = Z; — Y7.) We will
show that Z; exists as an affinoid strictly k-analytic space.

To construct Zy, the key is to show that the preimage €1 = € x 4% (ring-theoretic fiber product) of
%, — % under the epimorphism ¢ := k{Z,y} — % is a strictly k-analytic affinoid k-subalgebra of ©.
Since ¢ /(22 — z) ~ %, we obtain that ¥ contains the affinoid k- subalgebra %o generated by S = 22 — z
and R = y + z, which has to be isomorphic to k{R, S} because R S €% are algebraically independent over
k. The map (fo — € is integral, so the embedding homomorphism ¢y — ¢ is finite by [BGR, 6.3.5/1].
Therefore the intermediate ring %’; is finite over %, but being finite over a strictly k-affinoid ring implies
that €5 itself is strictly k-affinoid.

Consider the k-affinoid space Z; = .#(%1). By construction we see that €1 has normalization ¢ and that
Y =Y) xz, Z. It is obvious that Z; is a k-analytic pushout of Y7 « Y — Z within the k-affinoid category
(which is enough to carry out the above analysis with X, by exhausting A,lC with closed discs centered at the
origin), but to justify the pushout property in the larger k-analytic category requires further argument, as
follows. The map 7 : Z — Z; is finite, so (7). carries coherent sheaves on Z¢ to coherent sheaves on Z7 .
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We view Oy, as a coherent sheaf on Zg and ﬁyl,c as a coherent sheaf on Z; . Thus, the natural map

0216 = (16)+(O25) X (re).(0vy) Ovia

of coherent Oz, ,-algebras is an isomorphism because it is an isomorphism on global sections and Z; is
affinoid. The desired universal property of Z; is therefore an immediate consequence of the following lemma
(which helps us to work G-locally on a target space for the universal property).

Lemma 3.5. With notation as above, a subset Vi C Z1 s a k-analytic domain whenever 71'_1(V1) CZisa
k-analytic domain.

Proof. If T — W is a closed immersion of k-analytic spaces and ¢ € T is a point then T, — /W/t is an
isomorphism in bir; [T2, 4.8(i)]. Hence, by [T2, 4.5, 4.6], U — U N T sets up a bijective correspondence
between the sets of germs of k-analytic domains in W through ¢ and in 7" through t.

Our problem is to check that V; is a k-analytic domain locally at each point v; € V;, and since 7 is an
isomorphism over Z; — Y7 it suffices to consider v; € Y;. We have 71 (v;) = {v,v'}, and 7 : Y — Y7 induces
isomorphisms of germs (Y,v) ~ (Y1,v1) and (Y,v’) ~ (Y7,v1), so the formation of preimages under 7 sets
up a bijective correspondence between the sets of germs of k-analytic domains in (Z1,v1) and in (Z,v) or
(Z,v"). Thus, for V := 7~1(V}) there are unique germs of k-analytic domains (U, v;) and (U7, vy1) in (Z1,v1)
such that (7= 1(Uy),v) = (V,v) and (7~ 1(U]),v") = (V,v'). The involution of Y = Do [[ D, over Y; swaps
(V,v) and (V,v") while preserving 7= (U ), so we can choose U] = U;. Hence, 7~(U;) and V topologically
agree near {v,v’'} = 7~ 1(v1). Since 7 is topologically proper and surjective, the topological germs (V7,v1)
and (U, v1) in (Z1,v1) therefore coincide, so V; is a k-analytic domain near vy in Z;. [ ]

Example 3.4 is very close to de Jong’s example. In both cases a global pushout loses a good property (being
proper over an affine or being affinoid), yet it can be constructed by restricting to a subspace (Al x Al —
P! x Al or A (k{%,y}) — 4 (k{z,y})) where it behaves nicely and is described by simple explicit formulas
that are the same in both examples.

4. GRADED COMMUTATIVE ALGEBRA

Throughout §4-§6, G is an arbitrary commutative multiplicative group (that will be RZ in the applica-
tions) and k is a G-graded field. We consider only G-gradings in the sequel, so G will often be omitted from
the notation. The G-grading on any graded ring A = @4cc A, will be denoted p : [[(44 — {0}) — G. For
any nonzero A, by A* we denote the group of invertible homogeneous elements, so there is a homomorphism
p: A* — G whose image in case A = K is a graded field is the subgroup of G that consists of all g € G
such that K, # 0. We are going to prove some results about extensions of graded fields. We will see that
the theory of graded fields is similar to the classical ungraded case, and many proofs are just mild variants
of the classical proofs. Some results on graded fields were proved in [CT, §5.3], and the notions of a finite
extension and its degree were introduced there; recall from [T2, 1.2] that any graded module over a graded
field K is necessarily a free module (with a homogeneous basis), and if K — L is a map of graded fields then
its degree is defined to be the K-rank of L.

A graded domain is a graded ring A such that all nonzero homogeneous elements of A are not zero-divisors
in A, and a key example of a graded domain is the ring KJg, 7] for a graded field K and any gy € G; this
is the ring K[T] in which K is endowed with its given grading and T is declared to be homogeneous with
grading go. For example, if ¢ € K* with p(c) = g € G then evaluation at ¢ defines a graded homomorphism
of graded rings K[¢g~!7T] — K.

A graded ring A is graded noetherian if every homogeneous ideal in A is finitely generated, and by the
classical argument it is equivalent to say that the homogeneous ideals of A satisfy the ascending chain
condition, in which case every graded A-submodule of a finitely generated graded A-module is finitely
generated. The proof of the Hilbert basis theorem carries over, so A[g~!X] is graded noetherian for any
g € G when A is graded noetherian. In particular, if k is a graded field then any finitely generated graded
k-algebra is graded noetherian.
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Lemma 4.1. Let K be a graded field. For any g € G, every nonzero homogeneous ideal I C Klg™1T] is
principal with a unique monic homogeneous generator. Moreover, K[g'T|* = K* and K[g~'T) is graded-
factorial in the sense that every monic homogeneous element in K[g~1T) with positive degree is uniquely (up
to rearrangement) a product of monic irreducible homogeneous elements in K[g~1T].

Proof. If f and g are nonzero homogeneous elements of A having respective leading terms a7 and bT"
with m < n then a,b € K* and g— $T" ™ f is homogeneous and either vanishes or is of degree smaller than
n, as in the usual Euclidean algorithm. In particular, it follows that I is generated by a monic homogeneous
polynomial, and such a generator is obviously unique. It follows that the maximal graded ideals of K[g~1T]
are precisely the ideals (f) for a monic irreducible homogeneous f € K[g~'T]. Hence, K[g~'T]/(f) is a
graded field for such f. In particular, if h € K[g~'T] is homogeneous and a given monic homogeneous f does
not divide h then af + 3h = 1 for some homogeneous «, 8 € K[g~'T]. We can therefore show that K[g~1T)
is graded-factorial by copying the classical argument (working just with nonzero homogeneous elements). W

An important instance of this lemma occurs for an extension L/K of graded fields: if © € L* with
p(z) = g € G then the graded K-algebra evaluation map K[g~!T] — L at z has homogeneous kernel denoted
I, and K[g~'T]/I, — L is an isomorphism onto the graded domain K[x] C L, so I, is a graded-prime ideal
of K[g~1T]. If I, = 0 then we say z is transcendental over K, and otherwise I, is a graded-maximal ideal
with K[z] therefore a graded field of finite degree over K. The case I, # 0 always occurs when L has finite
degree over K (due to K-freeness of graded K-modules), and whenever I, # 0 the unique monic generator
of I, is denoted f,(T') and is called the minimal homogeneous polynomial of x over K.

Corollary 4.2. For any graded field K and nonzero homogeneous polynomial f(T) € K|[g~'T), there exists
a finite extension L/K such that f splits completely into a product of homogeneous degree-1 polynomials in
Lig='T).

Proof. We may assume f is monic and we induct on deg,(f). We may assume deg,(f) > 0. Factoring
f(T) as a product of irreducible monic homogeneous polynomials in K[g~!T], we may assume f is a monic
irreducible and f(0) € K*. Then K’ = K[g~'T]/(f) is a graded field of finite degree over K such that
f(z) = 0 for a homogeneous = € K'* with p(z) = g. Hence, T —x € K'[g~'T] is homogeneous and by the
Euclidean algorithm in such graded polynomial rings we have f = (T — z)h(T) in K'[g~'T] for some monic
homogeneous h € K'[g7T]. Since degy(h) < degy(f), we are done. [ |

It was noted in [T2, §1] that a graded ring A does not contain non-zero homogeneous divisors of zero (i.e.,
A is a graded domain) if and only if it can be embedded into a graded field: the unique minimal such graded
field Fracg (A) is obtained by localizing at the multiplicative set of all non-zero homogeneous elements (and
it has the expected universal mapping property). We call Fracg(A) the graded field of fractions of A. Also,
we say that a graded domain R is integrally closed if it is integrally closed in the graded sense (using monic
polynomial relations satisfied by homogeneous elements) in Fracg(R). (If R — R’ is a graded map of graded
rings and 7" € R} satisfies f(r’) = 0 for some monic f € R[X] with degree n > 0 then we may replace nonzero
coefficients of f with suitable nonzero homogeneous parts (depending on g € G) to find such an f that is
homogeneous in R[g~!X].) For any injective graded map R — R’ between graded rings, the graded integral
closure of R in R’ is the graded R-subalgebra R C R’ consisting of elements ' € R’ whose homogeneous
parts are integral over R. If R = R then we say that R is integrally closed (in the graded sense) in R'.

Corollary 4.3. If L/K is an extension of graded fields, A is a graded subring of K integrally closed in K,
and x € L™ is integral over A with p(x) = g € G, then the minimal homogeneous polynomial f, of x over
K is defined over A; ie. f.(T) € Alg™'T] C K[g~'T].

Proof. Since x € L*, minimality of d = deg,(f,) forces the homogeneous f,(0) € K to be nonzero with
p(f2(0)) = g?. Increase L so that there is a homogeneous factorization

fo(T)=(T —x1) ... (T — zq)
in L[g~'T]. Each x; is homogeneous in L with [Jz; = ££,(0) € K*, so x; € L* for all i. By homogeneity
of the factorization, p(z;) = p(T) = g for all i. Obviously each z; € L has minimal homogeneous polynomial
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fz over K, so each graded subring A[x;] C L is isomorphic to A[g™T]/(f.) =~ A[z] and hence each A[z;] is
finite as an A-module. Thus, the subring A[z1,...,24] C L is finite over A. Since the coefficients of f,(T)
are contained in this latter ring, they are integral over A. But A is integrally closed in K in the graded sense
and the coefficients of f, are homogeneous (or zero), so f.(T) € Alg~'T]. ]

Corollary 4.4. Let L/K be an extension of graded fields and let {A;} be a non-empty collection of graded
subrings of K that are integrally closed in K in the graded sense. If B; denotes the graded integral closure
of A; in L then NB; coincides with the graded integral closure of NA; in L.

Note that the assumption on integral closedness of A;’s is critical for the corollary to hold.

Proof. Obviously, NB; contains the integral closure of NA;. Conversely, let = be a nonzero homogeneous
element of NB;, with p(z) = ¢g. Clearly, K[z] has finite K-rank (since z satisfies a monic homogeneous
relation over any A; C K), and the coefficients of f, € K[g~'T] lie in each A; by Corollary 4.3. Hence z is
integral over NA;, as claimed. u

Theorem 4.5. Let K'/K be an integral extension of graded fields and let O be a graded valuation ring of
K. Let O denote the integral closure of O in K'. Each graded prime ideal m' of O' over mg is a graded
mazimal ideal and the graded localization O, is a graded valuation ring, with O, , N 0" =m/. Every graded
valuation ring of K' dominating O arises in this way.

Proof. The maximality of m’ reduces to the fact that a graded domain that is integral over a graded field
F must be a graded field, the proof of which goes almost exactly as in the classical ungraded case (by using
integrality to reduce to considering a graded domain that is finitely generated over F' as a graded F-module,
for which there is a homogeneous F-basis). As for the description of the graded valuation rings extending O,
in the ungraded case this is [ZS, Thm. 12, §7] and its corollaries. The method of proof there (including the
proof of [ZS, §5, Lemma]) adapts nearly verbatim to the graded case, due to the fact [T2, 1.4(i)] (where the
ground field k plays no role) that the integral closure of O in K’ is the intersection of all graded valuation
rings of K’ containing O. n

The following two finiteness and flatness results should have been recorded in [T2, §1].

Lemma 4.6. If k is a graded field and A is a finitely generated k-algebra that is a graded domain then the
graded integral closure A of A in K = Fracg(A) is finite over A (and so it is a finitely generated k-algebra).

Proof. Let k' = Fracg(k[g™'T,]sec), so k'/k is a graded extension field with p(k'*) = G. Clearly, A’ =
A ®p k' is a finitely generated graded k’-subalgebra of K ®; k’. But by inspection K ® k' is a graded
localization of the graded ring K[g_ng]QGG that is a graded domain, so K ®j, k" is a graded domain. Thus,
A’ is a graded domain with K’ := Fracg(4’) equal to Fracg(K ®j k'). The graded integral closure A’ of A’
in K’ contains A ® k. Since k' is a free k-module, A is a finite A-module if and only if A ®, k' is a finite
A’-module. But A’ is a graded noetherian ring, so such finiteness holds if A’ is A’-finite. Hence, we may
replace k with &’ to reduce to the case p(k*) = G. To prove that A is A-finite, it suffices (by integrality
of A over A) to show that there cannot be a strictly increasing sequence of A-finite graded subalgebras in
A. Since p(k*) = G, [T2, 1.1] gives that Ry — k ®j, R; is an equivalence of categories between kj-algebras
and graded k-algebras, and by chasing gradings we see that a map of ki-algebras is integral if and only if
the corresponding map of graded k-algebras is integral. It is likewise clear that this equivalence respects
finiteness of morphisms in both directions, and it also respects the property of being a graded domain or
being finitely generated (over k or ki) in both directions. Hence, if there is an infinite strictly increasing
sequence of A-finite graded domains over A with the same graded fraction field as A then we get an infinite
strictly increasing sequence of A;-finite graded domains over A; with the same ordinary fraction field as A;.
But A; is a domain finitely generated over k1, so we have a contradiction (as the A;-finiteness of the integral
closure of A; is classical). [ |

Lemma 4.7. Let M be a graded module over a graded valuation ring O, and assume M is torsion-free in
the graded sense, which is to say that for each monzero homogeneous a € O, the self-map m — am of the
O-module M 1is injective. Then M is O-flat, and if M is finitely generated it admits a homogeneous basis.
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Proof. By consideration of direct limits we may assume that M is finitely generated. Let K = Fracg(0), and
let V=K ®9 M. The natural map M — V is injective, and V admits a finite homogeneous K-basis. We
prove the existence of a homogeneous basis of M by induction on the K-rank of V' (which we may assume
to be positive). If the K-rank is 1 then by shifting the grading on M we can assume that V = K as graded
K-modules and that M is a finitely generated graded ideal in O C K. Hence, this case is settled since O is a
graded valuation ring. If the K-rank n is larger than 1, let L C V be the graded K-submodule spanned by a
member of a homogeneous K-basis of V, so the image M” of M in V/L admits a homogeneous O-basis. In
particular, M" splits off as a graded direct summand of M, so M N L is identified with a complement and
thus is also finitely generated over O. By the settled rank-1 case we are done. |

Next, we discuss transcendental extensions of graded fields. For any extension of graded fields K/k, a
subset S C K* (with p(s) = ¢gs € G for each s € §) is said to be algebraically independent over k if the
graded k-algebra map k[g; 1Ts]ses — K defined by Ty — s is injective. The following two conditions on a
subset S C K* are equivalent: (i) S is a maximal algebraically independent set over k, (ii) S is minimal
for the property that K is integral over the graded k-subfield generated by S (i.e., K is integral over the
graded fraction field of the graded k-subalgebra generated by S). In condition (ii) it clearly suffices to check
integrality for elements of K*. A subset S C K* satisfying (i) and (ii) is called a transcendence basis for
K /k (and such subsets clearly exist, via condition (i)). Analogously to the classical arguments, one proves
that all transcendence bases have equal cardinality, which is called the transcendence degree of K over k and
is denoted trdeg,(K). Also, one shows akin to the classical case that transcendence degree is additive in
towers of graded fields. An extension K/k of graded fields has transcendence degree 0 if and only if each
x € K is integral over k, in which case we say that K/k is algebraic.

As with degree for finite extensions of graded fields (studied in [CT, 5.3.1]), the value of the transcendence
degree “splits” into a contribution from the extension of 1-graded parts K;j/k; (ordinary fields) and a
contribution from the extension of grading groups p(k*) C p(K*) in G. Namely, the following lemma holds.

Lemma 4.8. Let K/k be an extension of graded fields. We have
trdegy, (K) = trdegy, (K1) + dimq ((o(K™)/p(k*)) ©z Q)

in the sense of cardinalities.

Proof. Let {z;} be a transcendence basis for K;/k; in the usual sense, and choose elements y; € K* such
that the gradings p(y;) form a Q-basis of (p(K*)/p(k*)) ®z Q. It suffices to show that S = {x;,y,;} C K*
is a transcendence basis of K/k.

First we check that S is a transcendence set. If there is a nontrivial polynomial relation over k satisfied by
these elements then by their homogeneity we may take the relation to have homogeneous coefficients. Any
monomial cyj! -+ -y with r >0, e1,...,e, > 0, and ¢ € k* has grading p(c) - [ p(y;,,)“" whose image in
(p(K*)/p(k*))®zQ is nonzero and uniquely determines  and the ordered r-tuple (ey,...,e,). Thus, we can
decompose a hypothetical nontrivial homogeneous polynomial relation over k according to the y-monomial
gradings to get such a relation in which the y-contribution to each monomial in the z’s and y’s is a common
term y]el1 y]ef with » > 0 and e,,, > 0 for 1 < m < r. This can then be cancelled, so we get a nontrivial
relation ) crz}’ = 0 with all ¢; € £* having a common grading. We can then scale by £* to get to the case
when all ¢; € k{°, contradicting that the z;’s are algebraically independent in K; over k; in the usual sense.

Finally, we check that K is algebraic over the graded subfield generated over k by S. Any t € K* satisfies
p(t®) = p(c) - [1p(yj,, )¢ for some ¢ € k* and ji,...,7, with e1,...,e, > 0 (for some r > 0). Replacing ¢
with t¢/(c[]y;™) then allows us to assume t € K1, so we are done by the transcendence basis property for

We will in the sequel need the following natural-looking lemma, which turns out to be surprisingly difficult.

Lemma 4.9. Let B be an integrally closed graded domain, T = {T;}icr a set of variables and g = {g; }icr a
set of elements of G (where some g;’s may be equal). The G-graded Laurent polynomial ring Blg~'T, gT ']
is an integrally closed graded domain.
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Proof. The problem easily reduces to the case of a finite non-empty I, so we may assume I = {1,...,n}.
By induction on the number of variables we can furthermore assume n = 1. Let K be the graded fraction
field of B. The set p(K*) C G of gradings of nonzero homogeneous elements of K is a subgroup of
G. First assume that g is Z-linearly independent from p(K*) (i.e., g mod p(K*) has infinite order in
G/p(K*)), so K[g7'T,gT~'] is a graded field and hence the graded subring B[g~'T, g7 '] is a graded
domain with graded fraction field K[g~!T,gT~!]. The nonzero homogeneous elements have the form ¢7T7
with homogeneous ¢ € K* since g = p(T) is Z-linearly independent from p(K*). Such an element ¢7”
is integral over B[g~1T, g7 '] if and only if ¢ is, in which case there is a relation ij:o h;i(T)g? = 0 with
hy =1, hy # 0, homogeneous h; € Blg~'T,gT~'], and all nonzero terms h; - ¢ having the same grading.
Thus, for each nonzero h; we have h; = b;T% for some e; € Z and some homogeneous nonzero b; € B such
that p(¢)N =7 = p(b;)g% in G. Chasing constant terms (e; = 0) gives a monic relation for ¢ over B, so ¢ € B.
This settles the case when ¢ is independent from p(K*), so we can now assume that there is a dependence
relation: g mod p(K*) is a torsion element in G/p(K*). Thus, there is a minimal e > 0 such that ¢¢ = p(c)
for some ¢ € K*.

Step 1. We first reduce to the case e = 1. The nonzero homogeneous elements of K[g~'T, gT ] are
the elements of the form h(T°/c)T" with 0 < r < e and h € K[X] a nonzero polynomial whose nonzero
coeflicients are homogeneous and have a common grading. Such an expression is unique due to the minimality
of e. Since K is a graded field, we can uniquely write h = ¢- f for ¢ € K* and f € K;[X] a monic polynomial
over the ordinary field K of elements of K with trivial grading. The element T' is a homogeneous unit in
Blg~'T, gT~1], so we see that K[g~'T, gT~!] is a graded domain with graded fraction field having underlying
ring (K1(X) ®k, K)[T]/(T® — X ® ¢). The G-grading is determined by K;(X) having trivial grading, K
having its given G-grading, and T assigned grading g.

To prove that the graded domain B[g~!T, gT~!] is integrally closed in its graded fraction field, by min-
imality of e we can multiply by a suitable power of the homogeneous unit 7" to reduce to considering
homogeneous elements £ € K;(X) ®g, K that are integral over Blg~'T,gT '] (with X = T¢/c). The
monic integral relation for £ can be taken to have its nonzero homogeneous coefficients with the unique form
g+ f;(X)T"i for 0 < r; <e, f; € K1[X, X '] having monic least-degree X-monomial, and ¢; € K* such that
¢ - fi(T¢/c) € Blg=¢T*¢,g°T~¢] for all i and p(q;) = p(&)N~" when 7; = 0. We can decompose the monic
integral relation for ¢ according to those ¢ for which r; is equal to a fixed integer r between 0 and e — 1, and
by monicity in £ we see that passing to the case with » = 0 gives a monic integral relation for £ such that
r; = 0 for all 4. Since £ € K1(T°/c) ®k, K, we may therefore replace T with T¢ and g with g° to reduce to
the case e = 1. Thus, g = p(c) for some ¢ € K*.

Step 2. Next, we reduce to the case when B is a graded valuation ring, and we simplify the integral
closedness to be verified. Since K is the graded fraction field of B, we have that the integrally closed graded
subring B is the intersection of all graded valuation rings O of K that contain B; this is [T2, 1.4(i)] (in
which the implicit ground field k is not relevant). For each such O, clearly O[g~!T,gT~!] has the same
graded fraction field as B[g~'T, g7~ !]. Any homogeneous ¢ in this graded fraction field that is integral over
Blg~'T,gT~1] is also integral over each O[g~!T,¢gT~!], so if we can handle the case of graded valuation
rings then

¢e () Olg'T,gT"" = Blg~'T,gT "),
ODB

as desired. Hence, it suffices to consider the case when B = O is a graded valuation ring with graded fraction
field K. In other words, in the graded K-algebra K[X, X ~!] with X having trivial grading we want to
prove that the graded subring R = O[cX,c !X ~1] for any ¢ € K* and any graded valuation ring O of K is
integrally closed in the graded fraction field K ®p, K7(X). This graded field has underlying ring that is the
localization of K[X] at the multiplicative set of regular elements K;[X] — {0}.

Before we consider integral closedness properties over O, it will simplify matters to carry out some integral
closedness considerations over K. First, we prove that the graded domain K[X, X 1] (with p(X) = 1) is
integrally closed (in the graded sense) in K ®p, K1(X). Choose a nonzero homogeneous element § €
K ®p, K1(X) that is integral over K[X, X ~!]. We want that £ € K[X, X~!]. Tt is harmless to multiply & by
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an integral power of X, so we can arrange that £ is integral over K[X]. It suffices to prove that £ € K[X].
If not, then multiplying by a sufficiently divisible nonzero element of K;[X] brings us to the case & = f/f1
where f € K[X] is nonzero with all nonzero coefficients homogeneous of the same degree and f; € K;[X] is a
monic irreducible element that does not divide f in K[X]. We can scale f by K* without loss of generality,
so f € K1[X]. Hence, in an integrality relation for f/f; over K[X] we can pass to the trivial graded part
to deduce that f/f; € K;(X) is integral over K;[X], forcing fi|f in K;[X], a contradiction. This reduces
us to proving that O[cX,c~1X 1] is integrally closed (in the graded sense) in K[X, X ~!]. By swapping the
roles of X and X ! if necessary we can assume c € O.

Step 3. Choose a nonzero homogeneous element ¢ € K[X, X 1] that is integral over O[cX,c 1 X 1. It is
harmless to multiply £ by an integral power of ¢X, so we can assume that & is integral over O[cX] C K[X]. A
variant on the same K *-scaling argument used in Step 2 shows that K[X] is integrally closed in K[X, X ~}]
in the graded sense (ultimately because K;[X] is integrally closed in K;[X, X '] in the usual sense), so
¢ € K[X]. We have therefore reduced ourselves to proving that a nonzero homogeneous element ¢ € K[X]
that is integral over O[cX] lies in O[cX].

Let Y denote the nonzero homogeneous element c¢X (with grading p(c)), so the identification K[X]| = K[Y]
preserves homogeneity of coefficients but may change their grading (if p(c) # 1). Since O is a graded valuation
ring, the homogeneity of the coefficients of & ensures that the ideal

D¢ = {a € 0]at € O[Y]}

of denominators of ¢ with respect to Y is a nonzero principal homogeneous ideal, say D¢ = (d) for some
nonzero homogeneous § € O. Hence, 6§ has a (homogeneous) unit coefficient with respect to Y, so for any
n > 0 we have Dgn = (0™). The integrality hypothesis on £ provides a monic relation

N Ay (N)EN T 4t he(Y) =0

for some N > 0 and h; € O[Y] having homogeneous coefficients, so 6V~ € Denv = (6). Thus, 1 € (4), so
0 € O*. This gives £ € O[cX], as desired. [ ]

Corollary 4.10. Let L/k be a graded field extension, A C L an integrally closed graded k-subalgebra,
T = {T;}icr € L a set of homogeneous elements algebraically independent over A, and F = Fracg(k[T]).
Then the graded subring FFA C L generated by F' and A is integrally closed.

Proof. Obviously F' is the graded fraction field of its graded subring B generated by k and the elements
Tiﬂ, so F' coincides with the graded localization ring Bg, where R is the set of non-zero homogeneous
elements of B. It follows that FA = Cg, where C' is the graded algebra generated by A and the elements
Tiﬂ. Since graded integral closedness is preserved by graded localization (similarly to the ungraded case),
it suffices to prove that C is integrally closed. Now, it remains to notice that by our assumption on 7T;’s,
C ~ Alg=1S, 9571, where g = {p(T;)}ics and S = {S;}icr is a corresponding set of graded indeterminates.
Hence, the corollary follows from Lemma 4.9. ]

We conclude the section with the following simple lemma.

Lemma 4.11. Let L/k be a graded field extension, {A;} a collection of integrally closed k-subalgebras of
L, T = {T;}ier € L a set of homogeneous elements algebraically independent over each A;, and F =
Fracg(k[T]). Then N(FA;) = F(NA;).

Proof. Since F'A; is the localization of A;[T] at the multiplicative set of nonzero homogeneous elements
of F[T], the natural graded map A; ®; F — FA; is an isomorphism of rings (and hence is a graded
isomorphism). By the same reason, (NA;) ®; F' ~ F(NA;), and since F is a free k-module by [T2, 1.2], the
lemma now follows from the following lemma. ]

Lemma 4.12. Let M and N be modules over a commutative ring R, with M projective over R. Let {N;}
be a set of R-submodules of N. The inclusion (NN;) @ gr M C N(N; @ g M) inside of N @ g M is an equality.

Proof. Since M is a direct summand of a free module, we can assume M is free. We may replace N with
N/(NN;), so NN; = 0. In this case we want N(N; ® g M) = 0 inside of N @z M. We have M ~ @&, Re;, so
using linear projection to the factors reduces us to the trivial case M = R. |
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5. THE CATEGORY birg

In the sequel, we will have to simultaneously consider several G-graded birational spaces with different
G-graded ground fields. More specifically, we will study commutative diagrams of G-graded fields

l——1L

]

k—K

For any such diagram, restriction of graded valuation rings induces a continuous map ¢ x/k : Priy —
P/, Note that v,k 1/r is the composition of the obvious topological embedding ¥,/ : Pr/i — Pr/i
and the natural map v,/ ki : Pr/x — P/ of birational spaces over k. The maps 11, /i 1/x were used in [T2,
5.3] to establish a connection between reduction of germs of the analytic spaces X over k and Xy = X QK
over K. A deeper study of these maps in this and the next sections will be used later to prove that certain
properties of analytic spaces (e.g. goodness) descend from Xx to X.

Theorem 5.1. Keep the above notation. The map vy, i,/ satisfies the following properties:

(1) it is surjective if and only if any algebraically independent set over k in I* is algebraically independent
over K;

(#3) it has finite fibers (resp. is injective) if the extension LK is finite (resp. trivial);

(1) it is bijective if L = K and l/k is algebraic.

Part (iii) can be easily generalized: ¥/ /i is bijective when [/ is algebraic, L = Ky, and p(L*)/p(K*)
is a torsion group (this is a graded analogue of totally ramified extensions that are not necessarily purely
inseparable). Also, to check the algebraic independence condition in (i) it suffices to work with a single
transcendence basis for [ over k, and it is insufficient to assume the weaker condition that K N1 is algebraic
over k. Indeed, it can happen that L/l is a finite extension (so Py is a point) but K = Fracg(k[T])
(so Pk is infinite) and K Nl = k. For example, in the ungraded case there are infinite subgroups
I’ C PGLy(k) generated by a finite collection of non-trivial elements 7, ..., 7, with finite order (using n = 2
if char(k) = 0 and n = 3 otherwise), so there exists a pair of finite subgroups Hy, Hy C PGLy(k) that generate
an infinite group. Thus, L = k(t) is a finite Galois extension of rational subfields K = k(¢)* = k(1) and
I = k()2 = k(xy), yet KNI =k.

Proof. The third claim follows from the observation that if O is a graded valuation ring in P/, and [ is
algebraic over k, then O must contain [ because O is integrally closed in L in the graded sense. The second
claim follows from the fact that any graded valuation ring © on K admits at most [L : K| extensions to a
graded valuation ring on L. To prove this fact, we adapt the classical ungraded argument. By Theorem 4.5,
it is equivalent to check that the graded integral closure O of O in L has at most [L : K] graded prime ideals
over the graded maximal ideal of O. For this it suffices to show that each graded O-subalgebra R C L that is
O-finite and spans L over K has at most [L : K] graded prime ideals dominating the graded maximal ideal
of O. The O-module R is free by Lemma 4.7 so the graded algebra R/moR over the graded residue field
0/mg is a free module of rank [L : K]. We are therefore reduced to checking that if F is a graded field and
A is a graded finite F-algebra whose underlying F-module has rank n then A has at most n graded prime
ideals. Note that all such graded prime ideals are maximal, since a graded domain of finite rank over F' is
necessarily a graded field. Thus, if F’/F is any graded extension field and A’ = A ® p F’ then Specs(A’)
maps onto Specy(A), so it suffices to treat the pair (A, F'). By choosing F’ such that p(F'") = G (e.g.,
the graded fraction field of the graded polynomial ring F[g~'T}],ec:) we can thereby reduce to the case that
each homogeneous nonzero a € A satisfies p(a) € p(F*). Consequently, by [T2, 1.1(ii)] the natural map
F ®p, A1 — A is an isomorphism and the operation I — I N A; identifies the ideal theory of A with that
of Aj respecting primality. Since A; is of rank n over the ordinary field Fj, we are reduced to the obvious
classical case.

The first claim requires more effort than the other two. Assume that v,k /i is surjective. To deduce
that algebraically independent sets in [* over k are algebraically independent over K when viewed in L*,
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by enlarging to a transcendence basis we must show that if ¢ = {¢;} is a transcendence basis for [ over k then
this collection ¢ is an algebraically independent set in L* over K. Let k(t) = Fracg(k[t]) C I, so [ is algebraic
over k(t). Thus, P, = Pp k), and hence ¢y /p(4), /5 is surjective. We may therefore assume I = k(t). By
functoriality, surjectivity of 1 /; i/ forces surjectivity of ¥y i/, S0 we can assume L = IK = K(t) (but
we do not know that ¢ is an algebraically independent set over K). Letting ¢’ = {t”} be a subset of ¢ that is
maximal for being algebraically independent over K, we see that ¢’ is a transcendence basis for K (t) over K
and our problem is to show that t’ = ¢.

Let u = {u,} be a transcendence basis for K over k, so K is algebraic over k(u). Arguing as in the
classical case, u Ut is a transcendence basis for K (t) over k. Since K (t) is algebraic over k(u,t) and K is
algebraic over k(u), the natural map Py ¢)/k(t) — Pru)/k is surjective. If ¢’ is a proper subset of ¢ then
u Ut is not an algebraically independent set over k. But t is algebraically independent over k, so there is
a transcendence basis of k(u,t) over k of the form «' Ut with «’ a proper subset of u. Choose ug € u with
ug € ', so there is a relation Y. h;(v/, t)uf = 0 such that h; € k[u',t] for each i, n > 0, hy, # 0, hg # 0,
and each nonzero h; is homogeneous with grading p(h;) = p(ho)p(uo) ™" in G. Let v/’ be a monomial in
u’ that appear in h, (possibly multiplied against a monomial in ¢). By multiplying through the relation
by (u’ I)”’1 and replacing ug in the transcendence basis u with u’ Iu(h we reach the situation in which the
homogeneous element h,(0,t) € k[t] is nonzero. Since u is an algebraically independent set over k, there
is a graded valuation ring O on k(u) containing k with u' U {1/ug} C me. Surjectivity of ¥p(u.s)/k(t),k(u)/k
therefore provides a graded valuation ring O’ of k(u,t) that contains k(¢) and satisfies O’ Nk(u) = O, so me-
contains 1/uy and all elements of u/. The homogeneous h,(u',t) € 0’ is a unit in O’ since v’ C my: and
hn(0,t) € k(t)* € 0", so the chosen polynomial relation with homogeneous coefficients provides an integral
dependence relation on uy over O, forcing ug € 0. But 1/ug € me+, so we have reached a contradiction.

Now we treat the converse implication. Assume that algebraically independent sets in [* over k are
algebraically independent over K. Choose a transcendence basis T = {T;} of [ over k, so T C L* is
algebraically independent over K. For lg = Fracg(k[T]) C L we have ¢r/xi/k = ¥r/0,1/1, © VLK 10 /k> a0d
the second step is bijective by (iii). Thus, by replacing [ with [y we can assume that [ = Fracg(k[T]) with
T an algebraically independent set over K. The inclusion of graded subfields £ C K N in K must be an
equality, since any = € (K N1)* not in k is transcendental over k (from the explicit description of ) yet is
also visibly algebraic over K.

We can now lift a graded valuation ring O € Pg/, to an element of Py, as follows. Let mo be the
maximal ideal of O. We claim that the graded ideal p = Im is prime in the graded ring [0 C L generated
by O and [ and has restriction mg to 0. Indeed, the graded subring O[T] C L generated by O and T is
isomorphic to a graded polynomial ring over O, so p’ = meO[T] is a prime in the graded sense. Furthermore,
| = k[T]r where R is the set of all non-zero homogeneous polynomials in k[T, so O = O[T]|g. Then p = p,
so to prove that pN O = mg it is enough to show that R N'me = @, but the latter is obvious because the
equality /N K = k implies RNme = k* Nme = 0. Hence, O is dominated by a local graded subring A C L
that is the graded localization of [Q at p. Clearly, such an A contains [, and we have natural embeddings
10 CIK C L. Therefore, A embeds into L as a local graded l-subalgebra, and any graded valuation ring
from P /; that dominates A is the required extension of O. |

The discussion preceding Theorem 5.1 provides the motivation to extend the category of birational spaces
to include the maps ¥ 1,k 1/k, 0 we now introduce the category bir = birg of all G-graded birational spaces.
On the level of objects, bir is just the disjoint union of all categories bir;. A morphism f : Y — X of
birational spaces corresponding to respective local homeomorphisms Y — P/, and X — Py is a pair of
compatible graded embeddings k¥ < [ and K — L and a continuous map Y — X compatible with 9r /5 ;/1-
We naturally extend the properties of objects and morphisms that were defined in [T2, §2]:

Definition 5.2. In the category birg of birational spaces over G-graded fields, Y = (Y — Py ;) is affine if
Y maps bijectively onto an affine subset of Py, /;, a morphism (Y — Py /) — (X — Pgy) is separated if the
natural map ¢ : Y — X xp, , P/ is injective, and such a morphism is proper if ¢ is bijective and ¥,/ x 1k
is onto.
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Furthermore, we say that X = (X — Pg/,) is separated (vesp. proper) if X — Py is injective (resp.
bijective), which is to say that the canonical morphism X — P, in bir is separated (resp. proper).

Lemma 5.3. For birational spaces Z = (Z — Ppryy), 4 = (Y — Pry), and X = (X — Pgyy) and
morphisms h: Z —Y, g:Y— X, and f = go h, the following properties hold.

(1) If g and h are separated, then f is separated.

(ii) If f is separated then h is separated.

(#i1) If g and h are proper, then f is proper.

(i) If f and h are proper, then g is proper.

(v) If f is proper, g is separated, and Ynr/1, m /1 is surjective (e.g., m = 1) then h is proper.

(vi) If f is separated and h is proper then g is separated.

Recall from Theorem 5.1(i) that the surjectivity in part (v) says exactly that a transcendence basis for
m over [ is algebraically independent over L. Also, by definition of properness, the hypothesis on h in (vi)
forces ¥nr/p,m/1 to be surjective.

Proof. The proof is based on the same set-theoretic argument as we used in the proof of Lemma 2.1. Consider
the following diagram
Z2Y xp,, Prym X xpy s Pagm

where 3’ is the base change by 9ar/r,m/ of the natural map g : Y — X Xpy,, Prs. Separated-
ness/properness of f, g, and h are connected to injectivity/bijectivity of the maps a := (3 o~, [, and
~ respectively. In (i), we are given that 8 and v are injective. Hence, the base change 8’ is injective, and
so «a is also injective, proving (i). Obviously, injectivity of « implies injectivity of v, thus proving (ii). In
(iii), we are given that the maps ¥ns/1,m/; and 91k /5 are surjective, hence their composition ¥/ x m/k
is also surjective. Also, since 3 and v are bijective, so are ' and « in this case. In particular, f is proper.
In (iv), we deduce bijectivity of 3’ from bijectivity of a and ~. But 9az/r,m /1 is surjective by properness of
h, so bijectivity of 8’ implies bijectivity of 8. Thus, g is proper. It remains to establish (v) and (vi). In
either case the map a7 r,m/ is surjective, so g is separated if and only if 3 is injective. Thus, (v) is the
obvious claim that v is bijective when « is bijective and (3’ is injective, and (vi) is the obvious claim that 5’
is injective when « is injective and « is bijective. |

We conclude this section with a brief discussion of H-strictness of birational spaces. Let X correspond to
X — Pgyp and let H D p(k*) be a subgroup of G. Then X is called H-strict if it admits a proper morphism
to a birational space Xg = (X5 — Pk, /i), where Ky denotes the G-graded subfield K := ©4ep Ky, C K
over k. Thus, a separated X is H-strict if and only if the corresponding open subset of P/, is the exact
preimage of its image in P, ;. It is proved in [T2, 2.6, 2.7] that for any H-strict X, the space Xy and
the proper morphism X — Xp are unique up to unique isomorphism. A given X is H-strict if and only
if it admits an H -strict structure, which is an open covering of X by H-strict separated subspaces whose
pairwise intersections are also H-strict. (This corresponds to choosing an open covering of Xy and forming
its preimage in X.) By the uniqueness up to unique isomorphism, any two H-strict structures on X are
equivalent in the sense that the pairwise intersections among their members are H-strict.

6. DESCENT FOR BIRATIONAL SPACES

We study descent on G-graded birational spaces in this section, and later our results will be applied via
the reduction functor to study descent on analytic spaces.

Theorem 6.1. LetY = (h:Y — Pr;) and X = (g : X — Pgyi) be two birational spaces equipped with a
proper morphism f :Y — X and let P be any of the following properties of objects in bir: separated, affine,
separated and H-strict for p(1*) C H C G. Then Y satisfies P if and only if X satisfies P.

It seems probable that H-strictness descends without the separatedness assumption, but it is not clear
how to attack this problem. The main difficulty is the lack of a useful general criterion for a birational space
X = (X — Pgyy) to fail to be H-strict. (A separated X fails to be H-strict precisely when the open subset
X C Pgyy, is not a union of fibers over P, /1)
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Proof. Ouly the descent implications (from Y to X) require a proof. Descent of separatedness is purely set-
theoretic: given that Y = X xp, , P11, so h is the base change of g under the surjective map Py, — Pk /g,
clearly g is injective if (and only if) h is.

We switch now to descent of H-strictness in the separated case. Consider the commutative diagram

P, Py

.

Pr,i——Pr,/m

in which the bottom side is surjective since the top and right sides are surjective. We claim that the natural
map ¢ : Pr — Py, XPKH/k-PLH/l is surjective. Choose graded valuation rings O, O, and O” corresponding
to compatible points in Pg /i, Pk, /i, and P, ; respectively. The natural graded map K Q, Ly — L is
clearly injective (by consideration of graded parts). Moreover, the natural map O’ ®¢9 0” — K ®k,, Ly is
injective because K ®k,, Ly = K ®9 Ly and O — O” and O — K are flat (Lemma 4.7). The corresponding
tensor product of graded residue fields is nonzero, so by choosing a graded prime ideal of this latter tensor
product we get a graded prime ideal P of O’ ®¢ O” that dominates my,, mg, and meg». The graded
localization (0" ®¢9 O”)p is a graded-local subring of L that contains I, so it is dominated by a graded
valuation ring R € Py, ;. Clearly ¢(R) = (0',0"), establishing the surjectivity of ).

Since Y is assumed to be separated, X is separated by descent of separatedness. Thus, we can identify X
with an open subspace X in Pg/;,. If X is not H-strict then we can find two points 2 € X and 2’ € Py, — X
sitting over a point xy € Pk, /. Choose yg € P, /1 over xy, so by surjectivity of ¢ we can find points
v,y € Pp sitting over (ym, ) and (ym,z’), respectively. Then y € Y and ' ¢ Y, but their images in
P, /1 coincide. Thus, Y is not H-strict. This establishes descent of H-strictness in the separated case.

The deepest and most useful property is being affine, and dealing with it makes use of much of the
preliminary work done in §4. Assume that Y is affine, so we can identify Y with an affine subset of P /;, and
we can identify X with a subset of P/, using the established descent of separatedness. The first step is to
reduce to the case when the extensions K/k and L/l are finitely generated. Choose a finite open covering
of the quasi-compact X by open affine subsets X; = Py, {A;} with each A; a finitely generated graded
k-subalgebra of K. Let K be the graded subfield of K generated by the A;’s. Clearly X is the preimage of
an open set Xo C P/, so X is affine is X is affine. The natural morphism X — X is proper, so it induces
a proper morphism Y — Xy. We can therefore replace X with Xy, achieving that K/k is finitely generated.
At this stage we may and do rechoose the affine sets X;’s so that K is the graded fraction field of each A;.
(This is done by choosing a finite set of elements ¢;,...,t, € K* such that K = Fracg(k[t1,...,t,]) and
adjoining to the A;’s various homogeneous elements t',...,t* with €; = £1.) Moreover, we can replace
each A; with its graded integral closure A; in K because this procedure does not affect X; and A; is finitely
generated over k£ by Lemma 4.6.

Similarly, ¥ is the preimage in P/, of an affine subset Yo C P,/ for a finitely generated subextension
Lo/l so by replacing Lo with the composite Lo K (which is also finitely generated over [) we achieve that the
morphism Y — X factors through Yo, and by Lemma 5.3(iv) the resulting morphism Yg — X is necessarily
proper. Thus, we can assume that L/[ is finitely generated as well, and then by finiteness of graded integral
closures (Lemma 4.6) we have Y = P, {B} for an integrally closed finitely generated graded [-subalgebra
B of L (but Fracg(B) can be smaller than L).

Next, we choose any transcendence basis {T};cs of [ over k, and let Iy be the graded subfield of I generated
by k and the T}’s. Since [ is algebraic over ly, the map 91,11, : Pryi — Pr, is a bijection by Theorem
5.1(iii). Moreover, if B = I[b1,...,b,] with homogeneous by, ...,b, € L* then the image of Y in Py, is
the affine set Yo = P/, {b1,...,bm}. We again get a natural proper morphism Yo — X, so once again we
can replace Y with Yo, this time achieving that [ is purely transcendental over k.

Note that the T)’s are algebraically independent over K because of Theorem 5.1(i), so Corollary 4.10
applies to the A;’s and [, giving that the graded rings [A; are integrally closed and have a common graded
fraction field Fracg(IK). If B; denotes the integral closure of [A; in L then NDB; is the integral closure
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of NlA; in L by Corollary 4.4. Now we make a few observations: Y; = P, {B;} is the preimage of X;
in Pr,; B = NB; because B is an integrally closed graded I-subalgebra and Y = P ,(B) is equal to
UY; = UPLk(B;s) € Pru(NB;) (so B = NoeyO C Noey,0 = B; for all 4, and the containment B C NB;
is an equality due to integrality of NB; over B that follows from Py /(B) lying in P/ (NB;)); by Lemma
4.11, NlA; = A for A := NA;. Summarizing this, we obtain that B is integral over [A.

We have to be careful when working with A = NA;: it could a priori happen (without taking Y into
account) that A is not finitely generated over k (e.g., for ungraded k& one can construct such an example
using that there exists a k-variety X with H?(X, O x) not a finitely generated k-algebra). However, since the
graded [-subalgebra B in L is finitely generated, we can find a finitely generated graded k-subalgebra Ay C A
such that the integral closure of Ag in L contains B, hence coincides with it. Thus, Y = Py, {B} is the
preimage in P /; of P/, {Ao}, so we must have X = P/, { Ao} by the surjectivity of the map P/, — Pg/p
(in particular A, which is the integral closure of Ay in K, is finitely generated over k). [ ]

Corollary 6.2. Let f : Y — Y be a k-analytic morphism such that Int(Y'/Y) — Y is surjective. The
k-analytic space Y is good if Y' is good. The converse is true if f has no boundary.

This corollary applies to any flat surjection.

Proof. The very definition of a morphism being without boundary includes the requirement that the fiber
product Y’ xy Z is good whenever Z is good, so in particular if Y is good and f is without boundary then
it is a tautology that Y’ is good. For the more interesting descent claim, we can assume that Y’ is good.
To prove that Y admits a k-affinoid neighborhood around an arbitrary y € Y, first choose y' € Int(Y'/Y)
over y. By [T2, 5.2] the reduction morphism i’v’yr — ffy is proper in birg, so by Theorem 6.1 the birational
space i/'v’y/ is affine if and only if ?y is so. But goodness for the germ (Y”,y’) is equivalent to affineness for
the birational space i\;’y/ by [T2, 5.1], and similarly for (Y,y) and 1774, so we are done. |

7. H-STRICT ANALYTIC SPACES

This section contains material which should have been given in [T2]. In particular, it is logically indepen-
dent of §2-§6. From now on and until the end of the paper, we consider only RZ,-gradings and H denotes
a subgroup of R% that contains |k*|. We say that a k-affinoid algebra o is H-strict if the spectral radius
of any its elements either vanishes or belongs to the group /H. This is equivalent to either of the following
conditions: (i) there exists an admissible epimorphism k{r;*Ty,...,r; T, } — & with r1,...,7, € H; (ii)
there exists an admissible epimorphism k{r;'Ty,...,r;'T,,} — & with r1,...,r, € \/H. Obviously (i)
implies (ii), and that (ii) implies H-strictness is well-known for strictly k-affinoid algebras (i.e., H C /|k™]).
The general case is reduced to this one by making a ground field extension K/k so that |K*| contains all r;’s.
Conversely, H-strictness implies (ii) because any admissible epimorphism k{r 1T} — & with T; — a; € &/
where a; has spectral radius s; factors through an admissible epimorphism k{s™'T} — /. Finally, to
see that (ii) implies (i), given (i) with 7 = h; € H and T; — a; € & we get a finite admissible map
k{h !X} — & with X; — al. Since proper affinoid maps are finite (admissible) maps, we then easily
deduce (i) via integrality and properness considerations.

A k-affinoid space X = #(f) is called H-strict if the k-affinoid algebra is. Then for any point z € X,
H-strict affinoid neighborhoods of z form a basis of its neighborhoods provided that H # 1. Note that
H-strictness is inherited by direct products and closed subspaces, so the intersection of finitely many H-
strict affinoid domains in any separated k-analytic space is H-strict. Also, the argument from [Ber2, 1.2.2]
shows that an affinoid space is H-strict if and only if it admits a covering by H-strict affinoids. Thus, the
following definition makes sense: a separated k-analytic space is H-strict if it admits a covering (for the
G-topology on k-analytic spaces) by H-strict affinoid domains. As in the affinoid case, a finite intersection
of H-strict analytic domains in a separated H-strict k-analytic space is H-strict. In general (for possibly
non-separated k-analytic spaces), H-strictness may not be preserved by intersections of separated H-strict
k-analytic domains, so we are led to the following definition in case H # 1: by an H-strict structure on
an arbitrary k-analytic space X we mean a net {X;} of compact separated H-strict k-analytic domains.
(The stronger condition that X;’s are k-affinoid leads to an equivalent definition.) We say that two H-strict
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structures {X;}ier and {X}}jecs are equivalent if their union is an H-strict structure. This condition is
equivalent to all intersections X; N X ]’ (which are separated but possibly non-compact k-analytic domains
in X) being H-strict. This really is an equivalence relation: if {X]'};cr, is a third H-strict structure on X
with each X7 N Xj’ also H-strict then for each pair (i,1) the separated k-analytic space X; N X} is covered
by the H-strict overlaps X; N X} N X}" = (X; N X}) N (X} N X}') in the H-strict spaces X for varying j.

Remark 7.1. Let H C RZ, be a non-trivial subgroup containing [k*|.

(i) The notion of H-strictness depends only on the group /H.

(ii) If H C /|k™| then H-strictness is the usual k-analytic strictness.

(iii) Berkovich defined in [Ber2, §1.2] a general notion of ®-analytic space, where @ is a (suitable) family of
k-affinoid spaces. His definition was mainly motivated by the case of strictly k-analytic spaces, but one checks
immediately that, more generally, the class @y of all H-strict k-affinoid spaces satisfies the conditions (1)
(5) of loc.cit., and the corresponding ® -analytic spaces are exactly the k-analytic spaces with an H-strict
structure.

(iv) We excluded the case H = 1 (which can only happen for trivially-valued k) because 1-strict affinoids
do not satisfy the density condition from [Ber2, §1], so they do not form a net in the sense of [Ber2, §1.1].
(Briefly, the trivial group +/H is too small to provide a sufficiently large collection of positive real numbers
in the definition of H-strict k-analytic subdomains.) However, one can weaken our definition by removing
the density condition in the definition of a net. The resulting definition of H-strictness then makes sense
and becomes the usual notion of strict k-analyticity from [Ber2, 1.2] in the case of a trivially-valued field k.

(v) One can, more generally, define H-strictness for any submonoid H C RZ, containing |k*|. We do not
study this case because some basic results are proved in [T2] only when H is a group. However, it seems
very probable that every result stated for a group H (resp. a non-trivial group H) holds true for submonoids
(resp. submonoids with an element r < 1).

Theorem 7.2. Let H C RZ, be a non-trivial subgroup containing |k*|. If a k-analytic space X admits an
H-strict structure then the intersection of any two separated H-strict k-analytic domains (not assumed to be
compatible with the structure on X) is H-strict. In particular, all H-strict structures on X are equivalent
and the maximal such structure consists of all compact separated H -strict k-analytic domains.

Using Remark 7.1(iv), this theorem is true for H = 1; see Remark 7.4.

Proof. Given separated H-strict k-analytic domains U and V in X, we have to prove that W =UNV is H-
strict. We claim that for any H-strict separated space Y and point y € Y, the graded reduction ?y is H-strict.
The question reduces to the case when Y is affinoid as follows. Find a finite covering of a neighborhood
of y by H-strict affinoid domains Y;. If the reduction of each Y; at y is H-strict then they provide an
H-strict covering of the separated graded birational space Y, which, therefore, is itself H-strict. Next we
assume that the H-strict space Y is affinoid, say Y = .# (), so there exists an admissible epimorphism

k{r7'T1,...,r; T, } — o with r; € H. We have that Y, = P;ﬁy/)/g{fh <.y [} by [T2, §4], where f; is the

image of f; in J#(y) in degree r;, so for each i either f; vanishes or p(f;) = r; € H. We conclude that ?y is

H-strict as stated. _ _ B
Thus, we proved that U, and V, are H-strict, and, moreover, X, is H-strict because the reduction at

—_~—

x of the H-strict structure {X,};e; on X induces an H-strict structure {(X;),};jes on X,. In particular,
W, = U, NV, is H-strict by [T2, 2.7], so the “if” implication in the following lemma concludes the proof. W

Lemma 7.3. Let H C RZ, be a non-trivial subgroup containing |k™|. A point x in a separated k-analytic
space W has an H-strict neighborhood if and only if the reduction W, is an H-strict birational space.

Remark 7.4. The lemma is false if H is trivial, but the following weaker version, which suffices for the proof
of Theorem 7.2 for trivial H (using the same argument as above), still holds: if U is separated and H-strict

and x € U is a point, then any H-strict open birational subspace W C CNTZ can be obtained as the reduction
at x of an H-strict k-analytic domain W C U containing x. This is proved by adapting the method of
reduction to affine/affinoid spaces in the argument below, and giving a direct analysis of the case H = 1.
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Proof. We proved above that if the separated W is H-strict in a neighborhood of = then W is H-strict. Let
us now assume that W is H-strict. Since W is separated, it suffices to find a covermg of (W, :E) by H-strict
k-analytic subdomains (W;, x). Find H-strict affine subspaces Wl, .. W - W that cover W:c, so by [T2,

4.5, 5.1] there exist good subdomains (W;, z) C (W, z) that cover (W, x) and lift the W;’s. It suffices to prove
that each (W;,z) is H-strict, so we are reduced to the particular case of k-affinoid W = .#(«7). Fix an
admissible epimorphism k{r; 'Ty,...,r; Ty} — o satisfying T; — f; € &/, and without loss of generality

assume that r; € \/H if and only if i > m for some m. Then W, = =P = )/k{fl,...,fn} where f; € (x)

is the image of f; in degree r;, so each fZ either vanishes or satisfies p( fi) =r; € v/H by H-strictness of W
(The reason some rl* € H with n > 0 if fl # 0 is that the H-strictness implies that such an fl is integral

over the H-graded field 7 (z),, and if n is the degree of the minimal homogeneous polynomial for fi over

S (x) then the constant term of this polynomial is nonzero with grading r}*.) It follows that fi =0 for
1 <i<m;ie r; > |fi(x)| for those i. Since H # 1, v/H is dense in R§0 Thus, for each 1 < i < m
there exist s; € \/H such that r; > s; > |fi(x)|. Then W' = W{s;'f1,... s,  fm} is an H-strict affinoid
neighborhood of z, as required. |

Theorem 7.2 excludes any ambiguity from the following definition for any (possibly trivial) subgroup
H C RZ, containing |k*|: a k-analytic space is H-strict if it admits an H-strict structure. If H # 1 then a
germ (X, x) is called H-strict if x admits an H-strict neighborhood in X. (The latter definition makes no
sense for trivial H since in that case the existence of such a neighborhood does not imply the existence of a
base of such neighborhoods, so the concept is not intrinsic to the germ (X, z).) Now, since the notion of an
H-strict germ is defined, we can generalize the above lemma as follows.

Theorem 7.5. For a non-trivial subgroup H C R% containing |k*|, a germ (X, z) is H-strict if and only
if its reduction X, is H-strict.

The theorem is of local nature, so it does not make sense for trivial H.

Proof We saw in the proof of Theorem 7.2 that an H-strict germ has H-strict reduction, so now assume
that X:E is H-strict. Find a finite covering of (X, z) by separated germs (X, x) such that their reductions
X; C X, are H-strict (one finds such a covering of X, and then lifts it to the germ). By [T2, 4.8] we can
shrink each X; to make them separated. Set X;; = X; N X}, so each germ (X;;, x) has H-strict reduction
X N Xj, and by Lemma 7.3 we can find an open X” C X;; around z that is H-strict. Again using Lemma
7.3, we can shrink the X;’s once again so that all X;’s are H strict and X; N X; C lej for any choice of 1, j.

We claim that X’ = UX; is an H-strict neighborhood of xz. Only H—strictness needs a proof, and by
definition it suffices to check that each X; N X is H-strict. Notice that by the construction X; U X[, is
separated, so H-strictness is inherited by the intersection X; N X/,. By similar reasoning, X; N X;; N X is
H-strict, but we have chosen X;’s so that the latter intersection is Just X;NnXj.

Finally, for any (possibly trivial) subgroup H C RZ, containing |k*|, one can define a suitable notion
of morphism to make a category of H-strict k-analytic spaces similar to the category of strictly k-analytic
spaces. One possibility for H # 1 is to apply Berkovich’s definition of morphism of ®-analytic spaces with
® = &y being the class of all H-strict k-affinoid spaces. We prefer a more ad hoc equivalent definition
(which has the merit of “working” for H = 1 as well): an H-strict morphism Y — X between H-strict
k-analytic spaces is a k-analytic morphism for which the preimage of any H-strict k-analytic subdomain of
X is H-strict in Y. Note that in case H = 1 this recovers the notion of a strictly k-analytic morphism for a
trivially-valued field.

Theorem 7.6. If H C RZ is a subgroup containing |k*| then the subcategory of H-strict k-analytic spaces
with H-strict analytic morphisms is full in the category of all k-analytic spaces.
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The particular case H = |k*| (including the case H = 1) was proved in [T2, 4.10]. That proof applies
verbatim to the more general situation in Theorem 7.6 as soon as one replaces strict analyticity (i.e., |k*|-
strictness) with H-strictness. The special case H = 1 for good k-analytic spaces is part of GAGA over a
trivially-valued field [Berl, 3.5.1(v)].

As an application of Theorem 7.5 we can handle descent of H-strictness through morphisms with surjective
interior (allowing that H may be trivial):

Theorem 7.7. Let f : X — Y be a k-analytic morphism such that Int(X/Y) — Y is surjective. Let
H C RZ, be a subgroup containing |k*|. If X is locally separated and H-strict (resp. if X is locally
separated and strictly k-analytic) then so is Y. The converse is true if f has no boundary.

This theorem applies to any flat surjection f: X — Y.

Proof. First we assume that H is non-trivial (so Theorem 7.5 may be invoked). If f has no boundary then
for each x € X the map X, — Yj(,) in bir; is proper by [T2, 5.2], so in particular it is separated. Hence,
by [T2, 4.8(iii)] the map f is separated near z, so if Y is locally separated then so is X. If in addition

Y is H-strict then Yy, is H-strict by Theorem 7.5, yet X; = Yy, XP/fo\('/»/% P%/E (by properness)

SO )Z'z is H-strict too. Hence, by Theorem 7.5 we deduce that (X, z) is H-strict. The locally separated
X admits a covering by separated open sets U;, and we have shown that each point of each U; admits an
H-strict neighborhood. It follows that each U; admits an H-strict structure, so by Theorem 7.2 these agree
on overlaps to define an H-strict structure on X. Hence, X is H-strict and locally separated when Y is. The
strictly k-analytic case is the special case H = |[k*| when k is not trivially-valued.

For the converse when H # 1, we assume that Int(X/Y") surjects onto Y and that X is locally separated
and H-strict, and we wish to deduce the same two properties for Y. By the same gluing and uniqueness
arguments with H-strict structures in the separated case, our problem is intrinsic to each germ (Y,y) for
y €Y. Pick € Int(X/Y) over such a y. Once again the reduction morphism )Z'z — ?y is proper in birg
and )Z'z is H-strict and separated. The H-strictness and separatedness of the germ (Y,y) is equivalent to
H-strictness and separatedness of each birational space }N/y (again using Theorem 7.5 for the H-strictness),
and this pair of properties is inherited from X, by Theorem 6.1. Once again, taking H = |k*| settles the
case of strict k-analyticity when k is not trivially-valued.

To handle the case H = 1 (so k is trivially-valued and H-strictness means strict k-analyticity), the
above arguments permit us to restrict attention to the case when X and Y are separated and f is without
boundary. To move the property of strict k-analyticity between Y and X, we can use the preceding arguments
by replacing Theorem 7.5 with Remark 7.4. |

8. EXTENSION OF THE GROUND FIELD: KEY LEMMA

We want to compare properties of a k-analytic space X and the K-analytic space X = X®, K obtained
from X by extending of the ground field. Usually, if X satisfies a property P then it is easy to see that X g
does so too, but the converse can be much more difficult. A natural approach is to argue by contradiction:
assume that X does not satisfy P, take a non-P point z € X, and show that it lifts to a non-P point
rx € Xg. The following example shows that one should be very careful with the choice of x.

Ezample 8.1. Cousider the property of having a non-empty boundary relative to the ground field (i.e.,
X — (k) is not without boundary). Let X = .# (k{r~1T}) be a closed disc of radius r > 0, let x be its
maximal point (corresponding to the spectral norm on k{r='T}), and let K = (). The relative boundary
O(X/ . (k)) consists of the single point x, and the relative boundary of Xx = . (K{r—'T}) over .#(K)
consists of a single point xy lying over x. The fiber Z of Xk over x is isomorphic to ///(K@kK), so it has
many points in general. For example, if r ¢ \/|k*| then K = k{r~'T} and Z is isomorphic to a closed disc
over K, but if » = 1 then Z is large but not K-affinoid: as a subset of the closed unit K-disc it is “not
defined over k7. In both cases x is a point of the fiber over x that is “as generic as possible”.

Here is another example of a fiber of the map X — X.
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Example 8.2. Let X = .4 (k{r~'T}) be a disc. Assume for simplicity that k is algebraically closed and let
x € X a point of type 4 (see [Berl, §1]) equal to the intersection of closed discs whose radii tend to some s
from above. (The arithmetic of the field .#(z) depends on whether or not s € v/|k*|.) Let K = J#(x) over
k. One can show that J#(x )®kK K{s™!T}, so the fiber of X over z is a disc over K. Note that the

graded residue fields k and K = # ( ) are isomorphic, but (by inspection) the graded field (J(z)&5K)™
is not algebraic over k.

The key to constructing “sufficiently generic” points in fibers of X — X is the following lemma.

Lemma 8.3. Let l/k and K/k be two analytic extensions. Assume that d = trdegg(l~) is finite. There exists
a point v € M (I®,K) such that trdegy (F F) = d, where F C (x) denotes the graded fraction field of
IK C ().

The idea of the proof is to find an analytic subfield m C [ over k such that T/ m is algebraic but m can be

described explicitly over k inside of . We will first choose a point 2/ € .4 (m®iK). Similarly to Example
8.1, the choice is canonical and can be described explicitly. Then, similarly to Example 8.2, any lifting of =’
to z € # (I8, K) does the job.

Proof. Pick a transcendence basis ]?1, ooy fd € 1* over k and let f; € I be alifting of f;. Let r be the d-tuple
whose entries are the gradings r; = p(f;) > 0 (i.e., r; = |fi]), so we get a natural embedding k[r—1f] < [
which lifts to an isometric embedding ¢ : & := k{r’lT} — [ (pulling the absolute value on ! back to the
spectral norm on ). The spectral norm on &/ is multiplicative: it corresponds to the maximal point y of
the polydisc Y = .# (/). Let 2’ = yxk be the maxunal  point of the polydisc Yx = Y@K =~ //{(MK) where
o = K{r~ 1T} By [T2 3.1(i)] we have K[r—1T] ~ ., so for the graded fraction field E of K[r~1T] the
natural map E — (yK) of graded fields is surjective and thus is an isomorphism.
Since ¢ preserves spectral norms, it factors through an isometric embedding m := 5 (y) < [. Hence

M (LK) =~ M (M K)Dml,
and the map ///(l@kK)AH M (m@,K) is surjective. Note that yx is a pointA of Y lying over y, so
it is contained in #(m®K) and we can therefore lift it to a point z € #(I®pK). We claim that
and the corresponding graded field F = FracG(TI? ) C %/”T/) are as required. Clearly % contains
#(yr) ~ E and E is contained in FracG(lK), &) trdegK(F) > trdegz (£ E). But obviously trdeg - (E E)=d
and trdeg (F) = trdegK(lK) < trdeg; (1) =d, so trdeg (F) =d. [ |

Let X be a k-analytic space, z € X a point, and xx € X a point over z. Let [ = 5 (z) and L = 5 (z k)
for brevity, and use the induced embeddings l— Land K — L of RZ-graded fields to identify land K
with graded subfields of L over k. To measure how close zx is to belng ‘generic” in the fiber of X g over
x € X we will measure dependency between land K in L.

Corollary 8.4. Let X be a k-analytic space with a point x, K/k an analytic field extension, andY = X&LK.

X

Then there exists a point y € Y over x such that any algebraically independent set in J€(x) over k is

—_—~—

algebraically independent over K when viewed in H(y )

By Theorem 5.1(i), an equivalent formulation of the property of y is that the natural map P—— Zw R "

P% i is surjective. This surjectivity captures the idea that y is sufficiently generic over x with respect to
the ground field extension K/k.

Proof. Using notation as in the discussion preceding the statement of the corollary, let F = Fracg (le( ) C L.

Since transcendence degree of extensions of graded fields is additive in towers, and for the property of
X

algebraically independent sets in .7 (z) over k it suffices to work with a single transcendence basis (in the
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graded sense), we just need to find y € Y such that trdegE(T) is equal to trdegz (ﬁ ). Such a y exists by
Lemma 8.3. ]

Corollary 8.5. Let X be a k-analytic space with a point x, K/k be an analytic extension, andY = X&LK.

Then there exists a point y € Y over x such that the induced morphism Y, — X, is proper in birRxo (in the
“ >

sense of Definition 5.2).

Proof. Take y as in the above corollary, so ¥)—— is surjective (as required

www@kE Yk Pam
in the definition of properness in Definition 5.2). To prove that the reduction map Y — Xx is proper it

is the set-theoretic base change of X, — P . But the

remains to show that the map Y - P FEE

A (y)/ K
latter was proved in [T2, 5.3] for any y € Y = Xk over any z € X.

9. DESCENT WITH RESPECT TO EXTENSIONS OF THE GROUND FIELD

Theorem 9.1. Let K/k be an analytic field extension and H C RZ, any (possibly trivial) subgroup contain-
ing |K*|. A k-analytic space X is good (resp. H-strict and locally separated) if and only if the K-analytic
space X is good (resp. H-strict and locally separated). In particular, if |K*|/|k*| is a torsion group then
X is strictly k-analytic and locally separated if and only if X§ is strictly K-analytic and locally separated.

Proof. Let P be the property of being good (resp. H-strict and locally separated) and P be the property
of an RZ,-graded birational space being affine (resp. H-strict and separated). If X satisfies P then Xg
0bV10usly satlsﬁes P too. Conversely, assume that X does not satisfy P locally at a point z. By Corollary
8.5, we can find a preimage y € Y := Xk of = so that Y — X, is proper. By Theorem 6.1, Y, satisfies
P if and only if X, does. Also, by [T2, 4.8(iii), 5.1] for local separatedness and goodness and Theorem 7.5
(which requires H # 1) for H-strictness, X (resp. Y) satisfies P locally at x (resp. y) if and only if X,
(resp. Y, ) satisfies P at least if we require H # 1. Hence, assuming H # 1, X satisfies P at z if and only if
Y Satlsﬁes P at y, and since we assumed that X is non-P at z we conclude that Xk is non-P at y, so Xk
does not satisfy P. Taking H = |k*| settles the case of strict analyticity when k is not trivially-valued and
|K*|/|k>]| is a torsion group.

It remains to show that if K is trivially-valued and X is strictly K-analytic and locally separated then
X is strictly k-analytic and locally separated. The preceding argument with local separatedness shows that
X is locally separated, so we can assume X is separated. We may then replace Theorem 7.5 with Remark
7.4 to carry over the above argument in the case of trivially-valued k and K. |

Theorem 9.2. Let K/k be an analytic field extension and let h : X' — X be a map of k-analytic spaces.
Let hi : X5 — X be the induced K-analytic map. Each of the following properties holds for h if and only
if it holds for hi : without boundary, proper, surjective, finite, closed immersion, separated, locally separated,
isomorphism, monomorphism, étale, open immersion, quasi-finite, flat, G-smooth, G-étale.

Proof. In each case, the nontrivial implication is that the hypothesis on hyx implies the same for h. Descent
for surjectivity is obvious. Next, assume that hg is locally separated. To prove that & is locally separated
we choose ' € X’ and (by [T2, 4.8(iii)]) the problem is to prove that X', — X, is separated. For ease of
notation, let Y = Xk and Y’ = X/.. By Corollary 8.5 there is a point ' € Y’ over 2’ such that ?7 s Xy
is proper. Let y = hx(y') € Y, so by [T2 5.3], Y — X, is separated. (It is even proper.) The local
separatedness of hg gives that Y’ g = Y is separated, so by Lemma 5.3(vi) we conclude that X’m/ — X
is separated. Hence, h is separated near the arbitrary ' € X’. The descent of flatness and G-smoothness
is done similarly to Theorem 2.5 and using the fact that if X is good then for each xx € Xk sitting over
a point € X the ring Ox, », is flat over Ox , (for example use that if </ is k-affinoid then %@kK is
o/ -flat).

Exactly as in the proof of Theorem 2.4, for the descent of the other properties it suffices to treat the
property of being without boundary. Thus, assume that hx is without boundary. To deduce the same for
h, we assume to the contrary that there exists a point 2’ € X’ not in Int(X’/X), so the reduction morphism
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)Z';, — X, is not proper by [T2, 5.2]. By Corollary 8.5, we can find a point y' € Y’ over 2’ so that 37y’, — Xg’c/
is proper (and moreover trdeg; #(z') = trdegf((f(%”(x’)), where the composite graded field K. (z) is

formed within J#(y’)). The composite map 57y’, — X, is therefore not proper, by Lemma 5.3(iv).

—_—

Let y be the image of ' in Y. The inequality trdeg;./#(x) > trdeg f{(f( %/”\(—m/)) (with composite graded field

formed within J#(y)) must be an equality because if it is a strict inequality then additivity of graded tran-
scendence degree and the inequality trdeg——— jf (z') > trdeg R (KA (') would give trdegz 7 (x') >

trdeg f((K H(x")), contrary to how Yy was chosen Hence, as in the proof of Corollary 8.5 we deduce via
[T2, 5.3] that the map Y — Xm is proper. Since the morphism hg : Y’ — Y is without boundary by our
assumption, the reduction morphism Y — Y is proper. Therefore, the composition Y — Y — Xg; is

proper by Lemma 5.3(iii), yet above We saw that this is not proper. The contradiction shows that h has to
be without boundary. [ ]

As an application of Theorem 9.2, we can use the rigid-analytic theory of ampleness [C] to set up a
parallel theory in the k-analytic case (without imposing goodness requirements). We begin with a definition,
in which P(V) for a finite-dimensional k-vector space V' is the k-analytic space associated to the algebraic
projective space Proj(Sym(V)); it represents the functor of invertible sheaves . for the G-topology (on a
varying k-analytic space X ) equipped with a surjection V ®; Ox. — Z.

Definition 9.3. An invertible sheaf .Z for the G-topology X on a proper k-analytic space X is ample if
there exists an n > 0 such that the map I'(X¢, Z®") @) Ox, — L®" of coherent Ox-modules is surjective
and the resulting morphism X — P(I'(Xg, . 2%®")) is a closed immersion.

If f: X — S is a proper map of k-analytic spaces then an invertible Ox,-module .Z is relatively ample
with respect to f if &, = Z|x. is ample on the fibral J#(s)-analytic space X for every s € S.

For a k-analytic space S and a coherent @g,-module &, we will use the S-proper k-analytic space P (&)
that classifies invertible 0'x,-modules equipped with a surjection from & Qs Ox. (where X is a varying
k-analytic space over S), exactly as for schemes. Via the universal property and gluing for the G-topology
[Ber2, 1.3.3], to construct P(&) it suffices to do for k-affinoid S provided that it is compatible with k-affinoid
base change. Relative analytification over affinoid algebras in the sense of [Ber2, 2.6.1] provides such a
construction over an affinoid base .# (7) by using the corresponding algebraic construction over Spec().
Via the universal property and the behavior of relative analytification with respect to closed immersions,
the formation of P(&) commutes with any base change on S and surjections &’ — & on Sg induce closed
immersions P(&) — P(&’) over S. In particular, this shows that P(&) admits a closed immersion into a
standard projective space locally over Sg. Hence, P(&) is S-proper since this property is clear when S is
k-affinoid, so it holds locally for the G-topology on S in general, and properness is local for this topology
[T2, 5.6].

Corollary 9.4. Let f: X — S be a proper map of k-analytic spaces and £ be an invertible Ox,-module.

(1) The set Uy of s € S such that £ is ample on the F€(s)-analytic space X is open and its formation
commutes with k-analytic base change on S and with any analytic extension of the ground field.

(2) If & is relatively ample then locally on S there exists ng > 0 such that f*(f.(ZL®™)) — L@ is
surjective and the natural map i, : X — P(f.(L%™)) is a closed immersion for all n > ng.

Proof. The crucial fact we have to show is that if S = .# (k) and K/k is an analytic extension field then £
is ample on X if and only if the associated coherent pullback £k is ample on X . A ground field extension
does not affect whether or not a map between coherent sheaves for the G-topology is surjective, and by
Theorem 9.2 the property of a morphism being a closed immersion is likewise unaffected. Hence, the only
problem is to show that for a coherent Oy, -module .# (such as Z®" for a fixed n > 0) the natural map
K @, I'(Xg, Z) — I'((Xk)g,F) is an isomorphism. More generally, we claim that K ®, H(Xg, #) —
H'((Xk)g, Zx) is an isomorphism for any i > 0. Observe that the ordinary tensor products here may be
replaced with completed tensor products, since the cohomology is finite-dimensional. It suffices to prove
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that the maps in the Cech complex associated to a finite affinoid covering of a proper analytic space and
a coherent sheaf for the G-topology are admissible (in the sense of having closed images whose subspace
and quotient topologies coincide). This property is unaffected by a ground field extension (using completed
tensor products), so by the relationship between strictly analytic spaces and rigid spaces [Ber2, 1.6.1] we
may pass to the strictly analytic case and hence to coherent sheaves on proper rigid spaces (the equivalence
with rigid-analytic properness is [T2, 4.5]). In this case the desired property of the Cech complex was proved
by Kiehl [K, 2.5{f.] in his proof of coherence of higher direct images.

Now we prove the first part of the corollary. It follows from the invariance under a ground field extension
that the formation of the set Uy is compatible with a ground field extension K /k in the sense that 7=} (Ug) =
Ug, where m : Sx — S is the canonical map. Since 7 is also topologically a quotient map (it is even a
compact surjection), it therefore suffices to solve the problem after a ground field extension. The formation
of Uy C S is certainly local for the G-topology on S, so by using a compact k-analytic neighborhood of an
arbitrary point s € S we see that it suffices to treat the case when S is compact (so X is compact). Hence,
by using a ground field extension we can assume that |k*| # {1} and X and S are strictly k-analytic. In this
case there is a proper map of quasi-compact and quasi-separated rigid spaces fy : Xo — Sy corresponding
to f and an invertible sheaf %, on X, corresponding to .Z. By [C, 3.2.9], there is a subset Uy, C Sy that
is a Zariski-open subset in a canonical Zariski-open subset W, C S such that the points of Uy, are exactly
the s € S such that .4 has ample pullback to (Xo)s = (Xs)o (in the sense of rigid geometry) and such that
the formation of Wy, and Ug, is compatible with arbitrary ground field extension K/k. Since ampleness
on a fiber is unaffected by passage between the rigid-analytic and k-analytic categories, it follows that if we
let We C S be the Zariski-open subset corresponding to W, C Sy then the Zariski-open subset of W
corresponding to Ug, is equal to Ug. This establishes the openness of Uy, and so finishes the proof of the
first part.

To prove the second part we may again reduce to the case when S is compact. The formation of higher
direct images with respect to f (using the G-topology) is compatible with any ground field extension, by
essentially the same argument we used above for cohomology over a field: we may pass to the case of an
affinoid base, and we use that Kiehl’s results on Cech complexes are valid in the relative setting over an
affinoid base (not just over a ground field as base). Thus, once again using Theorem 9.2 for the property
of being a closed immersion, we may assume |k*| # {1} and that S and X are strictly k-analytic. The
analogue of our desired result was proved locally on Sy in the rigid-analytic case in [C, 3.1.4, 3.2.4, 3.2.7].
(The ability to get the closed immersion property for all large n is shown in the proof of [C, 3.2.7].) Since
Sp is quasi-compact, we therefore get a single ng such that Z°" is generated by (fo)«(Z5") = (f(£%™))o
and the resulting map (¢,,)o is a closed immersion for all n > ng. Passing back to the k-analytic category
gives the desired result over S. n

An immediate consequence of the second part of the preceding corollary is that locally on S (or locally
on S when S is good) a high power of a relatively ample line bundle is the pullback by &'(1) relative to a
closed immersion into a standard projective space over the base. In particular, locally on S a sufficiently
high power of a relatively ample line bundle satisfies the familiar cohomological vanishing and generation
properties for higher direct images against a fixed coherent sheaf on Xg. In the rigid-analytic case this is
[C, 3.2.4], but note that the present approach does not reprove this result in the rigid-analytic case since
that result is a crucial part of the rigid-analytic ingredients used in the proof of Corollary 9.4.

APPENDIX A. FLATNESS IN k-ANALYTIC GEOMETRY

A.1. Flatness. In this appendix we recall some facts from a theory of flatness for k-analytic maps that was
developed very recently by A. Ducros in [Duc]. Note also that for quasi-finite morphisms this theory was
developed by Berkovich already in [Ber2], and there was an unpublished work by Berkovich where some
results about flat morphisms between good spaces were obtained, including the theorem that boundaryless
flat morphisms are preserved under base changes.

Let f: X — Y be a morphism between k-analytic spaces, .% be a coherent Ox-module, z € X be a
point with y = f(x). If f is good then we say that .7 (resp. f) is naively Y-flat (Ducros says Y-flat) at
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x it F, (resp. Ox ) is a flat Oy,,-module. We say that .# or f is naively Y -flat if it is so at all points of
X. Unfortunately, this definition does not make too much sense in general since the naive flatness can be
destroyed after a base change Y’ — Y with a good source Y, and, even worse, one can built such examples
with Y/ — Y being an embedding of an analytic subdomain, see [Duc, 2.18]. For this reason, the only
reasonable notion is that of universal naive flatness which we will simply call flatness: we say that an f
as above is flat (or universally flat in [Duc]) if each its good base change is naively flat (and similarly for
coherent sheaves). By [Duc, 2.9] flatness is of G-local nature, namely # is Y-flat at « if and only if there
exists a pair of good analytic domains U — X and V — Y with z € U and f(U) C V and such that F|y
is naively V-flat at x, and then Z|y is naively V'-flat for any choice of such a pair U’,V’. Because of
G-locality flatness globalizes to all morphisms of k-analytic spaces: given a morphism f : X — Y a coherent
Oy,-module % is Y-flat at a point z € X if there exist good domains z € U — X and f(U) CV < Y
such that (%¢)|v is V-flat at . An important difficult theorem [Duc, 3.12.3] by Ducros asserts that for
extendable (in particular, for boundaryless) morphisms between good spaces flatness is equivalent to the
naive one, and hence can be checked on stalks. Recall that a morphism X — Y is called extendable at a
point z € X if it factors into a composition of embedding of an analytic domain X < X’ and a morphism
X' =Y with € Int(X'/Y). We list below few basic properties of flatness proved in [Duc].

Lemma A.2. (i) Flatness is preserved under base changes, ground field extensions and compositions.
(ii) Flatness of a morphism f : X — Y is G-local on X and Y, and, moreover, if f|y is flat for an
analytic subdomain U — X then each point x € U possesses a neighborhood U, in X with flat f|u, .

Note that it is the second property that earlier allowed us to define flatness at a point for morphisms
between not good spaces. In principle, it is not automatic that a G-locally defined property makes sense in
the usual topology on an analytic space.

A.3. G-smoothness. Smooth morphisms were introduced by Berkovich in [Ber2, §3.5]. They are bound-
aryless morphisms defined as compositions of étale morphisms and projections A% — X. This choice of the
definition resulted from the fact that flatness was defined in loc.cit. only for quasi-finite morphisms and that
sufficed only for introducing étale morphisms. A partial G-localization of smoothness is the notion of quasi-
smooth morphisms defined as compositions of smooth morphisms and embeddings of analytic subdomains.
The latter notion is however restricted to extendable morphisms. Having general flatness now available we
can simply make the following definition: a morphism f : X — Y of k-analytic spaces is G-smooth if it is flat
and the sheaf Q%,G /Xa defined in [Ber2, 3.3] is a locally free sheaf whose dimension at a point € X equals
to the dimension of f at z. Similarly, we say that f is G-étale if it is flat and unramified (i.e. Q%/G/XG =0).

Lemma A.4. (i) G-smoothness and G-étaleness are preserved under base changes, ground field extensions
and compositions.

(ii) G-smoothness (resp. G-étaleness) of a morphism f: X — Y is G-local on X and Y, and, moreover,
if flu is G-smooth (resp. G-étale) for an analytic subdomain U — X then each point x € U possesses a
neighborhood U, in X with G-smooth (resp. G-étale) f|u, .

The claim (ii) allows to define G-smoothness (resp. G-étaleness) at a point = (similarly to flatness at a
point).

Proof. (i) follows from A.2(i) and basic properties of the sheaves Q%,G /x,, established in Propositions 3.3.2
and 3.3.3 from [Ber2]. To prove (ii) we will need the following claim about a coherent Ox,-sheaf Z¢
which follows easily from the fact that any embedding of a subdomain .# (%) — .# (%) corresponds to
a flat homomorphism Z — & if % is locally free (resp. vanishes) on a subdomain U — X, then each
point x € U possesses a neighborhood U, in X such that #q is locally free on U, (resp. vanishes). (We
use here coherence of % in an essential way. Note, that even the analogous vanishing property fails for
locally constant étale sheaves, for example.) Now, (ii) follows from A.2(ii) and the above claim applied to

Fa =W, x, [ |
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Since we do not need that in this paper, we postpone a study of connections between G-smoothness,
quasi-smoothness and smoothness, and between their étale analogs until another paper. Here we only state
without proofs what we know about the relations and what we expect from them.

(i) Obviously, a morphism is étale if and only if it is G-étale and boundaryless.

(ii) One can show that G-étale morphisms are extendable. In particular, it follows that a morphism is
quasi-étale if and only if it is G-étale and extendable.

(iii) We expect that if Y is good, then the analogs of (i) and (ii) hold for smoothness. Namely, f: X — Y
is smooth if and only if it is G-smooth and boundaryless, and f is quasi-smooth if and only if it is G-smooth
and extendable.

(iv) If (iii) holds then G-smooth boundaryless morphisms form a smallest class of morphisms which
includes smooth morphisms and is G-local on the base, and we expect that the class of smooth morphisms
is not G-local on the base.

(v) We expect that there are non-extendable G-smooth morphisms.

Conjecture (iv) would imply that the class of smooth morphisms between non-good spaces is not a
reasonable class, and it is more natural to consider the family of all G-smooth boundaryless morphisms
instead. This explains, in particular, why we studied descent of G-smoothness but skipped descent of
smoothness as it is defined in [Ber2].
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