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Abstract
We prove that the theta correspondence for the dual pair (S̃L2, PB×), for B an indefinite
quaternion algebra over Q, acting on modular forms of odd square-free level, preserves
rationality and p-integrality in both directions. As a consequence, we deduce the rationality
of certain period ratios of modular forms and even p-integrality of these ratios under the
assumption that p does not divide a certain L-value. The rationality is applied to give
a direct construction of isogenies between new quotients of Jacobians of Shimura curves,
completely independent of Faltings isogeny theorem.
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1. Introduction

In his seminal paper [26], Shimura initiated the systematic study of holomorphic modular
forms of half-integral weight and showed that one could associate to a Hecke eigenform h of
half-integral weight k+ 1

2 a Hecke eigenform f of integral weight 2k such that the p2th Fourier
coefficient of h is closely related to the pth Fourier coefficient of f . The correspondence
which associates f to h is often described as the Shimura correspondence, and f is called
the Shimura lift of h. Later, Shintani [33] described a method to go in the other direction,
namely construct modular forms of half-integral weight beginning with forms of integral
weight using the theta correspondence. At around the same time, Niwa [21] also explained
the original Shimura lift in terms of theta lifts. (In the case of Maass forms, there is a much
earlier construction due to Maass [20] of the lift to forms of half-integral weight; see [8] for
an exposition.)

The relation between f and the square-free Fourier coefficients aν(h) of h remained highly
mysterious, but for a suggestion of Shimura ([31]) that these should somehow be related to
special values of L-functions associated to f . In two remarkable articles ([36], [37]) Wald-
spurger settled this question, showing (roughly) that aν(h)2 is proportional (as ν varies) to
the value L(k, f ⊗ χν) where χν is the quadratic character associated to the field Q(

√
ν).

A central tool that Waldspurger employs is the theta correspondence between the groups
S̃L2 and PGL2 as in the work of Shintani and Niwa. In a later article ([38]), Waldspurger
also studied the theta correspondence for the pair (S̃L2, PB×) for B a quaternion algebra,
and its relation to the Jacquet-Langlands correspondence between PGL2 and PB×.

Waldspurger’s results are representation-theoretic in nature. In particular, he does not
study the arithmetic properties of the theta-lifts in either direction. This issue was however
considered by Shimura [32], who showed that (for suitable choices of theta function) the
theta lift from S̃L2 to PB× is algebraic and further, in the opposite direction, there is a
canonical transcendental period modulo which the theta lift is algebraic. In this article, we
will prove analogs of Shimura’s results for rationality over specified number fields and also
p-adic integrality. As a consequence we deduce several results relating periods of modular
forms on different Shimura curves. These results, in fact, constituted the main motivation
for this article and we begin by describing them in more detail.

Let N = N+N− be an odd square-free integer with N− a product of an even number
of primes. Let f be a holomorphic newform of even weight 2k on Γ0(N), g a holomorphic
newform with respect to the unit group of an Eichler order O of level N+ in the indefi-
nite quaternion algebra B ramified at the primes dividing N−, and with the same Hecke
eigenvalues as f . Let (F0, Φ) be a pair consisting of a Galois extension of Q that splits
B along with a suitable splitting Φ : B ⊗ F0 ' M2(F0) (see Sec. 2.2.1). Set F̃0 = Q if
2k = 2 and F̃0 = F0 otherwise. Let F be any number field containing F̃0 and all the Hecke
eigenvalues of f , let p be a prime not dividing N and λ a prime in F lying over p. As shown
in [22] and as will be recalled below, f and g may be normalized canonically up to λ-adic
units in F . One has attached to f and g, canonical fundamental periods u±(f, F, λ) and
u±(g, F, λ), well defined up to λ-adic units in F . For σ ∈ Aut(C/F̃0), let u±(fσ, F σ, λσ)
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and u±(gσ, F σ, λσ) be the fundamental periods attached to fσ and gσ. These periods are
chosen such that the period pair (u±(f, F, λ), u±(fσ, F σ, λσ)) gives a well defined element
in (C× × C×)/(1, σ)F× (and likewise with f replaced by g). To begin with, we have the
following theorem on rationality of period ratios.

Theorem 1.1. (
u±(f, F, λ)
u±(g, F, λ)

)σ

=
u±(fσ, F σ, λσ)
u±(gσ, F σ, λσ)

.

In the special case k = 2, the above theorem can be used to construct directly isogenies
defined over Q between quotients of Jacobians of different Shimura curves, without the
crutch of Faltings’ isogeny theorem. This application is treated in the last section of the
article. (The idea that one should be able to construct such isogenies by proving the
rationality of period ratios was suggested by Shimura [32].) In the case of higher weight,
one might be able to use Thm. 1.1 to derive relations between the motives associated to
the forms f and g, but we have not pursued this theme further in this article.

Indeed, our main interest is in integrality results for the ratios appearing above. With this
in mind, let us define u±(f) (resp. u±(g)) to be u±(f, F, λ) (resp. u±(g, F, λ) for any choice
of F , so that both periods are well defined up to λ-adic units. Let ν be a quadratic discrim-
inant and χν the quadratic character

(
ν
·
)
. It is known under rather general conditions (see

[34]) that A(f, ν) := |ν|k−1g(χν)(2πi)−kL(k, f, χν)/u±(f) = |ν|k−1g(χν)(2πi)−kL(1
2 , πf ⊗

χν)/u±(f) is a λ-adic integer, where g(χν) is the Gauss sum attached to χν and the ± sign
holds according as χν(−1) ·(−1)k = ±1. Here πf denotes the automorphic representation of
PGL2 attached to f and the L-function is being evaluated at the center of the critical strip,
this being the point s = k in the classical normalization and s = 1/2 in the automorphic
normalization.

The integrality result we have in mind is motivated by the following observation. If f
has weight 2, and λ is not Eisenstein for f (i.e. the mod λ Galois representation associated
to f is irreducible), one may show, again using Faltings’ isogeny theorem that u±(f)/u±(g)
is a λ-adic unit. So it is reasonable to ask if such a result holds for arbitrary even weights.
The following theorem provides a conditional result in that direction.

Theorem 1.2. Suppose p > 2k + 1 and p - Ñ :=
∏

q|N q(q + 1)(q − 1). Let χν be the
quadratic character associated to an odd fundamental quadratic discriminant ν and set ε =
sign((−1)kν). Suppose A(f, ν) 6≡ 0 mod λ. Then

vλ

(
uε(f)
uε(g)

)
≥ 0.

It is naturally of interest then to ask if there always exists a quadratic discriminant ν with
prescribed sign and parity such that A(f, ν) 6≡ 0 mod λ. This question in general seems
to be extremely hard. However, as mentioned above, in the case of weight 2 (for instance
for elliptic curves) and non-Eisenstein primes λ, we know a priori from Faltings’ isogeny
theorem that uε(f)/uε(g) is a λ-adic unit. Feeding this information into the methods
and results of this article, one obtains interesting applications to questions about the p-
divisibility of the central values of quadratic twists of f . Assuming the exact form of the
Birch-Swinnerton Dyer conjecture for elliptic curves of rank 0, one further gets applications
to questions about p-torsion of Tate-Shafarevich groups. These applications are treated
in a subsequent article ([24]), in which we also explain an intriguing relation between the
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Waldspurger packet on S̃L2 and congruences of modular forms of integral and half-integral
weight.

The reader will note that the statements of Thms. 1.1 and 1.2 do not involve forms of half-
integral weight. Nevertheless, their proof depends crucially on arithmetic properties of the
Shimura correspondence and of forms of half-integral weight. We now give an introduction
to our main theorems regarding the Shimura correspondence and the methods of this article.

Suppose χ is a character of conductor N ′ dividing 4N with χ(−1) = 1 and set M =
lcm(4, NN ′). Set χ0 = χ · (−1

·
)k, let χ = χ · (−1

·
)k+τ (where τ = 0 or 1) be such that χ

is unramified at the prime 2, and use the same symbols χ0 and χ to denote the associated
adelic characters. Also suppose fχ and gχ are newforms in π ⊗ χ and π′ ⊗ χ respectively
where π and π′ are the automorphic representations of GL2(A) and B×(A) associated to f
and g.

It follows then from work of Waldspurger that the space Sk+ 1
2
(M, χ, fχ) consisting of

holomorphic forms of weight k + 1
2 on Γ0(M) with character χ, and whose Shimura lift is

fχ, is two dimensional. Further this space has a unique one dimensional subspace, called
the Kohnen subspace S+

k+ 1
2

(M, χ, fχ), consisting of forms whose only non vanishing Fourier

coefficients aξ are (possibly) those such that (−1)τξ is congruent to 0, 1 mod 4. Let us
denote by hχ a nonzero vector in this subspace with algebraic Fourier coefficients. We may
normalize hχ to have all its Fourier coefficients be λ-adic integers in Q(f, χ), and further so
that at least one is a λ-adic unit. Here Q(f, χ) is the field generated over Q by the Hecke
eigenvalues of f and the values of the character χ.

The form hχ may in fact be obtained as a theta lift from PB× as follows. For q | N , denote
by wq and w′q the signs of the Atkin-Lehner involutions acting on f and g respectively, so
that wq = ±w′q, the + (resp. −) sign holding exactly when B is unramified (resp. ramified)
at q. Fix ν, an odd quadratic fundamental discriminant such that (−1)τ = sign(ν) and such
that the following local conditions are satisfied at the primes dividing N :

(a) If q | N but q - ν, χ0,q(−1) = w′q · χν,q(q).

(b) If q | N and q | ν, χ0,q is ramified exactly when q | N− and for such q, χ0,q(−1) = −1.

Let us denote by g′ the form gχ ⊗ (χχν ◦Nm)−1 ∈ π′ ⊗ χν . One now considers the theta
correspondence for the dual pair (S̃L2, PB×). It is shown in Sec. 3 below that the conditions
(a) and (b) above imply (again from work of Waldspurger) that the form hχ occurs in the
theta lift Θ(π′ ⊗ χν , ψ

′) where ψ′ = ψ1/|ν| and ψ is the usual additive character on Q \AQ.
Let V be the subspace of B consisting of the trace 0 elements. For an appropriate explicit
choice of Schwartz function ϕ ∈ V (A) (see Sec. 3), one has θϕ(g′) = α0hχ and θt

ϕ(hχ) = βg′
for scalars α0 and β. The arithmetic properties of the complex numbers α0 and β are then
of crucial importance. It will turn out that β is algebraic, while α0 is an algebraic multiple
of the period uε(g) where ε = sign((−1)kν). In fact it is natural to write α0 = αg(χ)uε(g),
and ik+τβ = g(χ)−1β, where g(χ) is the Gauss sum attached to χ. The following is one of
our main theorems regarding the Shimura-Shintani-Waldspurger correspondence.

Theorem 1.3. The complex numbers α, β are algebraic, and α ∈ F (χ), β ∈ Q(f, χ).
Further, assuming p > 2k + 1 and p - Ñ , we have
(a) vλ(α) ≥ 0.
(b) vλ(β) ≥ 0.
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The algebraicity of α and β is due to Shimura [32]; our contribution is the rationality
of these over F (χ),Q(f, χ) respectively and the λ-adic integrality. It turns out that the
theorem for α is quite easy and with adequate preparation, is almost tautological (see
Section 4). On the other hand, the rationality and integrality of β is much harder and
requires the very detailed analysis of Section 5. Here is a brief description of the ideas
involved. To check for rationality or integrality of β, it suffices to evaluate θϕ(hχ) = βg′ at
specific CM points j : K ↪→ B associated to an imaginary quadratic field K and check that
the resulting values are rational or integral multiples of appropriate CM periods. From a
computational point of view, it is easier to compute a sum of values at all Galois conjugates
of a Heegner point, twisted by a Hecke character η′; the resulting sum is interpreted as a
period integral Lη′ on a torus. Now one applies see-saw duality. It turns out that this is
rather subtle, involving the choice of two characters κ, µ depending on η′. Here κ is a Hecke
character of K of weight (k, 0) at infinity, while µ is a finite order character of Q×A . Further
the pair (µ, η) is only well defined up to replacement by (κ ·(ω◦NmK/Q), µ ·ω2) for any finite
order character ω of Q×A . Let πµ denote the automorphic theta representation of S̃L2(A)
associated to µ and πκ the automorphic representation of GL2(A) associated to the Hecke
character κ. Then by an application of see-saw duality one gets roughly an expression for
Lη′ as a triple integral

Lη′(θt
ϕ(hχ)) =

∫

SL2(Q)\SL2(A)
hχ(σ)θµ(σ)θκ(σ)dσ,(1.1)

for some vectors θµ and θκ lying in πµ and πκ respectively. Let K0 be the trace 0 elements
of K, and K⊥ the orthogonal complement to K for the norm form on B. With respect
to the decomposition V = K0 + K⊥, the Schwartz function ϕ ∈ V (A) splits up as a sum∑

i∈I ϕ1,i ⊗ ϕ2,i over an indexing set I. More precisely, what one gets then is not a single
integral of the form (1.1) but in fact a sum of such integrals indexed by the set I and
depending on the splitting of the pure tensor ϕ as a sum of pure tensors. The data of such
splitting is in general highly ramified, as are the local representations involved, and so one
needs an elaborate argument to show that the sum of integrals so obtained may indeed
be replaced by a single integral with convenient choices of vectors in πµ and πκ. This
argument occupies all of Sec. 5.2. We should remark here that the weights of hχ, θµ and
θκ are k + 1

2 , 1
2 and k + 1 respectively. As for the possibilities for the local representations

at non-archimedean primes, many different types of ramification could occur, including
for instance the possibility that πµ and πκ are both supercuspidal, even though we have
restricted the ramification of πf to be at worst Steinberg. 2

The upshot of the argument is that one has an expression for the period integral as c ·
〈H, θκ〉 for some constant c (that depends on f, χ, κ, µ) and a modular form H of weight k+1
with coefficients that are λ-integral and lie in Q(f, χ), 〈·, ·〉 being the usual Petersson inner
product. (It is at this point we make use of the appendix due to Brian Conrad; indeed the
form H is naturally presented as wQH0 for a form H0 with λ-integral Fourier coefficients and
an Atkin-Lehner operator wQ with Q | N2. The main theorem of the appendix guarantees
then that H has λ-integral Fourier coefficients as well.) Now one applies an argument similar
to that of the authors’ previous article [22] to show that c · 〈H, θη〉/Ω is a λ-adic integer

2If µ is the trivial character, θµ is an Eisenstein series. In this case, the integral (1.1) is identified with the
values at s = k (in the classical normalization) of the Rankin-Selberg Dirichlet series D(s, hχ, θκ) associated
by Shimura to the cusp forms hχ and θκ of weights k + 1

2
and k + 1 respectively.
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for a suitable CM period Ω. One needs to use here a refined study of congruences between
θκ and other forms as well as the main conjecture of Iwasawa theory for the imaginary
quadratic field K, which is a deep theorem of Rubin [25]. The constant c above arises from
the delicate computations with the local integrals mentioned above, and is a p-integer but
not necessarily a p-unit. Miraculously, its p-adic valuation turns out to be exactly what
is needed to make the argument using Iwasawa theory and congruences go through. One
needs to be particularly careful here since the choice of auxiliary quadratic discriminant ν
introduces extra level structure into the problem, and with an eye on applications, one does
not want to make any assumptions on ν other than those in Thm. 1.2. The rationality
proceeds somewhat differently: the CM period must be chosen more carefully (to depend
on κ), and one then needs to apply the rationality results of Blasius [2] for the special values
of L-functions of Grossencharacters of K.

To use the integrality of α and β we need several formulas. In what follows we will use
the symbol ∼ to denote equality up to less important factors, and refer the reader to the
main text of the article for more explicit equations. Crucial to us is a formula for the Fourier
coefficients of the theta lift θϕ(g′) that is proved in [23]. This formula states roughly that

|aξ(θϕ(g′))|2 ∼ L(
1
2
, π ⊗ χν)L(

1
2
, π ⊗ χξ0)

〈g, g〉
〈f, f〉 .(1.2)

for ξ0 = (−1)τξ satisfying a particular set of congruence conditions. This formula is used in
two ways. Firstly it shows that the theta lift θϕ(g′) is nonvanishing for the particular choice
of Schwartz function ϕ since L(1

2 , π⊗χν) 6= 0 and we can find a ξ such that L(1
2 , π⊗χξ0) 6= 0.

Secondly, comparing it with the following formula of Baruch-Mao [1] which is proved using
the relative trace formula of Jacquet,

|aξ(hχ)|2
〈h, h〉 ∼ L(1

2 , π ⊗ ξ0)
〈f, f〉 ,(1.3)

and applying see-saw duality

〈θϕ(g′), hχ〉 = 〈g′, θt
ϕ(hχ)〉,(1.4)

one obtains the following important formula

L(
1
2
, π ⊗ χν) ∼ αβuε(g).(1.5)

The integrality of uε(f)/uε(g) follows immediately from (1.5) using the integrality of α and
β and the assumption on A(f, ν) being a p-unit. As a bonus, if one combines (1.5) with
(1.4), one gets

〈θt
ϕ(hχ), θt

ϕ(hχ)〉 ∼ L(
1
2
, π ⊗ χν)〈hχ, hχ〉.(1.6)

which is nothing but the explicit version of the Rallis inner product formula in this situation,
obtained in a completely different way than the original method of Rallis!

It would be very interesting to generalize the results of this article to totally real fields
other than Q, but this seems to be much harder. For instance, for a real quadratic field,
one would like integral period relations between the periods usually denoted u++, u+−, u−+

and u−−. Another interesting question is to study the integrality properties of theta lifts
from S̃L2 to PB× for B a definite quaternion algebra over Q. Very surprisingly, this seems
harder than the indefinite case: the reader may find a discussion of the issues involved in
the article [24].
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The article is organized as follows. Sec. 2 contains preliminaries on modular forms of
integral and half-integral weight and some results extracted from Waldspurger’s article [37].
In Sec. 3, we work out, using the results of Waldspurger’s article [38], some facts regarding
the theta correspondence for (S̃L2, PB×) and study the same for a certain explicit choice
of theta function. Sections 4 and 5 are devoted to proving the rationality and integrality of
the Shintani and Shimura lifts respectively. Finally, in Sec. 6 we explain in more detail the
various formulas mentioned above, and discuss the applications to arithmeticity of period
ratios and isogenies between new-quotients of Jacobians of Shimura curves.

Acknowledgements: The author would like to thank Don Blasius, Haruzo Hida, Steve
Kudla, Jon Rogawski, Chris Skinner and Akshay Venkatesh for useful discussions, Peter
Sarnak for pointing out the work of Maass referred to above, Brian Conrad for very kindly
agreeing to provide the Appendix and Michael Harris for his comments and a correction to
an earlier version of this article. In addition, thanks are due to the anonymous referee for
a careful reading of the article and numerous comments towards improving it. Finally, it
will be clear to the reader that the author owes a tremendous intellectual debt to Shimura,
Shintani and especially Waldspurger, whose very powerful techniques and results provide a
stepping stone on which this article builds.

2. Modular forms of integral and half-integral weight

2.1. Preliminaries.

2.1.1. Metaplectic groups. Here we follow the exposition and notations of [37] II § 4. If v

is a place of Q, let S̃v denote the metaplectic (degree 2) cover of SL2(Qv). Likewise, let
S̃A denote the metaplectic (degree 2) cover of SL2(A). We may identify S̃v (resp. S̃A) with
SL2(Qv) × {±1} (resp. SL2(A) × {±1}), the product of two elements (σ, ε), (σ′, ε′) being
given by

(σ, ε)(σ′, ε′) = (σσ′, εε′β(σ, σ′)),

where βv is defined as follows. For σ =
(

a b
c d

)
∈ SL2(Qv), let x(σ) = c if c 6= 0, x(σ) = d,

if c = 0. For v real, let sv(σ) = 1. For v = q a finite place, let sv(σ) = (c, d)v if cd 6= 0 and
vq(c) is odd, sv(σ) = 1 otherwise. Here (·, ·)v denotes the Hilbert symbol. Then

βv(σ, σ′) = (x(σ), x(σ′))v(−x(σ)x(σ′), x(σσ′))vsv(σ)sv(σ′)sv(σσ′).

If σ ∈ SL2(Qv), we denote also by the same symbol σ the element (σ, 1) ∈ S̃v. The map
σ 7→ (σ,

∏
v(sv(σ))), σ ∈ SL2(Q) is a homomorphism of SL2(Q) into S̃A, the image of which

we denote by the symbol SQ.
For x ∈ Qv, α ∈ Q×v , define n(x),n(x) and d(α) to be the elements of S̃v given by

n(x) =
(

1 x
0 1

)
, n(x) =

(
1 0
x 1

)
, d(α) =

(
α 0
0 α−1

)
.

Let w =
(

0 1
−1 0

)
∈ S̃v and notice that

n(x) = d(−1) · w · n(−x) · w,(2.1)

in S̃v, a relation that we will use repeatedly.
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2.1.2. For t ∈ Q×v and ψ an additive character of Qv, let γψ(t) be the constant associated
by Weil to the character ψ and the quadratic form tx2. Recall that for v = q, a finite prime,
γψ(t) may be computed to be

γψ(t) = lim
n→∞

∫

q−nZq

ψ(tx2)dtx,(2.2)

where dtx is Haar measure chosen to be autodual with respect to the pairing (x, y) 7→ ψ(txy).
We denote γψ(1) simply by the symbol γψ. Define

µψ(t) = (t, t)vγψ(t)γψ(1)−1 = γψ(1)γψ(t)−1.(2.3)

Then one has the equalities:

µψ(tt′) = (t, t′)vµψ(t)µψ(t′).

µψ(t2) = 1.

Thus µψ defines a genuine character of Q×v , the extension of Q×v by {±1} given by the
Hilbert symbol. For α ∈ Q×v , let ψα denote the character defined by ψα(x) = ψ(αx). One
checks easily that

µψα(t) = (α, t)vµψ(t).

2.1.3. Let (V, 〈, 〉) be a quadratic space over Qv and ψ an additive character of Qv. Suppose
Q(x) := 1

2〈x, x〉 =
∑d

i=1 aix
2
i in terms of an orthogonal basis for V , where d = dim(V ). Set

γψ,Q :=
d∏

i=1

γψai .

DQ :=





(−1)(d−1)/2
d∏

i=1

ai if d is odd,

(−1)d/2−1
d∏

i=1

ai if d is even.

Then there exists a representation rψ of S̃v on Sψ(V ), the Schwartz space of V , called
the Weil representation, which is characterized by

rψ(n)ϕ(x) = ψ(nQ(x))ϕ(x),(2.4)

rψ(d(α))ϕ(x) = µψ(α)d(α, DQ)v|α|d/2ϕ(αx),(2.5)
rψ(w)ϕ(x) = γψ,QFψ(ϕ),(2.6)

rψ(1, ε)ϕ(x) = εdϕ(x),(2.7)

where Fψ denotes the Fourier transform with respect to the pairing (x1, x2) 7→ ψ(〈x1, x2〉),
the Haar measure on V being chosen such that Fψ(Fψ(ϕ))(x) = ϕ(−x) for all ϕ ∈ Sψ(V ).
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2.1.4. Suppose q is an odd prime. Let ψ̂ be the character on Z/qZ given by ψ̂(1) = e−2πi/q

and χ̂ any character on (Z/qZ)×, extended to Z/qZ by setting χ̂(0) = 0. Define the Gauss
sum

G(χ̂, ψ̂a) =
∑

δ∈(Z/qZ)×
χ̂(δ)e−2πiaδ/q,

so that G(χ̂, ψ̂a) = χ̂−1(a)G(η, ψ̂). If % is the unique nontrivial quadratic character of
(Z/qZ)×,

G(%, ψ̂) =

{√
q, if q ≡ 1 mod 4.

i
√

q, if q ≡ 3 mod 4.

Hence G(%, ψ̂)2 = %(−1)q.

2.1.5. Let q be a fixed finite prime and ψ the character on Qq with kernel Zq such that
ψ(1

q ) = e−2πi/q. If q 6= 2 and t ∈ Z×q , one easily computes that γψ(t) = 1 and µψ(t) = 1.
Thus

µψα(t) = (α, t)v,(2.8)

for any α ∈ Q×q . If q = 2 , µψ(t) = 1
2 [1 − i + (1 + i)χ−1,2(t)] for t ∈ Z×2 . In par-

ticular, µψ(−1) = −i. Note that µψα(−1) = (−1, α)2 · i and µψ(α)3 = (α, α)2µψ(α) =
(−1, α)2µψ(α).
Suppose now that q is odd , and ψ′ = ψα with vq(α) = −1, qα ≡ a mod q, a ∈ (Z/qZ)×.
Then set G(χ̂, ψ′) := G(χ̂, ψ̂a). One computes from (2.2) that

γψ′ = q−1/2G(%, ψ̂a) = q−1/2G(%, ψ′) = %(a)q−1/2G(%, ψ̂).(2.9)

If q = ∞, and ψ(x) = e2πix we have µψ(−1) = i.

2.1.6. Let χ be a Dirichlet character of conductor M . We denote by χ the associated
Grossencharacter of Q×A , satisfying χq(q) = χ(q) for almost all q. If χq is a character of Q×q
of conductor q, we denote (in Sec. 3.2 alone) by χ̂q the induced character on Z×q /(1+qZq) '
(Z/qZ)×.

2.1.7. Measures. We use the same conventions here as in [22]. In the interest of brevity, the
reader is referred to §1 of that article for the measure normalizations used on the different
local and adelic groups, the only difference being that the indefinite quaternion algebra is
called D in [22] as opposed to B in the present article.

2.2. Modular forms of integral weight on an indefinite quaternion algebra. There
is nothing original in this section, the only purpose of which is to set up notation.

2.2.1. Classical and adelic modular forms. Let B be an indefinite quaternion algebra over
Q with discriminant N−, and O a maximal order in B. As in [15] we pick once and
for all a finite Galois extension F0/Q (contained in C) that splits B and an isomorphism
Φ : B⊗F0 ' M2(F0) such that Φ(B) ⊆ M2(F0 ∩R) and Φ(O) ⊆ M2(R) where R is the ring
of integers of F0. Thus Φ induces an isomorphism Φ∞ : B⊗R ' M2(R). Let Nm denote the
reduced norm on B. Via Φ∞, the group of reduced norm 1 elements in B ⊗ R is identified
with SL2(R), hence acts in the usual way on the complex upper half-plane H, the action
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being γ · z = (az + b)/(cz + d) for γ =
(

a b
c d

)
∈ SL2(R), z ∈ H. Set J(γ, z) = cz + d and

j(γ, z) = (det γ)−1/2(cz + d).
To define adelic modular forms, let ω be a finite order character and use the same symbol ω

to denote the associated Grossencharacter of Q×A . We view B× as an algebraic group over Q;
B×
A , B×

Af
, B×
Q will denote its group of adelic points, points over the finite adeles and rational

points respectively. Let L2(B×
Q \ B×

A , ω) be the space of functions s : B×
A → C satisfying

s(γzβ) = ω(z)s(β) ∀γ ∈ B×
Q , z ∈ Q×A and having finite norm under the inner product

〈s1, s2〉 = 1
2

∫
Q×A B×Q \B×A s1(β)s2(β)d×β. Also let A0(ω) = L2

0(B
×
Q \B×

A , ω) ⊆ L2(B×
Q \B×

A , ω)
be the closed subspace consisting of cuspidal functions.

For U any open compact subgroup of B×
Af

and ω̃ any character of U whose restriction
to U ∩ Q×Af

equals ω|U∩Q×Af

, denote by Sk(U, ω̃) the set of s ∈ A0(ω) satisfying s(xuκθ) =

s(x)ω̃(u)eikθ for u ∈ U , κθ =
(

cos θ sin θ
− sin θ cos θ

)
. By strong approximation for B×

A , there

exist ti ∈ B×
Af

, i = 1, . . . , hU , such that

B×
A = thU

i=1B
×tiU(B×

∞)+,(2.10)

where hU is the cardinality of Q× \ Q×A/Nm(U)(Q×∞)+. Let Γi(U) = B×
Q ∩ tiU(B×∞)+t−1

i

and define ωi to be the character on Γi(U) defined by ωi(γ) = ω̃−1(t−1
i γti). One defines the

space Sk(Γi, ωi) to consist of holomorphic functions f : H → C satisfying
(i) g(γz) = j(γ, z)kωi(γ)g(z),
(ii) g vanishes at the cusps of Γi(U).
If ω̃ (resp. ωi) is the trivial character, we write simply Sk(U) (resp. Sk(Γi(U))).

Also, if hU = 1, we simply write Γ(U) instead of Γ1(U). Given a collection of elements
g = {gi}, gi ∈ Sk(Γi(U), ωi), define sg ∈ Sk(U, ω̃) by sg(β) = gi(β∞(ı))j(β∞, ı)−kω̃(u), if
β = γtiuβ∞, γ ∈ B×

Q , u ∈ U, β∞ ∈ (B×∞)+. This is easily seen to be independent of the
choice of the decomposition β = γtiuβ∞. The assignment g 7−→ sg gives an isomorphism
⊕iSk(Γi(U), ωi) ' Sk(U, ω̃).

Remark 2.1. Suppose B = M(Q), ω has conductor M and U =
∏

Uq where

U =
{(

a b
c d

)
∈ GL2(Zq), c ≡ 0 mod M

}
.

Then hU = 1, Γ(U) = Γ0(M), and the character ω on Γ(U) is identified with the character(
a b
c d

)
7→ ω(d) on Γ0(M). Thus Sk(U, ω̃) ' Sk(Γ(U), ω) = Sk(Γ0(M), ω).

2.2.2. Shimura curves. Let H∗ = H if B 6= M2(Q) and H∗ = H ∪ Q ∪ ∞ if B = M2(Q).
Consider the analytic space

Y an
U = B× \B×

A /U · R× SO2(R) = B× \ H×B×
Af

/U,

and its compactification

Xan
U = B× \ H∗ ×B×

Af
/U = thU

i=iΓi(U) \ H∗,

the last equality corresponding to the decomposition in (2.10). Shimura has shown that
Xan

U is the analytic space associated to a smooth curve XU defined over Q. The curve XU
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is possibly disconnected, each component being defined over the class field of Q, denoted
QU , corresponding to the open subgroup Q×Nm(U)(R×)+ of Q×A . The set of components
of XU is canonically identified with Gal(QU/Q).

Suppose g = {gi} ∈ ⊕iS2k(Γi(U)). For each i, the differential form (2πıdz)⊗kgi(z) is
Γi(U) invariant, hence descends to a section of Ωk on Γi(U) \H∗ (by the cuspidality of gi),
which we denote by g̃i. Let g̃ be the section of Ωk on XU that equals g̃i on the component
Γi(U) \ H∗. The assignment g 7→ g̃ gives an isomorphism

⊕iS2k(Γi(U)) ' H0(XU,C, Ωk).

2.2.3. Automorphic representations and newforms. Let π be any irreducible representation
of the Hecke algebra of B×

A that occurs in A0(ω). It is well known that π factors as an
infinite tensor product π = ⊗q≤∞πq, where πq is an irreducible representation of (the Hecke
algebra of) B×(Qq). In this article, we will only consider those π that satisfy the following
two conditions:

(*) π∞ is the weight-2k discrete series representation σ(| · | 2k−1
2 , | · | 2k−1

2 ) of GL2(R).
(**) If q | N−, πq is a one-dimensional representation of B×(Qq).
In this case, one may pick a distinguished line in π, defined to be the span of a vector

v = ⊗qvq where the vq are defined as follows:
(a) For any finite q - N−, by a theorem of Casselman [3], there exists a unique power qnq

such that the space of vectors in πq that is invariant under
{

γ =
(

a b
c d

)
∈ GL2(Zq), c ≡ 0 mod qnq , d ≡ 1 mod qnq

}

is one-dimensional. We take vq to be any such non-zero vector. Note that if nq ≥ 1, vq is
the unique vector up to multiplication by a scalar that transforms under

{
γ =

(
a b
c d

)
∈ GL2(Zq), c ≡ 0 mod qnq

}

by the character γ 7→ ωq(d).
(b) For q | N−, we take vq to be any non-zero vector in the one-dimensional representation
πq.
(c) For q = ∞, the restriction of π∞ to SL2(R) splits as the direct sum of the weight-2k
holomorphic and antiholomorphic discrete series, and we take v∞ to correspond to a lowest
weight vector in the former.

Any multiple of v will be called a newform in π.

2.2.4. Some relevant open compact subgroups. We now pick some specific examples of open
compact U that will play an important role in this article. We fix once and for all isomor-
phisms Φq : B ⊗ Qq → M2(Qq) for q - N− such that Φq(O ⊗ Zq) = M2(Zq). Let N+ be
an integer coprime to N− and O′ the unique Eichler order of level N+ in B such that for
q - N−

Φq(O′ ⊗ Zq) =
{(

a b
c d

)
∈ M2(Zq), c ≡ 0 mod N+

}
,

and for q | N−, O′ ⊗ Zq = O⊗ Zq.
Set N = N+N−. Let χ be a character of conductor Nχ dividing N . Let O′(χ) be the

unique Eichler order in B such that O′(χ) ⊗ Zq = O′ ⊗ Zq, unless q | Nχ and q | N+, in
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which case

Φq(O′(χ)⊗ Zq) =
{(

a b
c d

)
∈ M2(Zq), c ≡ 0 mod q2

}
.

We now define the following open compact subgroups of B×
Af

.

(1) U0 =
∏

q U0,q where U0,q = (O′ ⊗ Zq)×.
(2) U0(χ) =

∏
q U0,q(χ), where U0,q(χ) = (O′(χ)⊗ Zq)×.

(3) U1(χ) =
∏

q U1,q(χ), where U1,q(χ) = U0,q = U0,q(χ) if q - Nχ or if q - N+, and

U1,q(χ) =
{(

a b
c d

)
∈ U0,q(χ), d ≡ 1 mod q

}
if q | Nχ, and q | N+.

Let ωχ = χ2. We define below a character ω̃χ on U0(χ) such that ω̃χ|Ẑ× = ωχ|Ẑ× . Firstly,
for each q define ω̃χ,q on U0,q(χ) as follows:

• For q - Nχ, ω̃χ,q(u) = 1 for any u ∈ U0,q(χ).

• For q | Nχ and q | N+, ω̃χ,q(u) = χq(d)2 for u =
(

a b
c d

)
∈ U0,q(χ).

• For q | Nχ and q | N−, ω̃χ,q(u) = χq(Nm(u)) for u ∈ U0,q(χ).
Then, set ω̃χ =

∏
q ω̃χ,q on U0(χ). Now letting Γ (resp. Γχ) be the group of norm 1 units

in O′ (resp. O′(χ)), we see from the previous section that we have canonical isomorphisms

S2k(Γχ, χ′) ' S2k(U0(χ), ω̃χ).(2.11)
S2k(Γ) ' S2k(U0).

where χ′ is defined to be the restriction of ω̃−1
χ to Γχ ⊆ U0,q. (Note that in the case

B = M2(Q), χ′(γ) = χ2(d) for γ =
(

a b
c d

)
∈ Γχ.)

Let Γ1
χ = B× ∩ U1(χ)(B×∞)+. Since B×

A = B×(U1(χ)(B×∞)+, and χ′|Γ1
χ

is the trivial
character, we have an isomorphism

S2k(Γ1
χ) ' S2k(U1(χ), ω̃χ).(2.12)

Let g ∈ S2k(Γ) = S2k(U0) be a newform. Denote by πg the automorphic representation
of B×

A generated by sg. Since N is square-free, πg satisfies both conditions (*) and (**), and
sg is a newform in πg. For χ as above, we denote by πg,χ the representation πg ⊗ (χ ◦Nm).
It is clear that πg,χ also satisfies conditions (*) and (**), and it follows from Casselman’s
theorem mentioned above that there is a vector gχ ∈ S2k(U0(χ), ω̃χ), unique up to scalar
multiplication, such that sgχ is a newform in πg,χ.

For the moment, g and gχ are only well defined up to scalars, but we will see below that
(at least for p - N) they may be canonically normalized up to p-adic units in a suitable
number field.

2.2.5. Complex conjugation and action of an element of negative norm. For δ any unit in
O′(χ) with reduced norm −1 and g′ ∈ S2k(Γχ, χ′) (resp. g′ ∈ S2k(Γχ, χ′)), denote by g′|δ
the form given by (g′|δ)(z) = J(δ, z)−2kχ′(δ)g′(δz) (resp. (g′|δ)(z) = J(δ, z)−2kχ′(δ)g′(δz).)
If δ′ is any other such element, then γ := δδ′−1 ∈ Γχ, hence g′|δ is independent of the choice
of δ. Let g′c = g′|δ for any such choice of δ. If g′ ∈ S2k(Γχ, χ′) (resp. S2k(Γχ, χ′)) then
g′|δ ∈ S2k(Γχ, χ′) (resp. S2k(Γχ, χ′)) and g′c ∈ S2k(Γχ, χ′) (resp. S2k(Γχ, χ′)). It is easy to
check that (g′|δ)|δ = g′ and ((g′)c)c = g′.
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Let J denote the element
( −1 0

0 1

)
∈ B×∞ = GL2(R) and let sJ

g′ be the element of πg′

given by sJ
g′(β) = sg′(βJ). Let β ∈ B×

A and suppose that β = γuβ∞ and βJ = γ′u′β′∞ be
decompositions given by (2.10) with U = U0,χ. Thus γu = γ′u′ and γβ∞ = γ′β′∞J. Let
δ = (γ′)−1γ, so that also δ = u′u−1 = β′∞Jβ−1∞ . Thus δ is a unit in O′χ of negative reduced
norm, whence Nm(δ) = −1. Now, letting z = β∞ · ı, we see that

sg′(βJ) = g′(β′∞(ı))j(β′∞, ı)−2kω̃χ(u′) = g′(β′∞(ı))J(β′∞, ı)−2k Nm(β′∞)kω̃χ(u′)

= g′(δβ∞J(ı))J(δβ∞J, ı)−2k Nm(β∞)kω̃χ(δu)

= g′(δz)J(δ, z)−2kJ(β∞,−ı)−2k Nm(β∞)kJ(J, ı)−2k(χ′)−1(δ)ω̃χ(u).

Thus

sJ
g′(β) = sg′(βJ) = J(δ, z)−2kχ′(δ)g′(δz)j(β∞, ı)−2k(ω̃χ)−1(u) = sg′|δ(β),

so that sJ
g′ = sg′|δ.

2.2.6. Rational and integral structures. Let L := Lgχ be the field generated by the Hecke
eigenvalues of gχ and let p be a prime not dividing N . Fix once and for all an embedding

λ : Q ↪→ Qp. The inclusion U1,χ
φ−→ U0,χ yields an inclusion φ∗ : S2k(U0(χ), ω̃χ) ↪→

S2k(U1(χ), ω̃χ) = S2k(Γ1
χ) ' H0(XU1(χ), Ωk). The curve X := XU1(χ) has good reduction

over Z[ 1
N ] and hence in particular at p. Let X be the minimal regular model of X over Zp.

Thus we have inclusions

H0(XL, Ω⊗k) ↪→ H0(XLλ
, Ω⊗k) ←↩ H0(XOλ

,Ω⊗k) =: ML,λ.

For any σ ∈ Gal(Q/Q), let (gχ)σ be the newform (defined up to a scalar) whose Hecke
eigenvalues are obtained by applying σ to the Hecke eigenvalues of gχ. We then normalize

the collection {(gχ)σ} by requiring that ˜φ∗(s(gχ)σ) ∈ H0(XLσ , Ω⊗k), be a primitive element
in the lattice MLσ,λ, and further that the compatibility condition

φ̃∗(gχ)σ = φ̃∗(gχ)
σ

be satisfied for all σ. This defines s(gχ)σ up to an element of (Lσ)× that is a unit at all
primes above p.

When B = M2(Q), the rational and integral structures defined above agree with the
usual structures provided by the q-expansion principle. When B 6= M2(Q), no q-expansions
are available; however evaluating at CM points provides a suitable alternative criterion for
rationality and integrality. (See Prop. 5.1 for an exact statement.)

2.3. Modular forms of half-integral weight: review of Waldspurger’s work.

2.3.1. Classical and adelic modular forms. For γ =
(

a b
c d

)
∈ Γ0(4) and z ∈ C, define

j̃(γ, z) =
( c

d

)
µψ,2(d)(cz + d)1/2,

so that j̃(γ, z)4 = j(γ, z)2. Here
( ·
·
)

denotes the Kronecker symbol as in [26] p.442. Let
M be a positive integer, divisible by 4, κ = 2k + 1 be an odd positive integer and χ a
Dirichlet character modulo M such that χ(−1) = 1. Let χ0 = χ · (−1

·
)k and use the same
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symbol χ0 to denote the associated adelic character. We denote by Sκ/2(M, χ) the space
of holomorphic functions h on H, that satisfy

h(γ(z)) = j̃(γ, z)κχ(d)h(z)

for all γ =
(

a b
c d

)
∈ Γ0(M), and that vanish at the cusps of Γ0(M).

We now review the adelic definition of forms of half-integral weight. Let ρ̃ denote the
right regular representation of the Hecke algebra of S̃A on Ã0, the space of cusp forms

on SQ \ S̃A. Also let Γq = SL2(Zq) and Γq(n) = {x =
(

a b
c d

)
∈ Γq, d ≡ 0 mod qn}.

We define, following Waldspurger [37], Ãκ/2(M, χ0) to be the subspace of Ã0 consisting of
elements t satisfying

(i) If q -M and σ ∈ Γq, ρ̃q(σ)t = t;

(ii) If q | M , q 6= 2 and σ =
(

a b
c d

)
∈ Γq(vq(M)), ρ̃q(σ)t = χ0,q(d)t;

(iii) For σ =
(

a b
c d

)
∈ Γ2(v2(M)), ρ̃2(σ)t = ε̃2(σ)χ0,2(d)t;

(iv) If θ ∈ R, ρ̃R(κ̃(θ))(t) = eiκθ/2t;
(v) ρ̃R(D̃)t = [κ(κ− 4)/8]t.

where ρ̃q denotes the restriction of ρ to S̃q, D̃ is the Casimir element for S̃R and ε̃2(σ), κ̃(θ)
are defined on p. 382 of [37]. For z = u + iv ∈ H, let b(z) ∈ S̃A be the element which is 1
at all the non-archimedean places and equal to

(
v1/2 uv−1/2

0 v−1/2

)

at the real place. If h ∈ Sκ/2(M), there exists a unique continuous function th on SQ \ S̃A,
such that for all z ∈ H, θ ∈ R,

th(b(z)κ̃(θ)) = vκ/4eiκθ/2h(z).

Proposition 2.2. ([37] Prop. 3) If h ∈ Sκ/2(M, χ), th ∈ Ãκ/2(M, χ0). The assignment
h 7→ th gives an isomorphism Sκ/2(M, χ) ' Ãκ/2(M, χ0).

Remark 2.3. (a) Our χ and χ0 play the role of the symbols χ and χ0 respectively of
Waldspurger’s article [37]. We will also use the symbol χ below, but for a character that
does not play any role in [37].
(b) When convenient, we identify Sκ/2(M, χ) and Ãκ/2(M, χ0) via the isomorphism above.

2.3.2. Fourier coefficients: rational and integral structures. Let h ∈ Sκ/2(M). Then h has
a familiar q-expansion

h =
∑

ξ∈Z,ξ>0

aξ(h)qξ

where q = e2πiz. We say that h is algebraic (resp. F -rational, resp. λ-integral) if for all ξ
the coefficients aξ(h) are algebraic (resp. lie in F , resp. are λ-integral.) Further, h is said
to be λ-adically normalized if it is λ-integral and if at least one Fourier coefficient of h is a
unit at λ.
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Let t ∈ Ã0. Let ψ denote the usual additive character of Q \A i.e. ψ∞(x) = e2πix and ψq

is the unique character on Qq with kernel Zq such that ψq(x) = e−2πix for x ∈ Z[1q ]. Define

the ψξ-th Fourier coefficient of t to be the function on S̃A given by

W (t, ψξ, σ) =
∫

Q\A
t(nσ)ψξ(−n)dn.

The relation between the classical and adelic Fourier coefficients is

Proposition 2.4. ([37], Lemma 3) Let h ∈ Sκ/2(M). Then

aξ(h) = v−κ/4e2πξvW (th, ψξ,dR(v1/2)).

2.4. The Shimura correspondence. We now assume that N is odd and fix, as in the
introduction, a holomorphic newform f ∈ S2k(Γ0(N)). The following proposition can be
extracted from the main result of [37]. (The form fχ that occurs below is a newform in
πf⊗χ as defined in section 2.2.4. Also the reader is referred to [37] Sec. I.2 for the definition
of the space Sk+ 1

2
(M, χ, fχ) in the statement of the proposition.)

Proposition 2.5. Let χ be a character of conductor dividing 4N with χ(−1) = 1, N ′ :=
cond(χ) , M := lcm(4, N ′N), and suppose χ := χ · (−1

·
)k+τ is unramified at 2. Then

Sk+ 1
2
(M, χ, fχ) ⊆ Ãk+ 1

2
(M, χ0) is two dimensional. Further, it admits a unique one-

dimensional subspace S+
k+ 1

2

(M, χ, fχ), called the Kohnen subspace, consisting of forms h, all

whose nonzero Fourier coefficients aξ(h) satisfy χ0,2(−1)ξ ≡ 0, 1 mod 4 i.e. (−1)τξ ≡ 0, 1
mod 4.

More precisely, if hχ denotes a non-zero vector in S+
k+ 1

2

(M, χ, fχ), wq the eigenvalue of

the Atkin-Lehner involution (at q) acting on f , ξ0 = (−1)τξ and aξ(hχ) denotes the ξth
Fourier coefficient of hχ, then aξ(hχ) = 0 unless the following conditions are satisfied:

(a) For all q | N, q - N ′,
(

ξ0
q

)
6= −wq.

(b) For all q | N ′,
(

ξ0
q

)
= χ0,q(−1)wq = χq(−1)wq.

(c) ξ0 ≡ 0, 1 mod 4.
If (a),(b),(c), are satisfied, and ξ0 is a fundamental quadratic discriminant, then

aξ(hχ)2 = A · |ξ|k−1/2L(
1
2
, π ⊗ χξ0),

for a nonzero constant A depending on f, χ and the choice of hχ.

Proof: For the benefit of the reader, we indicate how this may be deduced from [37].
We refer the reader to Sec. VIII of the same article for the notations used in this proof.
Recall that fχ is the newform of character χ2 associated to the representation π ⊗ χ.
Then cond(fχ) = M/4. Waldspurger has defined for each q and each integer e, a set
Uq(e, fχ) consisting of functions on Q×q with support in Z×q and invariant by (Z×q )2. Let
E be any integer and eq = vq(E). For A any function on the square-free integers and
cE = (cq) ∈

∏
q Uq(eq, fχ), let

h(cE , A)(z) =
∞∑

n=1

an(cE , A)e2πinz,

an(cE , A) = A(nsf )n(2k−1)/4
∏
q

cq(n),
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where nsf denotes the square-free part of n. Let U(E, fχ, A) be the span of all such functions
h(cE , A) as cE varies. The main result of [37], Thm. 1, p. 378, states that for any integer
M ′,

Sk+ 1
2
(M ′, χ, fχ) = ⊕M

4
|E|M ′U(E, fχ, Afχ),

where Afχ is a function on the square-free positive integers satisfying

Afχ(ξ)2 = L(1/2, fχ ⊗ χ−1
0 χξ)ε(1/2, χ−1

0 χξ) = L(1/2, f ⊗ χξ0)ε(1/2, χ−1
0 χξ).

It follows from this and the computations below (at the prime 2) that Sk+ 1
2

(M, χ, fχ) =

U(M,fχ, Afχ). To check that Sk+ 1
2
(M, χ, fχ) is two dimensional, it is sufficient to check

(with E = M) that Uq(eq, fχ) has cardinality equal to 1 for all q 6= 2 and U2(e2, fχ) has
cardinality equal to 2. As for the statement about the Fourier coefficients one needs to
review carefully the definition of the sets Uq(eq, fχ) which may be found on p. 454-455 of
[37]. We consider various cases:
Case A: If q 6= 2, q | N , q - N ′, we are in Case (4) of [37]: ñq = mq = e = 1, λ′q =
−q−1/2χq(q)wq. Then Uq(e, fχ) = {cs

q[λ
′
q]}. If u ∈ Z×q ,

cs
q[λ

′
q](u) =

{
21/2 if (q, u)q = −q1/2χ0,q(q−1)λ′q i.e if (q, (−1)τu)q = wq,

0, otherwise, i.e. if (q, (−1)τu)q = −wq.

If u ∈ qZ×q , then cs
q[λ

′
q](u) = 1. Thus Uq(e, fχ) indeed consists of a single element cq and

cq(ξ) 6= 0 if and only if ξ satisfies condition (a) of the proposition.
Case B: If q 6= 2, q | N ′, we are in Case (1) of [37]: mq = 2, λ′q = 0, e = ñq = 2. Let ε be a
unit in Zq which is not a square. Note that χq(−1) = χ0,q(−1). By [37] Prop. 19, p. 480,

ωq(fχ) =





(Q×q /(Q×q )2) \ (−1)τ ε(Q×q )2 if χq(−1) = χ0,q(−1) = 1, wq = 1,

(Q×q /(Q×q )2) \ (−1)τ (Q×q )2 if χq(−1) = χ0,q(−1) = 1, wq = −1,

(−1)τ ε(Q×q )2 if χq(−1) = χ0,q(−1) = −1, wq = 1,

(−1)τ (Q×q )2 if χq(−1) = χ0,q(−1) = −1, wq = −1.

Hence Uq(e, fχ) = {γ[0, ν]; ν ∈ ωq(fχ), vq(ν) ≡ 0(2)} = {γ[0, u], vq(u) = 0, ((−1)τu, q)q =
χ0,q(−1) · wq}. Thus Uq(e, fχ) consists of a single element cq and cq(ξ) 6= 0 if and only if ξ
satisfies condition (b) of the proposition.
Case C: q = 2. We are now in Case (8) of [37]: m2 = 0, ñ2 = 2 and we only need to
consider e = 2. If α2 6= α′2, U2(e, fχ) consists of two elements δ1 = c′2[α2], δ2 = c′2[α

′
2]. If

c = δ1 − δ2, one checks that c(u) = 0 unless (−1)τu ≡ 0, 1 mod 4, and that any linear
combination of δ1, δ2 with this property must be a scalar multiple of c. If α2 = α′2 = α,
say, U2(e, fχ) consists again of two elements γ1 = c′2[α], γ2 = c′′2[α]. Now one checks that γ2

satisfies γ2(u) = 0 unless (−1)τu ≡ 0, 1 mod 4, and that this is the only linear combination
of γ1 and γ2 with this property. ¥

3. Explicit theta correspondence

3.1. Theta correspondence for the pair (S̃L2, PB×). Let ψ′ be any character of Q \A.
Let V ⊂ B be the subspace of trace 0 elements, thought of as a quadratic space with
Q(x) = −Nm(x) and let 〈, 〉 denote the associated bilinear form, 〈x, y〉 = −(xyi + yxi), i

being the main involution. The metaplectic cover S̃p(W ⊗ V ) splits over the orthogonal
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group O(V ) whose identity component is identified with PB×, the action of β ∈ PB× on
V being given by R(β)(v) = βvβ−1. Thus, for each place v of Q, the Weil representation
of S̃p(W ⊗ V )v yields a representation of S̃v ×PB×

v on Sψ′(V ⊗ Qv) denoted ωψ′ . The
restriction of ωψ′ to S̃v is a genuine representation of S̃v, denoted rψ′ , satisfying

rψ′(n)ϕ(x) = ψ′(nQ(x))ϕ(x),(3.1)

rψ′(d(a))ϕ(x) = µψ′(a)(a,−1)v|a|3/2ϕ(ax),(3.2)
rψ′(w, ε)ϕ(x) = εγψ′,QFψ′(ϕ).(3.3)

where we write ψ′ instead of ψ′v and the sign in (3.3) is + or − depending on whether v
is unramified or ramified in B. The Haar measure on V ⊗ Qv is picked to be autodual
with respect to the pairing (x1, x2) 7→ ψ′(〈x1, x2〉). Further, ωψ′(σ, β) = rψ′(σ)R(β), where
R(β)ϕ(x) = ϕ(β−1xβ).

For s ∈ A0, t ∈ Ã0, ϕ ∈ Sψ′(VA), define

θ(ψ′, ϕ, σ, β) =
∑

x∈V

rψ′(σ)R(β)ϕ(x),

tψ′(ϕ, σ, s) =
∫

PB×Q \PB×A
θ(ψ′, ϕ, σ, β)s(β)d×β,

Tψ′(ϕ, β, t) =
∫

SL2(Q)\SL2(A)
θ(ψ′, ϕ, σ, β)t(σ)dσ.

If V, Ṽ denote representations of the Hecke algebra of PB×
A , S̃A respectively, we set

Θ(V, ψ′) = {tψ′(ϕ, ·, s); s ∈ V, ϕ ∈ Sψ′(VA)},
Θ(Ṽ , ψ′) = {Tψ′(ϕ, ·, t); t ∈ Ṽ , ϕ ∈ Sψ′(VA)},

these being representation spaces for the Hecke algebras of S̃A, PB×
A respectively. If we need

to work with PB× and PGL2 simultaneously, we write Θ0 instead of Θ for the lifts between
S̃L2 and PGL2 to distinguish these from the lifts between S̃L2 and PB×.

Let ν be an odd quadratic discriminant, δ = ν/|ν| and set ψ′ = ψ1/|ν| = ψδ/ν . (In
future we will write F(ϕ) for Fψ′(ϕ). with this choice of ψ′.) Also let τ be such that
δ = (−1)τ . For f as in the previous section let π denote the automorphic representation
of PGL2 corresponding to f and π′ the corresponding representation of PB× associated by
Jacquet-Langlands. Thus π′ = πg for a newform g ∈ S2k(Γ). We normalize g as in Sec.
2.2.6. We now compute the central character of π̃ := Θ(π′ ⊗ χν , ψ

′) using results in [38].

Lemma 3.1. Let γq be defined by ε(πq ⊗ χν,q, 1/2) = γqχν,q(−1)ε(πq, 1/2). Then

γq =





1 if q - N,

χν,q(q) if q | N, q - ν,

wq if q | N, q | ν,

sign(ν) if q = ∞.

Proof: For q - N , this is easy to check. Assume q | N . Let πq ' σ(µ, µ−1) and {1, η, q, ηq}
with η a unit in Zq be a set of coset representatives for Q×q /(Q×q )2. If µ 6= | · |1/2, then
wq = 1, and Qq(πq) = Q×q \ η(Q×q )2 by [38] Lemme 1, p. 226. (We refer the reader to the
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same article for the definition of Qv(πv).) If µ = | · |1/2, then wq = −1 and Qq(πq) = (Q×q )2

by the same lemma. Finally, Q∞(π∞) = R∗+. By [38] Thm. 2,

ε(πq ⊗ χν,q, 1/2) = ±χν,q(−1)ε(πq, 1/2),

where the + or − sign holds according as ν ∈ Qq(πq) or not. The lemma follows. ¥
Proposition 3.2. Let αq := ±1 according as q | N+ or q | N−. Then

π̃q(−1) =





1 if q - 2N,

χν,q(q)w′q if q | N, q - ν,

αq if q | N, q | ν,

(−1)ki if q = ∞,

− δi if q = 2.

Proof: Let π̃q = Θ(π′q ⊗ χν,q, ψ
′
q). For convenience of notation we drop the subscript q in

the equations below.

π̃(−1) = ε(π̃, ψ′)µψ′(−1)
= ε(Θ(π′ ⊗ χν , ψ

′), ψ′) · (δν,−1) · µψ(−1)
= α · (δν,−1) · µψ(−1) · ε(Θ(π ⊗ χν , ψ

′), ψ′) ([37] Thm. 2, p. 277)
= α · (δν,−1) · µψ(−1) · ε(π ⊗ χν , 1/2) ([37] Lemme 6, p. 234)
= α · γ · (δ,−1) · µψ(−1) · ε(π, 1/2) = α · γ · (δ,−1) · µψ(−1) · w
= γ · (δ,−1) · µψ(−1)w′.

Note that for q = 2, γ = 1, µψ(−1) = −i and w′2 = w2 = 1. The proposition is now
immediate from the preceding lemma. ¥

We can now show that the form hχ can be constructed as a theta lift from PB×. Indeed,
we have the following proposition.

Proposition 3.3. Suppose that L(1
2 , π ⊗ χν) 6= 0 and that χ is a character of conductor

dividing 4N with χ(−1) = 1 and satisfying the following conditions:
(a) If q | N, q - ν, χ0,q(−1) = χν,q(q)w′q(= αqχν,q(q)wq).
(b) If q | N, q | ν, χ0,q(−1) = αq.

Then for χ = χ · (−1
·

)k+τ , one has that χ is unramified at 2 and Sk+ 1
2
(M, χ, fχ) ⊆

Θ(π′ ⊗ χν , ψ
′). In fact if π̃ denotes this last representation, we have Sk+ 1

2
(M, χ, fχ) =

Sk+ 1
2
(M, χ, π̃) (notation as in [37] p.391.)

Proof: We shall see below that χ is unramified at 2 and hence Sk+ 1
2
(M, χ, fχ) is one

dimensional by Prop. 2.5. Assuming this for the moment, let h be any non zero form
in Sk+ 1

2
(M, χ, fχ) and denote by T the automorphic representation of S̃A generated by h.

By [37] Prop.4 (p. 391), V′(ψ, T ) = V0 ⊗ χ−1
0 where V0 is the automorphic representation

of GL2(A) generated by fχ. (See [36], p.99 for the definition of V′(ψ, T ).) If Ṽ is the
automorphic representation of PGL2(A) generated by f , we see that V0 ⊗ χ−1

0 = Ṽ ⊗ χτ
−1.

By the definition of V′(ψ, T ), there exists α ∈ Q× such that Θ0(T, ψα) = Ṽ ⊗ χτ
−1 ⊗ χα.

(Here Θ0 denotes the lift to PGL2.) Hence Θ0(Ṽ ⊗ χτ
−1 ⊗ χα, ψα) = T . Then π̃ = Θ(π′ ⊗

χτ
−1 ⊗ χ|ν|, ψ|ν|) = Θ(π′ ⊗ χν , ψ

′) is non-zero by [38] Prop. 22, p.295 and is in the same
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Waldspurger packet as T . By [38] Thm. 3, p. 381, to show that π̃ = T , it suffices to show
that their central characters agree i.e. that the central character of h is equal to the central
character of π̃. This is clear at the finite places q, q 6= 2 and for q = ∞ from the previous
proposition and from conditions (a) and (b). For q = 2 one notes that

ε(π ⊗ χν ,
1
2
) =

∏
q

ε(πq ⊗ χν,q,
1
2
)

=
∏

q|N,q-ν
(ν,−q)qwq ·

∏

q|N,q|ν
(−1, q)q · χν,2(−1) · (−1)k

=
∏

q|N,q-ν
(ν,−q)qαqwq ·

∏

q|N,q|ν
(−1, q)qαq · χν,2(−1) · (−1)k

=
∏

q|N
χ0,q(−1) ·

∏

q|2ν

χν,q(−1) · χ0,∞(−1) = χ0,2(−1) · χν,∞(−1)

Since L(1
2 , π⊗χν) 6= 0, χ0,2(−1) = χν,∞(−1) = δ. Thus π̃(−1) = −δi = ε̃2(−1)χ0,2(−1), as

required. This shows that T = π̃ and hence Sk+ 1
2
(M, χ, fχ) ⊆ Sk+ 1

2
(M, χ, π̃). The other

inclusion follows from [37] Prop. 4 (ii) (p. 391) since V′(ψ, π̃) = V0 ⊗ χ−1
0 . Finally, note

that since χ = χ0 ·
(−1
·

)τ , χ2(−1) = 1 and χ is unramified at 2 as promised earlier in the
proof. ¥

In Sec. 3.2 we shall pick an explicit Schwartz function ϕ ∈ Sψ′(VA) and a vector s ∈ π′⊗χν

such that tψ′(ϕ, ·, s) equals (some multiple of) hχ.

3.2. Explicit theta functions. For q | N−, let Lq be the unique unramified extension of
Qq of degree 2, π a uniformizer in Zq and Bπ be the quaternion algebra given by

Bπ = Lq + Lqu

um = mu for m ∈ L

u2 = π

Fix once and for all an isomorphism B ⊗ Qq ' Bπ. This isomorphism must necessarily
identify O′ ⊗ Zq with Rq + Rqu, where Rq is the ring of integers of Lq. Also fix once and
for all a unit ω ∈ Rq with ω2 ∈ Zq, such that Rq = Zq + Zqω. Hence R0

q = Zqω.
Let χ, ν, χ0, χ, ψ′ be as in the previous section. Let sgχ be a newform in π′⊗χ = πg ⊗χ,

normalized as in Sec. 2.2.6, and sg,χ the unique element of πg such that sg,χ(β)·χ(Nm(β)) =
sgχ(β) i.e. sg,χ ⊗ (χ ◦Nm) = gχ. Also set s = sg,χ ⊗ (χν ◦Nm) ∈ πg ⊗ χν .

We now make the following choice of Schwartz function ϕ = ϕf,χ,ν ∈ Sψ′(VA): ϕ =
∏

v ϕv

where:
(a) If q is odd and q - νN+N−, ϕq = I{x∈O′⊗Zq ,tr(x)=0}.

(b) If q | ν, q - N , ϕq

(
b −a
c −b

)
= 0, unless a, b, c ∈ Zq, b

2 − ac ∈ qZq, in which case

ϕq

(
b −a
c −b

)
=

{
χν,q(a)(resp. χν,q(c)), if vq(a) = 0 (resp. vq(c) = 0),

0, otherwise i.e. if both vq(a) = 0 and vq(c) = 0.

(c1) If q | N+, q - ν, and χ0,q is unramified, ϕq = I{x∈O′⊗Zq ,tr(x)=0}.
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(c2) If q | N+, q - ν, and χ0,q is ramified, ϕq

(
b −a
c −b

)
= 0, unless a ∈ 1

qZq, b ∈ Zq, c ∈ q2Zq

in which case

ϕq

(
b −a
c −b

)
=

{
(χν,qχ

−1
0,q)(a

′) = χ−1
0,q(a

′) if vq(a) = −1, a = a′/q,

0, if vq(a) ≥ 0.

(c3) If q | N+, q | ν, and χ0,q is unramified, ϕq

(
b −a
c −b

)
= 0, unless a ∈ Zq, b ∈ qZq, c ∈

qZq in which case

ϕq

(
b −a
c −b

)
=

{
(χν,qχ

−1
0,q)(a) = χν,q(a) if vq(a) = 0,

0, if vq(a) ≥ 1.

(d1) If q | N−, q - ν, ϕq(a + bu) = 0 unless a ∈ R0
q , b ∈ Rq in which case

ϕq(a + bu) =





(χν,qχ
−1
0,q)(a

′), if χ0,q is ramified, and vq(a) = 0,

0, if χ0,q is ramified and vq(a) ≥ 1,

1, if χ0,q is unramified.

(d2) If q | N−, q | ν, set π = νε where ε is chosen to be a unit in Z×q with (ε, q) = w′q = −wq.
Then ϕq(a + bu) = 0 unless a ∈ qRq, Nm(b) ∈ (Z×q )2. In that case, write b = c · e

e for any
c ∈ Z×q and e ∈ R×

q . Then set ϕq(a+bu) = (χν,qχ
−1
0,q)(c)·χν(Nm(e)). If b = c· ee = c1 · e1

e1
, then

setting e′ = e1/e, c′ = c1/c, we see that c′ = e′/e′, hence (c′)2 = Nm(c′) = 1 ⇒ c′ = ±1. If
c′ = 1, then e′ = e′ ⇒ e′ ∈ Zq ⇒ χν,q(Nm(e′)) = 1. If c′ = −1, (χν,qχ

−1
0,q)(c

′) = −χν,q(−1).
Also e′ = −e′ ⇒ e′ ∈ Z×q ω ⇒ Nm(e′) ∈ (Z×q )2 Nm(ω) = −(Z×q )2ω2 ⇒ χν,q(Nm(e′)) =
χν,q(−ω2) = −χν,q(−1). In any case, we see that ϕq is well defined, i.e. independent of the
choice of decomposition b = c · e

e . Further, by a similar argument we may check that for
a ∈ qRq, ϕq(a + bu) depends only on the congruence class of b mod q.

(e) q = 2. Set

ϕ2

(
b −a
c −b

)
= IZ2(b)I2Z2(a)I2Z2(c).

(f) If q = ∞, set

ϕ∞

(
b −a
c −b

)
=

π

|ν|1/2
(a− 2ib− c)ke

− 2π
|ν| (

a2

2
+b2+ c2

2
)
.

The choice of Schwartz function is crucial to what follows and is inspired by computations
in Shintani [33], Kohnen [18] and Waldspurger [37].

Proposition 3.4. Let t′ = tψ′(ϕ, σ, s). We have

(1) t′ ∈ Ãk+ 1
2
(M, χ0).

(2) Let h′ ∈ Sk+ 1
2

be such that t′ = th′. Then h′ ∈ Sk+ 1
2
(M, χ, fχ).

Proof: It suffices to show that t′ ∈ Ãk+ 1
2
(M,χ0). For then from the result of Prop.

3.3, t′ = th′ ∈ Ãk+ 1
2
(M,χ0) ∩ π̃, hence h′ ∈ Sk+ 1

2
(M, χ, π̃) = Sk+ 1

2
(M, χ, fχ). Let D

denote the usual Casimir operator for PGL2(R). By [36] Lemma 42, p.73-74, R∞(D)ϕ∞ =
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4rψ′,∞(D̃)ϕ∞ + 3
2ϕ∞, hence rψ′,∞(D̃)(t′) = [κ(κ − 4)/8]t′. It is enough then to check (i) -

(iv) below.
(i) If q -M and σ ∈ Γq, rψ′,q(σ)(ϕq) = ϕq;

(ii) If q | M , q 6= 2 and σ =
(

a b
c d

)
∈ Γq(vq(M)), rψ′,q(σ)ϕq = χ0,q(d)ϕq = χq(d)ϕq;

(iii) If σ =
(

a b
c d

)
∈ Γ2(v2(M)), rψ′,2(σ)ϕ2 = χ0,2(d)ϕ2;

(iv) If θ ∈ R, rψ′,∞(κ̃(θ))(ϕ∞) = eiκθ/2ϕ∞.
We may verify these using (3.1) - (3.3). We begin with the following observation which

will be used repeatedly in what follows: for n ≥ 1,

Γq(n) is generated by n(x),d(α),n(y), for x ∈ Zq, α ∈ Z×q , y ∈ qnZq,(3.4)

and for n = 0,

Γq(0) = Γq is generated by n(x),d(α), w, for x ∈ Zq, α ∈ Z×q .(3.5)

(i) This is immediate for q - νM by (3.5), noting that Fϕq = ϕq for q - νM . For q | ν,
q - N , one first computes Fϕq:

Fϕq

(
b −a
c −b

)
= q3/2

∫

Z3
q

ϕq

(
y −x
z −y

)
ψ′(2by − az − cx)dxdydz.

Let a =
(

b −a
c −b

)
and x =

(
y −x
z −y

)
. Since ϕq is invariant under the transformation

x 7→ x + q, y 7→ y, z 7→ z and under the symmetric transformations sending y 7→ y + q and
z 7→ z + q, one sees that Fϕq(a) = 0 unless a, b, c ∈ Zq. Thus letting a, b, c ∈ Zq,

Fϕq(a) = q3/2
∑

α,β,γ∈Z/qZ

∫

x,y,z∈Zq ,x≡α,y≡β,z≡γ(q)
ϕq(x)ψ′(2by − az − cx)dxdydz

= q−3/2
∑

α,β,γ∈Z/qZ
ψ′(2bβ − aγ − cα)ϕq

(
β −α
γ −β

)

= q−3/2

[ ∑

α∈(Z/qZ)×
ψ′(−cα)ϕq

(
0 −α
0 0

)
+

∑

γ∈(Z/qZ)×
ψ′(−aγ)ϕq

(
0 0
γ 0

)

+
∑

α,β,γ∈(Z/qZ)×
ψ′(2bβ − aγ − cα)ϕq

(
β −α
γ −β

) ]

= q−3/2

[ ∑

γ∈(Z/qZ)×
ψ′(−aγ)χν,q(γ) +

∑

α∈(Z/qZ)×
ψ′(−cα)χν,q(α)

+
∑

α,δ∈(Z/qZ)×
ψ′(2bαδ − aαδ2 − cα)χν,q(α)

]

= q−3/2G(%, ψ′)


%(−a) + %(−c) +

∑

δ∈(Z/qZ)×
%(−aδ2 + 2bδ − c)


 ,
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where % denotes the unique nontrivial quadratic character of (Z/qZ)×. Using the fact that
∑

δ∈Z/qZ
%(δ2 + x) =

{ − 1, if x 6= 0,

q − 1, if x = 0,

we see that Fϕq = %(−1)q−1/2G(%, ψ′)ϕq. Now, from (2.9),

rψ′(w)(ϕq) = γψ′−1γ2
ψ′ · %(−1)q−1/2G(%, ψ′)ϕq = ϕq.

Since q 6= 2, rψ′(d(α))(ϕq) = γψ′(α)χ−1
ν,q(α)ϕq = ϕq (by (2.8).) Finally, rψ′(n(x))ϕq = ϕq

for x ∈ Zq. Thus, ϕq is indeed invariant under Γq as required.

(ii) We need to work through the cases (c1)-(c4) and (d1)-(d2).
Case (c1): q | N+, q - ν and χ0,q unramified;

Fϕq

(
b −a
c −b

)
=

{ 1, if vq(a) ≥ −1, vq(b) ≥ 0, vq(c) ≥ 0,

0, otherwise.

Thus Fϕq is invariant by n(y) for y ∈ qZq, hence using (2.1) and (3.4) one sees that ϕq is
invariant by Γq(1).
Case (c2): q | N+, q - ν and χ0,q ramified;

Fϕq

(
b −a
c −b

)
=

{
G(χ̂−1

q , (ψ′)c), if vq(c) = 0, vq(b) ≥ 0, vq(a) ≥ −2,

0, otherwise.

Thus Fϕq is invariant by n(x) for vq(x) ≥ 2. Since rψ′(d(α))(ϕq) = χ−1
0,q(α)ϕq and ϕq is

invariant by n(x) for x ∈ Zq, we see that ϕq transforms as required under Γq(2).
Case (c3): q | N+, q | ν and χ0,q unramified;

Fϕq

(
b −a
c −b

)
=

{
G(χ̂−1

ν,q , (ψ
′)c), if vq(c) = 0, vq(b) ≥ 0, vq(a) ≥ 0,

0, otherwise.

F(ϕq) is invariant by n(x) for vq(x) ≥ 1. Since ϕq is invariant by n(x) for x ∈ Zq and
rψ′(d(α))(ϕq) = χν,q(α)ϕq(α·) = ϕq, we see that ϕq transforms as required under Γq(1).
Case (d1): For q | N−, q - ν and χ0,q unramified, ϕq is invariant under d(α) and n(x),
x ∈ Zq. Since

Fϕq(a + bu) = IR0
q+ 1

q
Rq

(a + bu),

we see that rψ′,q(n(−y))Fϕq = Fϕq for y ∈ qZq, and consequently, ϕq is invariant under
Γq(1). Next let q | N−, q - ν with χ0,q ramified. Clearly ϕq is invariant under n(x) and
transforms under d(α) by χ0,q(α−1). One easily computes that

Fϕ(a + bu) =





G(χ̂−1
q , (ψ′)2a′ω2

), if a ∈ 1
q
R0

q \R0
q , a =

a′

q
ω, b ∈ 1

q
Rq,

0, otherwise.

so that rψ′,q(n(−y))Fϕq = Fϕq for y ∈ q2Zq, which shows that ϕq transforms as required
under Γq(2).
Case (d2): q | N−, q | ν. In this case, necessarily χ0,q is ramified since χ0,q(−1) = −1. ϕq is
invariant under n(x), x ∈ Zq and transforms under d(α) by χ−1

0,q(α). One checks also that
Fϕq(a+bu) = 0 unless a ∈ Rq, b ∈ 1

qRq. Thus rψ′,q(n(−y))Fϕq = Fϕq for y ∈ q2Zq, whence
ϕq transforms in the required manner under Γq(2).
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(iii) We have ε̃2(n(x)) = ε̃2(n(y)) = 1 for x ∈ Z2, y ∈ 22Z2. Also ε̃2(d(α)) = µψ(α−1), and
rψ′(d(α))ϕ2(x) = µψ′(α)3ϕ2(αx). Note that

µψ′(α)3 = ((ν0, α)2µψ(α))3 = (ν0, α)2µψ(α−1).

Thus in any case rψ′(d(α))ϕ2 = ε̃2(d(α))(ν0, α)ϕ2(α·) = ε̃2(d(α))(ν0, α)χν,2(α)ϕ2

= ε̃2(d(α))((−1)τ , α)2ϕ2 = χ0,2(α)ε̃2(d(α))ϕ2. Since

Fϕ2

(
b −a
c −b

)
= I 1

2
Z2

(a)I 1
2
Z2

(b)I 1
2
Z2

(c),

rψ′(n(x))(ϕ2) = ϕ2 and rψ′(n(−y))Fϕ2 = Fϕ2 for x ∈ Z2, y ∈ 22Z2.
(iv) See [33], Remark 2.1, p. 105. ¥

We will show later in Sec. 4 (see Prop. 4.2 and the paragraph following Thm. 4.5)
that h′, t′ 6= 0 and also that some nonzero scalar multiple of h′ has Fourier coefficients in
Q(f, χ), the field generated over Q by the eigenvalues of f and the values of χ. Assuming
this for the moment, let hχ be a scalar multiple of h′ with Fourier coefficients in Q(f, χ)
and suppose that we have chosen hχ to be λ-adically normalized i.e. the ideal generated
by the Fourier coefficients of hχ is an integral ideal in Q(f, χ) and prime to λ. (Thus hχ is
only well defined up to a λ-adic unit in Q(f, χ).) Let t = thχ and set s′ = Tψ′(ϕ, g, t).

Proposition 3.5. s′ = βs for some scalar β.

Proof: By [38] (proof of Prop. 22, p. 295), one knows that Θ(π̃, ψ′) = π′ ⊗ χν = πg ⊗ χν ,
hence s′ ∈ πg ⊗ χν . Recall that s was defined to be the unique vector in πg ⊗ χν satisfying
s ⊗ (χ−1

ν ◦ Nm) ⊗ (χ ◦ Nm) = sgχ where sgχ is a λ-adically primitive newform in π ⊗ χ.
Recall also that sgχ may be characterized (up to a scalar) as the unique vector v = ⊗qvq

where vq ∈ πf,q ⊗ χq satisfies
(a) v∞ is a lowest weight vector in the holomorphic discrete series representation of weight

2k;
(b) For finite q, vq transforms under U0,q(χ) by ω̃χ,q.

It is easy to check that for κθ :=
(

cos θ sin θ
− sin θ cos θ

)
, R(κθ)ϕ∞ = e2ikθϕ∞. Thus to establish

the proposition, it suffices to show that ((χν,qχq)◦Nm(u)) ·R(u)ϕ = ω̃(u) ·ϕ for u ∈ U0,q(χ)
i.e. for all finite q,

((χν,qχq) ◦Nm(u)) ·R(u)ϕq = ω̃χ,q(u) · ϕq for u ∈ U0,q(χ).(3.6)

One checks that
(i) For q - νN , u ∈ U0,q(χ), one has (χνχ)(Nm(u)) = 1, ω̃χ,q(u) = 1 and R(u)ϕq = ϕq.

(ii) For q | ν, q - N , u =
(

a b
c d

)
∈ U0,q(χ), (χν,qχq)(Nm(u)) = χν,q(Nm(u)), R(u)ϕq =

χν,q(Nm(u))ϕq, ω̃χ,q(u) = 1.

(iii) For q | N+, u =
(

a b
c d

)
∈ U0,q(χ), (χν,qχq)(Nm(u)) = χν,q(ad)χ−1

q (ad), R(u)ϕq =

(χν,qχ
−1
q )(d/a)ϕq, ω̃χ,q(u) = χq(d)2.
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(iv) For q | N−, suppose u′ = α + β′u ∈ Uq. Then ω̃χ,q(u′) = χq(Nm(u′)). Also

(u′)−1(a + bu)u′ =
1

Nm(u′)
(α− β′u)(a + bu)(α + β′u)

=
1

Nm(u′)
(Nm(α)a + (Nm(β′) + bαβ̄′ − bαβ′)π) +

(2αβ′a + α2b− β′2πb)u).

Since Nm(u′) = Nm(α) − π Nm(β′), both Nm(u′) and Nm(α) are units. Now, if q | ν,
R(u′)ϕq(a + bu) = 0 unless a ∈ qRq and b ∈ Rq. Since α2/Nm(u′) = Nm(α)/Nm(u′) · α/α
and χν,q, χq both have conductor q, we see that

R(u′)ϕq = (χν,qχ
−1
q )(Nm(α)/Nm(u′)) · χν,q(Nm(α))ϕq

= χν,q(Nm(α))ϕq = χν,q(Nm(u′))ϕq.

The verification that R(u′)ϕq = χν,q(Nm(u′))ϕq in the case q - ν is simpler and is left to
the reader.
(v) If q = 2, R(u)ϕ2 = ϕ2, χ2(Nm(u)) = χν(Nm(u)) = 1 and ω̃2(u) = 1.

We see in each case that (3.6) is verified. ¥

It will be important for us to know that β 6= 0. This will be established in Prop.
4.2(modulo the proof of Theorem 4.1, which appears in [23].)

4. Arithmetic properties of the Shintani lift

4.1. Period integrals à la Shintani and Shimura. For w ∈ C and α ∈ V ⊗R C, define

[α,w] =
(

w 1
)(

0 1
−1 0

)
α

(
w
1

)

= cw2 − 2bw + a,

if α =
(

b −a
c −b

)
. For x ∈ V and any subgroup Γ′ ⊂ B(1), let Gx = {h ∈ SL2(R), h−1xh =

x}, Γ′x = Gx ∩ Γ′. Suppose that g′ ∈ Sk(Γ′, ω), and ω|Γ′x is the trivial character. Then put,
as in ([32] (2.5); see same reference for normalization of the measure below)

P (g′, x,Γ′) =
∫

Γ′x\Gx

[x, hw]kg′(hw)d(Γ′xh)

for any w ∈ H. Denote by V ∗ the set of x ∈ V such that Nm(x) < 0 (i.e. Q(x) = −Nm(x) >
0.) By [32] Lemma 2.1, P (g′, x,Γ′) is independent of the choice of w and is equal to 0 unless
x ∈ V ∗. Let R(Γ′) be the set of equivalence classes in V ∗ for the conjugation action of Γ′
and for C ∈ R(Γ′), set N(C) = N(x) for any choice of x ∈ C. By [32] (2.6), P (g′, x, Γ′) only
depends on the class of x in R(Γ′). Thus for C ∈ R(Γ′) we may set P (g′,C,Γ′) = P (g′, x, Γ′)
for any choice of x ∈ C.

4.2. Fourier coefficients and nonvanishing of the Shintani lift. Let ξ ∈ Q. We now
compute the ψξ-th Fourier coefficient of t′ = tψ′(ϕ, σ, s). As in [38] (p. 291), this is given
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by

W (t′, ψξ, σ) = W (t′, (ψ′)|ν|ξ, σ) =
∫

ZAB×Q \B×A
s(β)

∑

x∈V,q(x)=|ν|ξ
rψ′(σ)R(β)ϕ(x)d×β

=
∫

ZAB×Q \B×A
gχ(β)(χνχ

−1)(Nm(β))
∑

x∈V,q(x)=|ν|ξ
rψ′(σ)R(β)ϕ(x)d×β.

Since B×
A = B×

Q · (U0(χ) × (B×∞)+) and gχ(β)(χνχ
−1)(Nm(β))R(β)ϕ is invariant under

β 7→ βu for u ∈ U0(χ),

W (t′, ψξ, σ) = vol(U0(χ))
∫

Γχ\SL2(R)
gχ(β∞) ·

∑

x∈V,q(x)=|ν|ξ
rψ′(σ)R(β∞)ϕ(x)d(1)β∞

= vol(U0(χ))
∑

C∈R(Γχ),q(C)=|ν|ξ

∫

Γχ\SL2(R)
gχ(β∞)

∑

x∈C

rψ′(σ)R(β∞)ϕ(x)d(1)β∞.

Now, put σ = dR(y1/2). Since vol(U0(χ)) = C/π2 for C = 6[U0 : U0(χ)]
∏

q|N+(q +
1)−1

∏
q|N−(q − 1)−1, we get

W (t′, ψξ, σ) = Cπ−2
∑

C∈R(Γχ),q(C)=|ν|ξ

∑

x∈C

ϕfin(x)
∫

Γχ\SL2(R)
gχ(β∞) ·

rψ′(dR(y1/2))R(β∞)ϕ∞(x)d(1)β∞

= C
∑

C∈R(Γχ),q(C)=|ν|ξ
ϕfin(x)I(x),(4.1)

where x is any element in C, and

I(x) =
1
π2

∫

Γχ,x\SL2(R)
gχ(β∞)rψ′(dR(y1/2))R(β∞)ϕ∞(x)d(1)β∞.(4.2)

Since ϕfin(γ−1xγ) = χ′(γ)ϕfin(x), we see that χ′ restricted to Γχ,x is the trivial character
if ϕfin(x) 6= 0, so that the integrand in (4.2) is indeed Γχ,x invariant, and the product
ϕfin(x)I(x) is independent of the choice of x ∈ C.

By [33] (Sublemma on p. 102) and [32] (2.23) (and taking into account that our additive
character is ψ′ instead of ψ),

I(x) =
1
π2

e−2πiξu

∫

Γχ,x\SL2(R)
gχ(β∞)rψ′(b(z)))R(β∞)ϕ∞(x)d(1)β∞

= (|ν|ξ)−1/2v(2k+1)/4e−2πξvP (gχ, x,Γχ).(4.3)

The formulas (4.1) and (4.3) above can be used to relate the Fourier coefficients aξ(h′)
to certain period integrals of gχ along tori embedded in B×. Applying the method of
Waldspurger [39], one can show the following

Theorem 4.1. If aξ(h′) 6= 0, then the following conditions must be satisfied:

(a) For all q | N, q - N ′,
(

ξ0
q

)
6= −wq.

(b) For all q | N ′,
(

ξ0
q

)
= χ0,q(−1)wq.

(c) ξ0 ≡ 0 or 1 mod 4.
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Suppose that conditions (a), (b), (c) are satisfied. Then

|aξ(h′)|2 = C(f, χ, ν)π−2k|νξ|k− 1
2 L(

1
2
, πf ⊗ χν)L(

1
2
, πf ⊗ χξ0) ·

〈gχ, gχ〉
〈fχ, fχ〉 ,

where C(f, χ, ν) ∈ Q and is a p-adic unit if p - Ñ :=
∏

q|N q(q + 1)(q − 1). (Recall that fχ

is the Jacquet-Langlands lift of gχ to GL2, normalized to have its first Fourier coefficient
equal to 1.)

The proof of the above theorem will appear in another article [23], since it uses methods
very different from those of the present article.

Let us set h′ = α0hχ. Then we have

Proposition 4.2. α0, β 6= 0.

Proof: One knows from Waldspurger [37] that there exists ξ such that L(1
2 , πf ⊗χξ0) 6= 0.

Further L(1
2 , πf ⊗ χν) 6= 0. Hence |aξ(h′)| 6= 0 for some ξ whence h′, t′ 6= 0 and α0 6= 0. By

see-saw duality (see [19]),

〈α0hχ, hχ〉 = 〈gχ, βgχ〉,
so that β 6= 0 also. ¥
4.3. Fundamental periods of modular forms on quaternion algebras. Let n =
2k− 2, so that n is a nonnegative integer. Set F̃0 = Q if n = 0 and F̃0 = F0 if n > 0. For A
any OF̃0

-algebra contained in C, let L(n,A) be the A-module of homogenous polynomials
in two variables (X,Y ) of degree n with coefficients in A. There is a natural action of Γ1

χ

on L(n,A) given by

(σn(γ)P )(X, Y ) = P (aX + cY, bX + dY ) if Φ(γ) =
(

a b
c d

)
.

Thus we can define the (parabolic) cohomology group H1
p (Γ1

χ, L(n,A)), following Shimura.
Let Sn+2(Γ1

χ) denote the space of antiholomorphic cusp forms of weight n + 2 on Γ1
χ. The

theory of Eichler-Shimura gives for every such n, a canonical isomorphism

c : Sn+2(Γ1
χ)⊕ Sn+2(Γ1

χ) ' H1
p (Γ1

χ, L(n,C)).(4.4)

We recall the definition of the map c above. Put ω(g′) = g′(z)(Xz+Y )ndz for g′ ∈ Sn+2(Γ1
χ)

and ω(g′) = g′(z)(Xz + Y )ndz for g′ ∈ Sn+2(Γ1
χ). Define for any such g′,

c(g′, γ) =
∫ γz0

z0

ω(g′)

for some choice of z0 ∈ H. The cohomology class of the map γ → c(g′, γ) does not depend
on the choice of z0, and is denoted c[g′].

Suppose now that g′ = gχ. Let T denote the Hecke algebra associated to the group
Γ1

χ. Both sides of (4.4) carry a natural action of T and the isomorphism (4.4) is in fact
T-equivariant. In addition, both sides of (4.4) carry natural involutions x 7→ xc. On the
left, this is defined in Sec. 2.2.5. On the right, this may be defined as follows. First pick

a unit δ ∈ O(χ) of norm −1 and such that Φq(δ) ≡
(

1 0
0 1

)
mod q for q | gcd(Nχ, N+).

Such a unit is known to exist by work of Eichler. Then for c ∈ Z(Γ1
χ, L(n, A)), define

(c|δ)(γ) = −σn(δ)c(δ−1γδ). The asignment c 7→ c|δ preserves B(Γ1
χ, L(n,A)) hence induces
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an involution of H1
P (Γ1

χ, L(n,A)), also denoted by the symbol δ. If δ′ is any other choice
of δ, then δ′ = δα for some α ∈ Γ1

χ. Now, writing γ′ = δ−1γδ, σn(δ′)c((δ′)−1γδ′) =
σn(δα)c(α−1δ−1γδα) = σn(δ)σn(α)c(α−1γ′α). But

σn(α)c(α−1γ′α) = σn(α)[c(α−1) + σn(α−1)c(γ′) + σn(α−1γ′)c(α)]
= σn(α)c(α−1) + c(γ′) + σn(γ′)c(α)
= [(c(1)− c(α)] + c(γ′) + σn(γ′)c(α)
= c(γ′) + (σn(γ′)− 1)c(α)
= c(γ′) + σn(δ−1)(σn(γ)− 1)σn(δ)c(α),

since c(1) = 0. Thus

σn(δ′)c((δ′)−1γδ′) = σn(δ)c(δ−1γδ) + (σn(γ)− 1)σn(δ)c(α),

whence the involution defined above on the cohomology group H1
p (Γ1

χ, L(n,A) is actually
independent of the choice of δ. We denote it by the symbol c. If g′ ∈ S2k(Γ1

χ) then

c(γ, g′c) =
∫ γz0

z0

g′(δz)J(δ, z)−2k(Xz + Y )ndz

=
∫ δγz0

δz0

g′(z)J(δ, δ−1z)−2k(Xδ−1z + Y )nJ(δ−1, z)−2 Nm(δ)dz

= −
∫ δγδ−1·δz0

δz0

g′(z)σn(δ−1)(Xz + Y )ndz

= σn(δ−1)c(δγδ−1, g′).

Thus [c(g′c)] = [c(g′)]c for g′ ∈ S2k(Γ1
χ). Likewise one may check that [c(g′c)] = [c(g′)]c for

g′ ∈ S2k(Γ1
χ), whence the map (4.4) commutes with the involutions c. By multiplicity one,

the maximal subspace of Sn+2(Γ1
χ)⊕ Sn+2(Γ1

χ) on which T acts by λgχ is two dimensional,
a basis for it being given by {gχ, gc

χ}. The involution c preserves this subspace and acts
diagonally, with eigenvectors {gχ + gc

χ, gχ − gc
χ}, the corresponding eigenvalues being 1,−1

respectively.
Since (4.4) commutes with the actions of T and c, the subspace H1

p (Γ1
χ, L(2k−2,C))±,λgχ

of H1
p (Γ1

χ, L(2k−2,C) on which T acts by the eigencharacter λgχ associated to gχ and c acts
by ±1 is one-dimensional. Let A be any OF̃0

-algebra in C that is a principal ideal domain
and contains all the eigenvalues of gχ. Let ξ±(gχ, A) be any generator of the free rank one
A-submodule H1

p (Γ1
χ, L(2k − 2, A))±,λgχ . If σ ∈ Aut(C/F̃0), then Γ1

χσ = Γ1
χ and we may

choose ξ±((gχ)σ, Aσ) = (ξ±(gχ, A))σ.
We can now define the fundamental periods u±(gχ, A) (and u±((gχ)σ, Aσ)) by

c[gχ]± c[gc
χ] = u±(gχ, A)ξ±(gχ, A),

c[(gχ)σ]± c[((gχ)σ)c] = u±((gχ)σ, Aσ)ξ±((gχ)σ, Aσ).

Up to units in A, these periods are independent of the choice of Φ, gχ and ξ±(gχ, A). For
F any subfield of Q containing F̃0 and all the eigenvalues of gχ, let AF,λ be the subring
of elements in F with non-negative λ-adic valuation. Define u±(gχ, F, λ) to be equal to
u±(gχ, AF,λ). Also define u±(gχ, λ) to be u±(gχ, F, λ) for any choice of F so that it is only
well defined up to a λ-adic unit in Q.
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4.3.1. An auxiliary description of the fundamental periods. Let us write

VR =
{(

r s
t −r

)
, r, s, t ∈ R

}
.

Denote by Pk−1
R be the vector space over R of R-valued homogeneous functions h on VR

of degree k − 1 satisfying (∂2/∂r2 + 4∂2/∂s∂t)h = 0. Let Pk−1
C = Pk−1

R ⊗ C and ρk−1 the
representation of Γ1

χ on Pk−1
C given by

[ρk−1(γ)h](x) = h(γixγ).

Finally, let σ2k−2 be the representation of Γ1
χ on L(2k−2,C) defined in the previous section.

The following is well known.

Lemma 4.3. For h ∈ Pk−1
C , define p(h) ∈ L(2k − 2,C) by

p(h)(X, Y ) = h(ε−1

[
X
Y

] [
X Y

]
).

Then p gives an isomorphism of representations of Γ1
χ, (ρk−1, P

k−1
C ) ' (σ2k−2, L(2k−2,C))

sending Pk−1
R to L(2k − 2,R). This induces an isomorphism of cohomology groups

p∗ : H1
p (Γ1

χ,Pk−1
C ) ' H1

p (Γ1
χ, L(2k − 2,C)).

One may define an involution c on H1
p (Γ1

χ,Pk−1
A ) as follows. For c′ ∈ Z(Γ1

χ, Pk−1
A ) and

ξ ∈ VC, set c′(γ, ξ) = (c′(γ))(ξ). For δ any unit as in the previous section, and for c′ ∈
Z(Γ1

χ,Pk−1
A ) define c′|δ by

(c′|δ)(γ, ξ) = (−1)kc′(δ−1γδ, δ−1ξδ).

Since ε−1δtε = δi = −δ−1, for c′ ∈ Z(Γ1
χ, Pk−1

C ), we get

((p∗(c′))|δ)(γ)(X, Y ) = −σn(δ)(p∗c′)(δ−1γδ,
[

X Y
]
)

= −p∗c′(δ−1γδ,
[

X Y
]
δ)

= −c′(δ−1γδ, ε−1δt

[
X
Y

] [
X Y

]
δ)

= −c′(δ−1γδ,−δ−1ε−1

[
X
Y

] [
X Y

]
δ)

= p∗(c′|δ)(γ)(X, Y ).

Thus p∗(c′|δ) = (p∗(c′)|δ), whence the assignment c′ 7→ c′|δ induces an involution on the
cohomology group H1

p (Γ1
χ, Pk−1

C ) that is independent of the choice of δ. We denote this
involution also by the symbol c.

Given z, z0 ∈ H, and x ∈ V , define

X(z, z0, x, gχ) =
∫ z

z0

[x,w]k−1gχ(w)dw,

r(γ, z0, x, gχ) = X(γz0, z0, x, gχ).

One checks easily that r(γ, z0, x, gχ) as a function of (γ, x) lies in Z(Γ1
χ,Pk−1

C ) and its coho-
mology class in H1

p (Γ1
χ, Pk−1

C ) is independent of the choice of z0. We denote this cohomology
class by c′[gχ] and note that p∗(c′[gχ]) = c[gχ]. Now let Pk−1

A denote the sub-A-module of
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Pk−1
C consisting of those h whose coefficients lie in A and note that c preserves H1

p (Γ1
χ, Pk−1

A ).
We may thus define another set of fundamental periods u′±(gχ, A) (well defined up to ele-
ments of A×) by

c′[gχ]± c′[gc
χ] = u′±(gχ, A)ξ′±(gχ, A),

c′[gσ
χ]± c′[((gχ)σ)c] = u′±(gσ

χ, Aσ)ξ′±(gσ
χ, Aσ),

where ξ′±(gχ, A) is a generator of the free rank one A-submodule H1
p (Γ1

χ,Pk−1
A )

±,λgχ and
ξ′±(gσ

χ, Aσ) = (ξ′±(gχ, A))σ.
We also have the following lemma whose proof we leave as an easy exercise for the reader.

Lemma 4.4. 1.

p(Pk−1
A ) ⊆ L(n,A).

2. Suppose that all primes q < 2k are invertible in A. Then

p(Pk−1
A ) = L(n,A).

It follows from the lemma that we may pick ξ′±(gχ, A) such that p∗(ξ′±(gχ, A)) = ξ±(gχ, A).
Then u±(gχ, A) = u′±(gχ, A).

4.4. Rationality and integrality of the Shintani lift. Denote t′ now by the symbol
t′g,χ,ν and hχ by hg,χ to denote the dependence on g, χ and ν.

Theorem 4.5. Write t′g,χ,ν = α′(g, χ, ν, F, λ)u+(gχ, F, λ)hg,χ for some non-zero constant
α′(g, χ, ν, F, λ).

(a) Let σ ∈ Aut(C/F̃0). Then (α′(g, χ, ν, F, λ))σ = α′(gσ, χσ, ν, F σ, λσ).
Thus α′(g, χ, ν, F, λ) ∈ F (χ).

(b) vλ(α′(g, χ, ν, F, λ)) ≥ 0.

Proof: With the preparation from the previous section, the proof is almost tautological.
In fact we only need to copy the proof of [32] Prop. 4.5 (which proves that the Shintani
lift is algebraic) with some care to take care of rationality and λ-adic integrality. Letting
C1 = [Γχ : Γ1

χ], we see by (4.3) that

aξ(t′) = v−κ/4e2πξvW (t′, ψξ, dR(v1/2))

=
∑

C∈R(Γχ),q(C)=νξ

ϕfin(x)(νξ)−1/2P (gχ, x, Γχ)

= C1 ·
∑

C∈R(Γχ),q(C)=νξ

ϕfin(x)(νξ)−1/2P (gχ, x,Γ1
χ)

=
1
2
C1 · (νξ)−1/2

∑

C∈R(Γχ),q(C)=νξ

[ϕfin(x)P (gχ, x,Γ1
χ) + ϕfin(δ−1xδ)P (gχ, δ−1xδ,Γ1

χ)]

=
1
2
C1 ·

∑

C∈R(Γχ),q(C)=νξ

[ϕfin(x)r(γx, x) + ϕfin(δ−1xδ)r(δ−1γxδ, δ−1xδ)],

where γx is any generator of the group Γ1
χ,x{±1}/{±1}. (Here r(γx, x) is defined to be

r(γx, z0, x, gχ) for any choice of z0. This is independent of the choice of z0 since γx fixes x.)
Now, ϕfin(δ−1xδ) = χ′(δ)(χ · χν)(−1)ϕfin(x) = (−1)kχ′(δ)ϕfin(x) and r(δ−1γxδ, δ−1xδ) =
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(−1)kχ′(δ)−1(r|δ)(γx, x). Let Ig,χ(x) = ϕfin(x)r(γx, x) + ϕfin(δ−1xδ)r(δ−1γxδ, δ−1xδ) and
A = AF,λ. Then

Ig,χ(x) = ϕfin(x)[r(γx, x) + (r|δ)(γx, x)] = ϕg,χ,ν
fin (x)u′+(gχ, A)ξ′+(gχ, A, γx, x)

= ϕg,χ,ν
fin (x)u+(gχ, A)ξ′+(gχ, A, γx, x).

where ξ′+(gχ, A, γx, x) is defined to be c(γx, x) for any c ∈ Z(Γ1
χ, Pk−1

A ) in the class of
ξ′+(gχ, A). Again this is independent of the choice of c since γx fixes x. Thus Ig,χ(x)/u+(gχ, A) =
ϕg,χ,ν

fin (x)ξ′+(gχ, A, γx, x) ∈ A, which proves part (b) of the theorem. Finally,
(

Ig,χ(x)
u+(gχ, A)

)σ

= (ϕg,χ,ν
fin (x)ξ′+(gχ, A, γx, x))σ = ϕgσ,χσ,ν

fin (x)ξ′+((gχ)σ, Aσ, γx, x)

=
(

Igσ,χσ
(x)

u+((gχ)σ, Aσ)

)
,

whence part (a) is established too. ¥
The proof of the proposition shows that t′/u+(gχ) has its Fourier coefficients in F (χ).

In particular, the form hχ is definable over F (χ). Since hχ may be obtained as a theta lift
from PGL2 (i.e. the special case B = M2(Q)) for an appropriate choice of ν, and since F
may be taken to be Q(f) in this case, we see that some nonzero multiple of hχ has all its
Fourier coefficients in Q(f, χ) as had been claimed in Sec. 3.2 (see the paragraph before
Prop. 3.5.)

We now study the relation between the period u+(gχ) and uε(g) where ε := sign(χ(−1)) =
(−1)k sign(ν). For each q | Nχ, let χq be the finite order character corresponding to the
unique Grossencharacter that restricted to

∏
l Z

×
l × (R+)× is χq at the factor q and 1 at all

other factors. Thus χ =
∏

q|Nχ
χq. For Π ⊆ {l; l | Nχ}, set χΠ =

∏
l∈Π χl.

Proposition 4.6. Let γ = u+(gχ)/uε(g).
(a) γ/g(χ) ∈ F (χ).
(b) vλ(γ) ≥ 0.
(c) If B = M2(Q), vλ(γ) = 0.

Proof: Let UΠ =
∏

l 6∈Π U0,l ×
∏

l∈Π U1,l(χ). Also set Γ1,Π = B× ∩ (UΠ · (B×∞)+). Suppose

that q 6∈ Π and s′ = sg′ is a newform in S2k(Γ1,Π) = S2k(UΠ). Define γ±q :=
u±(g′

χq )

u±εq g′ with
εq = χq(−1) where g′ and g′χq are arithmetically normalized as in Sec. 2.2.6. We claim that
the following statements hold:
(a)′ γ±q /g(χq) ∈ F (χ), and

(b)′ vλ(γ±q ) ≥ 0.

Clearly (a) follows from (a)′ and (b) from (b)′ since g(χ), g(χq) are λ-adic units and
g(χ)/

∏
q|Nχ

g(χq) ∈ Q(χ) ⊆ F (χ). First consider the case q - N−. We recall from [13]
how one can construct in this case some multiple of g′χq from g′. For i = 1, . . . , q − 1, set

σi =
(

1 i
q

0 1

)
∈ (B ⊗Qq)×
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and identify σi with the corresponding element of B×
A which is 1 at all other places. Now

set

Rχ,q(s)(x) = χq(Nm(x))

(
q−1∑

i=1

χq(i)s(xσi,q)

)

for any s ∈ S2k(UΠ). Then Rχ,q(sg′) is a nonzero scalar multiple of sg′
χq

. Write σi = t−1
i ·ui

for ti ∈ B×, ui ∈ U1(χ). If s′ corresponds to the classical form g′, Rχ,q(s′) corresponds to
the classical modular form

∑q−1
i=1 χq(i)g′|t−1

i
. We then have a commutative diagram

S2k(Γ1,Π) //

Rχ,q

²²

H1
p (Γ1,Π, L(n,C))

φχ,q

²²

S2k(Γ1,Π∪{q}) // H1
p (Γ1,Π∪{q}, L(n,C))

where

φχ,q(r)(γ) =
q−1∑

i=1

χq(i)σ(t−1
i )r(t−1

i γti)

and the horizontal maps are isomorphisms as in the previous section. Clearly,

φχ,q(H1(Γ1,Π, L(n,AF,λ))) ⊆ H1(Γ1,Π∪{q}, L(n,AF,λ)).

Suppose Rχ,q(g′) = δqg(χq)−1g′χq . To prove (a)′ and (b)′ it suffices then to show that
δq ∈ F (χ) and vλ(δq) = 0 i.e. we need to compare the arithmetic properties of the form
Rχq(g′) with those of g′. We now apply the rationality and integrality criteria of [12] and
[22], formulated more precisely in our context in Prop. 5.1 below. Since Rχq(g′) and g′
are the same except at the prime q and since g′ is arithmetically normalized, the criteria
above reduce the problem to studying the rationality and λ-divisibility of a certain ratio of
local integrals at q. This ratio (being defined purely locally) is independent of the choice of
quaternion algebra and so to compute it we might as well assume that B = M2(Q). But in

this case, we may pick ti,q =
(

1 −i/q
0 1

)
, g′ =

∑∞
n=0 ane2πinz and directly compute

Rχ,q(g′) =
q−1∑

i=1

χq(i)g|t−1
i

=
q−1∑

i=1

χq(i)
∑

n

ane
2πin(z+ i

q
) = g(χq)

∑

(n,q)=1

χq(n)ane2πinz

= g(χq)g′χq(z),

which proves what is required. The case q | N− is somewhat easier since in this case g′χq

is a scalar multiple of g′. To study the arithmetic properties of this scalar we again apply
the criteria mentioned above, from which the desired result follows easily. (For (a)′, one
needs to make the observation that the CM periods pK appearing in the rationality criterion
satisfy pK(η ·χq ◦NmK/Q, 1)/pK(η, 1)g(χq) ∈ K(η, χq) for any imaginary quadratic field K
and Hecke character η of K.)

Finally, we prove (c) (which in fact we never use in this article.) By [34], there exists
a character η such that g(η−1)|cη|k−1(2πi)−1L(1, f, η) ∼ uε(f) where we use the symbol ∼
to denote equality up to a λ-adic unit. On the other hand L(1, f, η) ∼ L(1, fχ, χ−1η) since
p - Ñ and g(η−1χ)|cηχ−1 |k−1(2πi)−1L(1, fχ, χ−1η)/u+(fχ) has nonnegative λ-adic valuation,
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again by [34]. Thus vλ(uε(f)/u+(fχ)) ≥ 0 and combining this with part (b) we see that
vλ(γ) = 0. ¥
Corollary 4.7. Let α′ = α′(g, χ, ν, F, λ). Set α = α′γ and α := α ·g(χ)−1. Then α ∈ F (χ)
and vλ(α), vλ(α) ≥ 0.

Finally, we specialize to χ = 1. Writing α(g, F, λ) in this case to express the dependence
on g, F, λ, we have for all σ ∈ Aut(C/F̃0), (and from part (a) of Thm. 4.5)

Proposition 4.8.

(α(g, F, λ))σ = α(gσ, F σ, λσ).(4.5)

5. Arithmetic properties of the Shimura lift

In this section, we study the rationality and integrality of the Shimura lift i.e. of the
constant β appearing in Prop. 3.5.

5.1. CM periods and criteria for rationality and integrality. Let K be an imaginary
quadratic field unramified at the primes dividing N and K ↪→ B be a Heegner embedding
for the order O′(χ) i.e. an embedding of K in B such that O′(χ) ∩ K = OK . Such an
embedding exists exactly when K is inert at all primes dividing N− and split at the primes
dividing N+. Let z be the associated Heegner point on H (i.e. the unique fixed point
on H of (K ⊗ R)×) and η′ a Grossencharacter of K of infinity type (−k, k) i.e. satisfying
η′(xx∞) = η′(x)xk∞x∞−k for x ∈ K×

A , x∞ ∈ K×∞. Equivalently η′ is the Grossencharacter
corresponding to an algebraic Hecke character of type (−k, k). Define

Lη′(s) = j(α, i)2k

∫

K×K×∞\K×
A

s(xα)η′(x)d×x

for s ∈ π′ ⊗ χ and α ∈ SL2(R) being any element such that α(i) = z or equivalently,
α · SO2(R) · α−1 = (K ⊗ R)(1). Of particular interest to us are characters of the following
type. The inclusion K×

A ↪→ B×
A maps UK into U0(χ), where UK := Ô×K . Let ΣK denote the

set of Hecke characters of K of infinity type (−k, k) whose restriction to UK equals ω̃−1
χ |UK

.
Clearly ΣK has cardinality equal to the class number of K. There is some abuse of notation
since ΣK depends on the choice of Heegner point and not just on K. Note that for η′ ∈ ΣK ,
η′|Q×A = χ−2.

We now pick an element j̃ ∈ B such that j̃ ∈ NB×(K×) and B = K + Kj̃. Let I be the
ideal in K given by I = {x ∈ K; xj̃ ∈ O′(χ)}. Since p is split in B and O′(χ) ⊗ Zp is the
maximal order in B ⊗Qp, it is clear that we may pick j̃ such that I and (hence) Nm j̃ are
both prime to p. Let η̂ = η′N−k (where N is the usual norm character) and denote by η̂ the
algebraic Hecke character corresponding to η̂. Also let Ω(η̂) = (2πi)2kpK(η̂, 1) ∈ C×/Q(η̂)×
where pK(η̂, 1) is the period defined in [10] and let Ω be the period defined in [22], Sec. 2.3.3.
that is well defined up to a λ-adic unit. The following proposition is a mild strengthening
of Prop A.9 of [12] Appendix, and Prop. 2.9 of [22]. (In the statement below, (η′)σis the
Grossencharacter associated to η̂σNk.)

Proposition 5.1. Suppose s′′ = βsgχ.
(a) β ∈ Q(f, χ) if and only if for all (or even infinitely many) Heegner points K ↪→ B and
all η′ ∈ ΣK ,

(2πi)k{πJ(j̃, z)=(z)}kLη′(s′′)/Ω(η̂) ∈ Q,
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and for all σ ∈ Gal(Q/K ·Q(f, χ)),
(

(2πi)k{πJ(j̃, z)=(z)}kLη′(s′′)
Ω(η̂)

)σ

=
(2πi)k{πJ(j̃, z)=(z)}kL(η′)σ(s′′)

Ω(η̂σ)
.

(b) Suppose β ∈ Q. Then vλ(β) ≥ 0 if and only if for all Heegner points K ↪→ B with
p - hK(the class number of K), and all η′ ∈ ΣK ,

vλ

(
{π2J(j̃, z)=(z)}k · Lη′(s′′)

Ωk

)
≥ 0.

Further, it suffices to check this last condition for any set of Heegner points that reduce mod
p to an infinite set of points on the special fiber of XU1(χ).

In our case s′ = βs and s′′ = s′ ⊗ (χχν ◦Nm). Note that for any η′ ∈ ΣK , the character
η′ · ((χχν) ◦ Nm) is trivial when restricted to Q×A , hence there exists a Grossencharacter η̃
of K of infinity type (0, k) such that η̃(η̃ρ)−1 = η′ · ((χχν) ◦NmK/Q). (Here and henceforth,
ρ denotes the complex conjugation of K.) Picking such a character η̃, we set η = η̃ · N−k/2

so that η(ηρ)−1 = η′ · ((χχν) ◦NmK/Q) as well. In future, we will denote NmK/Q simply by
the symbol Nm, since it agrees with the reduced norm restricted to K ↪→ B.

Let B = K ⊕ K⊥ be the orthogonal decomposition of B for the norm form, so that
V = K0 ⊕K⊥. Set V1 = K0 and V2 = K⊥. Then O(V1) = {±1}, O(V2)0 = K(1). We will
need to work below with the corresponding (connected components of) similitude groups.
Note that GO(V )0 is identified with PB××Q×, the action of ([x], a) being by y 7→ a·(x−1yx).
Then we have the natural map φ : B× → PB× × Q× given by φ(x) = ([x], Nmx) and the
form s′′ on B× is obtained by pulling back the form (s′, χχν) on PB× × Q×. Let H be
the group G(O(V1) × O(V2))0 = G(Q× ×K×) = {(a, b) ∈ Q× ×K×, a2 = NmK/Q b}. For
(a, b) ∈ H, we have NmK/Q(a−1b) = 1, hence there exists c ∈ K× such that a−1b = cρ/c.
Now the action of (a, b) on y = y1 + y2J ∈ V is given by

y1 + y2J 7→ ay1 + by2J = ay1 + a
cρ

c
J = a · c−1(y1 + y2J)c,

so that the natural inclusion H ↪→ GO(V )0 is identified with i : (a, b) 7→ ([c−1], a) ∈
PK× × Q× ⊂ PB× × Q×. Set η2 = χ−1χν , η1 = η′ · (χχν) ◦ NmK/Q, so that η′ is the
pullback of (η1, η2) via φ. Recall that η has been chosen such that η1 = η(ηρ)−1. Thus

((η1, η2) ◦ i)(a, b) = η1(c−1)η2(a) = η(
cρ

c
)η2(a) = η(b)µ(a),

where µ(a) = η−1|Q×(a)η2(a). Diagrammatically, we have

B× φ // PB× ×Q× (s′,χχν)// C

K×?
Â

OO

φ // PK× ×Q×
?Â

OO

(η1,η2)// C×

G(K× ×Q×)
i

hh
(η,µ)

ee

where the solid arrows denote maps of algebraic groups and the dotted arrows represent
automorphic forms on the corresponding adelic groups.
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Suppose that ϕ∞(α−1 ·α) = ϕ1,∞⊗ϕ2,∞ ∈ Sψ′(V1(R))⊗Sψ′(V2(R)) and for finite primes
q, ϕq =

∑
iq∈Iq

ϕ1,iq ⊗ ϕ2,iq ∈ Sψ′(V1(Qq))⊗ Sψ′(V2(Qq)). By see-saw duality,

j(α, i)−2kLη′(s′) =
∫

H(Q)\H(A)
Tψ′(ϕ, g, hχ)η′(g)((χχν)(Nm(g))d×g

=
∫

O(V1)×O(V2)(Q)\O(V1)×O(V2)(A)
Tψ′(ϕ, (g1, g2), hχ)µ(g1)η(g2)d×g1d

×g2

= 〈Tψ′(ϕ, hχ)(g1, g2), µ(g1)η(g2)〉
=

∑

i=(iq)∈∏
q Iq

〈hχ, tψ′(ϕ, µ) · tψ′(ϕ, η)〉

=
∑

i=(iq)∈∏
q Iq

∫

SL2(Q)\SL2(A)
hχ(σ)tψ0(⊗ϕ1,iq , σ, µ)tψ0(⊗ϕ2,iq , σ, η)d(1)σ,

where ψ0 = ψ′.
In the following section, we will show that for the purposes of computing the integral

above, we may alter ϕq so that it is a pure tensor of a particularly simple form. With
this goal in mind, we set up some notation. Let q be a prime and suppose that we have
fixed for all l 6= q, Schwartz functions ςl ∈ Sψ0(V1(Ql)), ϑl ∈ Sψ0(V2(Ql)). Then for any
ς ∈ Sψ0(V1(Qq)), ϑ ∈ Sψ0(V2(Qq)), set

I(ς, ϑ) =
∫

SL2(Q)\SL2(A)
hχ(σ)tψ0(ς ⊗ ςq, σ, µ)tψ0(ϑ⊗ ϑq, σ, η)d(1)σ,(5.1)

where ςq = ⊗l 6=qςl, ϑ
q = ⊗l 6=qϑl. Suppose δq ∈ B×

q is chosen such that ϕδ
q(·) := ϕq(δ−1

q · δq)
is a scalar multiple of ϕq. Let iδq : K ⊗ Qq ↪→ Bq be given by iδq(x) = δqxδ−1

q and set
W = iδq(K ⊗ Qq). Also let f : B → B denote the isomorphism given by conjugation by
δ, i.e. f(x) = δxδ−1. Then f induces isomorphisms of quadratic spaces f : V1,q ' W

and f : V2,q ' W⊥. Now, for ς ∈ Sψ′(W ), ϑ ∈ Sψ′(W⊥), set ςδ = f∗(ς), ϑδ = f∗(ϑ) and
J(ς, ϑ) = I(ςδ, ϑδ).

We now need to compute the theta lift of η to SL2(A). However it is more useful to
compute the theta lift of η to GL2(A) using the extension of the theta correspondence to
similitude groups (as in [12]). We have then for σ ∈ GL2(A),

tψ0(ϑ
δ ⊗ ϑq, σ, η) =

∫

K(1)\K(1)
A

∑

x∈V2

rψ0(σ, hh̃)(ϑδ ⊗ ϑq)(x)η(hh̃)d×1 h

=
∫

K(1)\K(1)
A

∑

x∈V2

rψ0(σ
q, hqh̃q)ϑq(x)rψ0(σq, hqh̃q)ϑδ(x)η(hh̃)d×1 h

=
∫

K(1)\K(1)
A

∑

x∈V2

rψ0(σ
q, hqh̃q)ϑq(x)rψ0(σq, hqh̃q)ϑ(xδ)η(hh̃)d×1 h,

(5.2)
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for h̃ ∈ K×
A with Nm(h̃) = det(σ), where the measure d×1 h is defined as in [22], p.925.

Likewise,

tψ0(ς
δ ⊗ ςq, σ, µ) =

∫

{±1}\{±1}A

∑

x∈V1

rψ0(σ
q, hqh̃q)ϑq(x)rψ0(σq, hqh̃q)ς(xδ)µ(hh̃)d×1 h

(5.3)

for h̃ ∈ Q×A with h̃2 = det(σ). For convenience of notation, set t1(ς, σ) = tψ0(ς
δ ⊗ ςq, σ, µ)

and t2(ϑ, σ) = tψ0(ϑ
δ ⊗ ϑq, σ, η).

Suppose ϕi ∈ Sψ0(Vi(A)), ϕ1 = ⊗qς
δ
q , ϕ2 = ⊗qϑ

δ
q, with δ = (δq). Then for g ∈ GL2(A),

det(g) ∈ Nm(K×
A ), ν0 = −|ν|,

tψ0(ϕ2, σ, η) =
∑

ξ∈Q×
ξν0 Nm(j)−1∈Nm(K×

A )

Wψ
η

((
ξ 0
0 1

)
g

)
,

where, choosing h̃ = (h̃q) such that Nm(h̃) = Nm(j)−1ν0 det(g),

Wψ
η (g) =

∫

K
(1)
A

rψ0(a(Nm(j)−1ν0)g, hh̃)ϕ2(j)η(hh̃)d×1 h =
∏
q

Wψ
η,q(gq),

Wψ
η,q(gq) =

∫

K
(1)
q

rψ0(a(Nm(j)−1ν0)gq, hh̃q)ϑδ
q(j)η(hh̃q)d×1 h.

Suppose fq(j) = αqjq. Since rψ0(a(Nm(αq)), αi
q)ϑq(·) = |αq|1/2ϑq(αq·),

Wψ
η,q(gq) = |αq|−1/2η(αi

q)
−1Θη(gq),

Θη(gq) =
∫

K
(1)
q

rψ0(a(Nm(jq)−1ν0)gq, hh̃q)ϑq(jq)η(hh̃q)d×1 h,

where now Nm(h̃q) = Nm(jq)−1ν0 det(gq), and Θη(gq) = 0 if Nm(jq)−1ν0 det(gq) 6∈ Nm(K×
q ).

On the other hand, the theta lift tψ0(ϕ1, σ, µ) could possibly be an Eisenstein series.
Suppose K = Q(

√−d) with d square-free and set v0 =
√−d. Then setting ψ̃ = ψd

0 one
easily computes the Fourier development of tψ0(ϕ1, σ, µ) (for σ ∈ S̃A) to be given by

t(ψ0, ϕ1, σ, µ) = C0(σ) +
∑

ξ∈Q>0

W ψ̃
µ (d(ξ)σ),

where

C0(σ) =





0, if µ is not a square.

rψ0(σ)ϕ1(0) =
∏
q

rψ0(σq)ς(0) if µ is a square.

and

W ψ̃
µ (σ) =

∫

{±1}A
rψ0(σ, h)ϕ1(v0)µ(h)d×1 h =

∏
q

Θµ(σq),

Θµ(σq) =
∫

{±1}
rψ0(σq, h)ςq(v0)µq(h)d×1 h =

1
2
[rψ0(σq)ςq(v0) + µq(−1)rψ0(σq)ςq(−v0)],

Θ0(σq) = rψ0(σq)ς(0).
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Let ςµ
q denote the µq(−1) component of ςq i.e. ςµ

q (σq) = 1
2 [ςq(σq) + µq(−1)ςq(−σq)] and set

ςµ = ⊗ςµ
q . Then

C0(σ) = rψ0(σ)ςµ(0) W ψ̃
µ (σ) = rψ0(σ)ςµ(v0).

t(ψ0, ϕ1, σ, µ) = rψ0(σ)ςµ(0) +
∑

ξ∈Q>0

rψ0(d(ξ)σ)ςµ(v0) =
∑

ξ∈Q≥0

rψ0(σ)ςµ(ξv0).

5.2. Local analysis of the triple integral. Let πη denote the automorphic representation
of GL2(A) corresponding to the character η. Let Ω̃ be the set of primes dividing Nν at
which πη is supercuspidal and Ω̃′ the set of primes dividing gcd(ν, d). We will see later
that πη must be a ramified principal series representation at q ∈ Ω̃′, hence Ω̃ and Ω̃′ are
mutually exclusive sets. Denote by Σ (resp. Σ′) the set of positive square-free integers all
whose prime factors lie in Ω̃ (resp. Ω̃′.) In what follows, t will denote any element of Σ
and χt is as usual the quadratic character

(
t
·
)
. Also we use the symbol W̃ψ to denote an

anti-newform in the ψ-Whittaker model of πη i.e. one that transforms by a character of

a rather than that of d for
(

a b
c d

)
∈ GL2(Qq). Further, let Aq(s) = Dq(s − k, θη, θηρ)

(defined as in [27]), Bq(s) = Lq(η(ηρ)−1, s) and set

Cq(s) = Aq(s)Bq(s)−1ζK,q(s)−1ζQ,q(2s),

so that

Dq(s + k, θη, θη,ρ) = Cq(s) · Lq(η(ηρ)−1, s)ζK,q(s)
ζQ,q(2s)

.

For each q, we also define an integer cq that is set to be equal to 1 except when explicitly
listed below. In what follows, we denote by ηK the quadratic character associated to the
quadratic extension K/Q. Further, for the rest of this section, F will denote the Fourier
transform taken with respect to the character ψ0.

5.2.1. Case A: (q, 2Nν) = 1. Subcase (i): K is split at q. Then Kq ' Qq × Qq, Bq '
M2(Qq). Set r = Zq × Zq. We may pick δq ∈ GL2(Zq) such that iδq(a, b) =

(
a 0
0 b

)
. Let

jq =
(

0 −1
1 0

)
. Then ϕq = ϕq = ς ⊗ ϑ, where ς = Ir0 , ϑ = Irjq .

It is easy to see that Θη, Θµ and Θ0 are right invariant by n(x),n(y) for vq(x) ≥ 0, vq(y) ≥
0. Suppose η = (λ1, λ2). Then λ1/λ2 is unramified. Set λ = λ1|Z×q = λ2|Z×q , and α =
λ1(π), β = λ2(π), for π a uniformiser in Zq. Also note that µq(−1) = 1. Then

Θη

(
a 0
0 1

)
= |a|1/2λ(ν0a/πn)

βn+1 − αn+1

β − α
IZq(a), if vq(a) = n;

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

If λ1 and λ2 are unramified, so that λ is trivial and µq is unramified,

Θη = W̃ψ
η = W̃ψ

η⊗χt
⊗ χt

for any t ∈ Σ. By a familiar computation (see [27]), Cq(s) = 1.
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Subcase (ii): K is inert at q. Then Kq = Qq(v), where v2 = u is a non-square unit

in Zq. Set r = Zq + Zqv. We may pick δq ∈ GL2(Zq) such that iδq(v) =
(

0 1
u 0

)
. Let

jq =
(

0 −1
u 0

)
. Then ϕq = ϕq = ς ⊗ ϑ, where ς = Ir0 , ϑ = Irjq .

Since any unit in K
(1)
q is of the form κ/κ̄ for some unit κ, we see that ηq|K(1)

q
is trivial,

whence η factors as λ ◦ Nm and µq(−1) = 1. Again, Θη, Θµ and Θ0 are right invariant by
n(x),n(y), x, y ∈ Zq and

Θη

(
a 0
0 1

)
=

1
2
(1 + ηK,q(a))|a|1/2λ(ν0ua)IZq(a);

Θµ(d(a)) = µψ0(a)χd,q(a)|a|1/2IZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a),

where h̃ is any element of Kq with Nm(h̃) = ν0ua. If λ is chosen to be unramified (so that
µq is also unramified,)

Θη = W̃ψ
η = W̃ψ

η⊗χt
⊗ χt

for any t ∈ Σ. Again, Cq(s) = 1.

Subcase (iii): K is ramified at q. Then Kq = Qq(v), where v2 = π is a uniformizer at
q. (Without loss, we may take v = v0.) Set r = Zq + Zqv. We may pick δq ∈ GL2(Zq)

such that iδq(v) =
(

0 1
π 0

)
. Let jq =

(
1 0
0 −1

)
. Then ϕq = ϕq =

∑q−1
i=0 ςi ⊗ ϑi, where

ςi = I( i
π

+Zq)v and ϑi = I(Zq+( i
π

+Zq)v)jq
. Set Jij = J(ςi, ϑj). For y ∈ Qq denote by ny

the element
(

1 y
0 1

)
∈ GL2(Qq). Since hχ(σn1) = hχ(σ), rψ0(n1)ςi = ψ0(i2/π)ςi and

rψ0(n1)ϑj = ψ0(−j2/π)ϑj , we see that Jij = 0 if i2 6= j2. For a ∈ {1, . . . , q − 1} let

da =
(

a 0
0 a−1

)
∈ GL2(Zq). Since hχ(σda) = hχ(σ), rψ0(da)ςi = ςai and rψ0(da)ϑj = ϑaj

we get Jij = J(ai)(aj), hence
∑

i Jii = J00 + (q − 1)J11. Finally, let β = (βl) ∈ Q×A be the
element given by βq = −1, βl = 1 if l 6= q. Making the change of variables h 7→ hβ in (5.3),
one gets Jij = µq(−1)J(−i)j .

We now make the following observation. A unit z = x + yv ∈ r, x, y ∈ Zq, y 6= 0 with
norm 1 such that vq(x + 1) ≤ vq(y) is always of the form κ/κ̄ for some unit κ ∈ r. In
particular, for such units z,

ηq(z) = ηq(κ/κ̄) = η′(κ)χqχν,q(Nm(κ)) = 1.

If x 6≡ −1 mod q and y 6= 0, this shows that ηq(z) = 1 and by continuity the same is true
without the assumption y 6= 0. If q > 3 (as we may always arrange to be the case by picking
K appropriately), this forces ηq(z) = 1 even if x ≡ −1 mod q. Thus ηq and µq must be

unramified, hence µq(−1) = ηq(−1) = 1. Let ς ′ =
∑

i ςi = I 1
q
Zqv and w =

(
0 1
−1 0

)
∈

GL2(Zq). Since hχ(σw) = hχ(σ), F(ς ′) = q1/2ς0 and F(ϑj) = q−1/2ψ0(〈− j
πv, ·〉)I 1

v
rjq

,

∑

i

Jij = J(ς ′, ϑj) = J(F(ς ′),F(ϑj)) =
∑

i

ψ0(〈− j

π
v,

i

π
v〉)J(ς0, ϑi) = J00.
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Since Jii = J(−i)i, we have 2Jii = J00 for i 6= 0. Thus J = J00+(q−1)(1
2J00) = 1

2(q+1)J00 =
1
2(q + 1)J(ς, ϑ) for ς = ς0, ϑ = ϑ0. Suppose ηq = λ ◦ Nm with λ unramified, so that
πη ' π(ηKλ, λ). Then one checks that Θη,Θµ,Θ0 are all invariant by n(x),n(y), vq(x) ≥
0, vq(y) ≥ 1 and

Θη(d(a)) = |a|1/2ηK,q(−ν0a)λ(−ν0a)IZq(a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

so that Θη = ηK,q(−ν0)W̃
ψ
η = ηK,q(−ν0)W̃

ψ
η⊗χt

⊗χt for any t ∈ Σ. Also, Aq(s) = (1−q−s)−1,
Bq(s) = (1 − q−s)−1, ζKq(s) = (1 − q−s)−1 and ζQ,q(2s) = (1 − q−2s)−1. Thus Cq(s) =
(1 + q−s)−1. Set cq = (q + 1).

5.2.2. Case B: q | ν, (q, 2N) = 1. Subcase (i): K is split at q. Then Kq ' Qq × Qq,
Bq ' M2(Qq). It could happen that q = p, in which case we pick the first factor to
correspond to the completion at p and the second to p where p is the prime induced by
λ on K. Suppose ηq = (λ1, λ2). Set r = Zq × Zq. We may pick δq ∈ GL2(Zq) such

that iδq(a, b) =
(

a 0
0 b

)
. Let jq =

(
0 −1
1 0

)
and v = (1,−1) ∈ Qq × Qq. Also for

i, j, k ∈ {0, 1, . . . , q − 1}, set ςi = I(qZq+i)v, ϑjk = I(qZq+j,qZq+k)jq
. One checks easily that

ϕq = ϕq =
q−1∑

j=1

%(j)ς0 ⊗ ϑj0 +
q−1∑

k=1

%(k)ς0 ⊗ ϑ0k +
q−1∑

i,j,k=1
i2≡jk mod q

%(j)ςi ⊗ ϑjk,

and further, we may replace %(j) in the last term by %(k). Set Jijk = J(ςi, ϑjk). Note that
Jijk = 0 if i2 6≡ jk mod q (since making the change of variables σ 7→ σn1 in the integral
defining Jijk multiplies the integral by ψ0(i2 − jk), which is not 1 unless i2 ≡ jk mod q.)
Let c = (−1, 1) ∈ Qq ×Qq. Then

ηq(−1) = ηq(c/cρ) = η′q(c) · χqχν,q(Nm(c)) = χν,q(−1);

µq(−1) = η−1
q (−1) · χqχν,q(−1) = 1.

Hence Jijk = µq(−1)J(−i)jk = J(−i)jk. Also set ς =
∑

i ςi = Ir0 . Now, since hχ(σw) = hχ(σ),
F(ς) = q1/2ς0, F(ϑjk)((a, c)jq) = q−1ψ0(−cj)ψ0(−ak)Ir(a, c),

∑

i

Jijk = J(ς, ϑjk) = γ2
ψ0

γψ−1
0

J(F(ς),F(ϑjk)) = q1/2γ2
ψ0

γψ−1
0

J(ς0,F(ϑjk))

= q−1/2γ2
ψ0

γψ−1
0

∑

j′,k′
ψ0(−jk′)ψ0(−kj′)J(ς0, ϑj′k′)

= q−1/2γ2
ψ0

γψ−1
0

[J000 +
∑

j′ 6=0

ψ0(−kj′)J0j′0 +
∑

k′ 6=0

ψ(−jk′)J00k′ ].
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Thus

q−1∑

i,j,k=1
i2≡jk mod q

%(j)Jijk =
q−1∑

i,j,k=1

%(j)Jijk

= q−1/2γ2
ψ0

γψ−1
0

q−1∑

j,k=1

%(j)[J000 +
∑

j′ 6=0

ψ0(−kj′)J0j′0 +
∑

k′ 6=0

ψ(−jk′)J00k′ ]

= q−1/2γ2
ψ0

γψ−1
0

(q − 1)%(−1)G(%, ψ0)
∑

k′ 6=0

%(k′)J00k′

= (q − 1)
∑

k 6=0

%(k)J00k,

and by symmetry, this last term also equals (q−1)
∑

j 6=0 %(j)J0j0. Thus J = (q +1)J(ς0, ϑ)
where ϑ((a, b)jq) = %(a)IqZq(a)IZ×q (b) = χν,q(a)IqZq(a)IZ×q (b). One may check that Θη, Θµ, Θ0

are invariant by n(x),n(y), vq(x) ≥ 0, vq(y) ≥ 1 and

Θη(d(a)) = λ2(ν0a)|ν0a|1/2IZq(a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IqZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

Note that for x ∈ Z×q ,

λ1λ
−1
2 (x) = η′q(1, x)χqχν,q(x) = χν,q(x) = %(x);

µq(x) = η−1(x)χqχν,q(x) = (λ1λ2)−1(x)χν,q(x).

Choosing λ2 to be ramified and λ1 unramified, we see that λ2χν,q and µq are unramified,
and

Θη = λ2(ν0)|ν0|1/2W̃ψ
η = λ2(ν0)|ν0|1/2(W̃ψ

ηχt
⊗ χt)

for any t ∈ Σ. In this case, Aq(s) = (1 − q−s)−1, Bq(s) = 1, ζK,q(s) = (1 − q−s)−2,
ζQ,q(2s) = (1 − q−2s)−1. Thus Cq(s) = (1 + q−s)−1. Since η has weight (−k/2, k/2),
vp(λ2(ν0)) = vp(λ2(ν0)) = k/2. Set cq = (q + 1)q

k−1
2 .

Subcase (ii): K is inert at q. Then Kq = Qq(v), where v2 = u is a non-square unit

in Zq. Set r = Zq + Zqv. We may pick δq ∈ GL2(Zq) such that iδq(v) =
(

0 1
u 0

)
. Let

jq =
( −1 0

0 1

)
. For i, j, k ∈ {0, 1, . . . , q − 1}, set ςi = I(qZq+i)v, ϑjk = I(qZq+j+(qZq+k)v)jq

.

Then one checks that

ϕq =
∑

i6=0

%(−2i)ςi ⊗ ϑ0i +
∑

i6=0

%(2iu)ςi ⊗ ϑ0(−i) +
∑

i,j,k;i6=±k
j2≡(k2−i2)u

%(−(i + k))ςi ⊗ ϑjk.

=
∑

i6=0

%(2iu)ςi ⊗ ϑ0(−i) +
∑

i,j,k;i6=−k
j2≡(k2−i2)u

%(−(i + k))ςi ⊗ ϑjk
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As usual, set Jijk = J(ςi, ϑjk). Now note that

ηq(−1) = ηq(v/vρ) = η′q(v)χqχν,q(−u) = −χν,q(−1);

µq(−1) = η−1
q (−1)χqχν,q(−1) = −1.

so that Jijk = µq(−1)J(−i)jk = −J(−i)jk. Let ςk =
∑

i6=−k %(−(i + k))ςi. Since F(ςi)(xv) =
q−1/2ψ0(2ixu)IZq(x), one has

F(ςk)(xv) = q−1/2
∑

i6=−k

%(−(i + k))ψ0(2ixu)IZq(x)

= q−1/2ψ0(2kxu)
∑

i6=0

%(−i)ψ0(2xiu)IZq(x)

= q−1/2ψ0(2kxu)%(2xu)%(−1)G(%, ψ0)IZq(x).

Further,

F(ϑjk)((y + zv)jq) = q−1ψ0(−2yj + 2zuk)IZq(y)IZq(z).

Thus
∑

i6=−k

%(−(i + k))Jijk = J(ςk, ϑjk) = γ2
ψ0

γψ−1
0

J(F(ςk), F(ϑjk))

= q−3/2γ2
ψ0

γψ−1
0

%(−1)G(%, ψ0)
∑
x,y,z

%(2xu)ψ0(2kxu− 2yj + 2zku)}Jxyz,

and
∑

i,j,k;i6=−k
j2≡(k2−i2)u

%(−(i + k))Jijk =
∑

i,j,k
i6=−k

%(−(i + k))Jijk

= q1/2γ2
ψ0

γψ−1
0

%(−1)G(%, ψ0)
∑

i

%(2iu)Ji0(−i)

= q
∑

i

%(2iu)Ji0(−i) = −q
∑

i

%(2i)Ji0(−i).

Since Ji0i = µq(−1)J(−i)0i = −J(−i)0i, one has J = (q + 1)%(−2)
∑

i %(i)J(ςi, ϑ0i). Set
ς =

∑
i6=0 µq(i)ςi, ϑ =

∑
i6=0 ηq(i)ϑ0i. Noting that µqηq(i) = χqχν,q(i) = %(i), we see that

J(ς, ϑ) =
∑

i6=0
j 6=0

µq(i)ηq(j)Ji0j =
∑

i6=0

{µq(i)ηq(i)Ji0i + µq(−i)ηq(i)J(−i)0i} = 2
∑

i6=0

%(i)Ji0i.

Thus J = 1
2(q + 1)%(−2)J(ς, ϑ). Now note that for x any unit in r,

ηq(x/xρ) = η′q(x)χqχν,q(Nm(x)) = χν,q(Nm(x)).

Since the norm map is surjective onto the units of Z×q , ηq(η
ρ
q )−1 is not the trivial character.

Thus ηq does not factor through the norm, whence πη,q must be supercuspidal.
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Set Θ′
η(g) = Θη(gωq), Θ′

µ(g) = Θµ(gωq), Θ′
0(g) = Θ0(gωq), where ωq =

(
ν−1
0 0
0 1

)
.

Then Θ′
η,Θ

′
µ, Θ′

0 are invariant by n(x),n(y), for vq(x) ≥ 0, vq(y) ≥ 2 and

Θ′
η

(
a 0
0 1

)
=

1
2
(1− %(a))η(av−1)IZ×q (a);

Θ′
µ(d(a)ω−1

q ) = |a|1/2µψ0(a)χd,qµq(a)IZ×q (a), Θ′
0(d(a)ω−1

q ) = 0.

Choose η such that πη has conductor q2. Then for any t ∈ Σ with q | t, πη⊗χt has conductor
q2 as well and for any t1, t2 ∈ Σ with q - t1, q | t2,

Θ′
η = η(v−1){W̃ψ

η⊗χt1
⊗ χt1 − W̃ψ

η⊗χt2
⊗ χt2}.

Also, Aq(s) = 1, Bq(s) = 1, ζK,q(s) = ζQ,q(2s) = (1 − q−2s)−1. Hence Cq(s) = 1. Set
cq = q + 1.

Subcase (iii): K is ramified at q. Then Kq = Qq(v), where v2 = π is a uniformizer at q. Set

r = Zq+Zqv. We may pick δq ∈ GL2(Zq) such that iδq(v) =
(

0 1
π 0

)
. Let jq =

(
1 0
0 −1

)
.

For r, i, j, k, l ∈ {0, 1, . . . , q − 1}, set ςrj = I( r
π

+j+qZq)v, ϑikl = I(l+qZq+( i
π

+k+qZq)v)jq
. Then

one checks that

%(−1)ϕq =
∑

i,j
i6=0

%(−2i)ςij ⊗ ϑij0 +
∑

j,k
j 6=k

%(j − k)ς0j ⊗ ϑ0k0 +
∑

i,j,k,l
l 6=0,l2≡2i(k−j)

%(j − k)ςij ⊗ ϑikl.

(5.4)

Set Jrjikl = J(ςrj , ϑikl). As usual, we have Jrjikl = µq(−1)J(−r)(−j)ikl. It is easy to see that
if Jrjikl 6= 0 then either r = i and l2 ≡ 2i(k − j) or r = −i and l2 ≡ 2i(k + j). Now fix
i 6= 0, l 6= 0 for the moment. Let t be such that l2 ≡ 2it. Then

%(−t)
∑

j,k

Jijikl = %(−t)
∑

j,k
l2≡2i(k−j)

Jijikl =
∑

j,k
l2≡2i(k−j)

%(j − k)Jijikl.

Set ςr = I( r
π

+Zq)v, ϑil = I(l+qZq+( i
π

+Zq)v)jq
and Jril = J(ςr, ϑil). Thus the contribution of

the last term in (5.4) to the integral %(−1)J is
∑

i,j,k,l
l 6=0,l2≡2i(k−j)

%(j − k)Jijikl =
∑

i6=0,l 6=0

%(−2i)Jiil.

Set ϑi = I(Zq+( i
π

+Zq)v)jq
and Jri = J(ςr, ϑi). Note that if i 6= 0, Jijik0 = 0 for j 6= k. Hence

the contribution of the first term of (5.4) to %(−1)J equals
∑

i 6=0

%(−2i)
∑

j,k

Jijik0 =
∑

i 6=0

%(−2i)Jii0,

whence the first and last terms of (5.4) together contribute
∑

i6=0 %(−2i)Jii0 +
∑

i6=0 %(−2i)∑
l 6=0 Jiil =

∑
i6=0 %(−2i)Jii to the integral %(−1)J .
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The contribution of the middle term of (5.4) is somewhat tricky to compute. First we
begin by computing the Fourier transforms of ς0j and ϑ0k0. One checks that

F(ς0j) = q−1
∑

r

ψ0(2jr)ςr F(ϑ0k0) = q−3/2
∑

i

ψ0(−2ik)ϑi.

Thus∑

j 6=k

%(j − k)J(ς0j , ϑ0k0) =
∑

j 6=k

γ2
ψ0

γψ−1
0

%(j − k)J(F(ς0j), F(ϑ0k0))

= q−5/2γ2
ψ0

γψ−1
0

∑

j 6=k

∑

r,i

%(j − k)ψ0(2jr)ψ0(−2ik)J(ςr, ϑi)

= q−5/2γ2
ψ0

γψ−1
0

∑

s6=0

∑

r,i,k

%(s)ψ0(2(k + s)r)ψ0(−2ik)J(ςr, ϑi)

= q−3/2γ2
ψ0

γψ−1
0

∑

s6=0

∑

i

%(s)ψ0(2si)J(ςi, ϑi)

= q−3/2γ2
ψ0

γψ−1
0

G(%, ψ0)
∑

i 6=0

%(2i)Jii = q−1%(−2i)Jii.

Thus %(−1)J = (1 + 1
q )

∑
i6=0 %(−2i)Jii. Now setting ς =

∑
i 6=0 µ(i)ςi, ϑ =

∑
i6=0 η(i)ϑi, one

sees that J = q+1
2q %(2)J(ς, ϑ). Set Θ′

η(g) = Θη(gωq), Θ′
µ(g) = Θµ(gω′q), Θ′

0(g) = Θ0(gω′q),

where ωq =
(

π−2 0
0 1

)
, ω′q =

(
π−1 0
0 π

)
. Then Θ′

η, Θ
′
µ, Θ′

0 are invariant by n(x),n(y),

for vq(x) ≥ 0, vq(y) ≥ 2 and

Θ′
η

(
a 0
0 1

)
=

1
2
ηq(−ν0av−1)(1± %(a))|a|1/2IZ×q (a);

Θ′
µ(d(a)) = µψ0(a)χd,qµq(a)|a|1/2IZ×q (a), Θ′

0(d(a)) = 0.

where the± sign holds according as (ν0,−π) = ±1. Arguing exactly as in the case q | d, d - ν,
we see that η must be unramified and factor as η = λ ◦ Nm for some unramified character
λ. Thus πη ' π(ληK,q, λ) has conductor q.

Let W̆ψ
η (g) = Wψ

η

(
g

(
q−1 0
0 1

))
, ˘̃Wψ

η = W̃ψ
η

(
g

(
q−1 0
0 1

))
. Note that

Wψ
η

(
a 0
0 1

)
= λ(a)|a|1/2IZq(a) W̃ψ

η

(
a 0
0 1

)
= ηK,q(a)λ(a)|a|1/2IZq(a);

W̆ψ
η

(
a 0
0 1

)
= λ(aq−1)|aq−1|1/2IZq(aq−1) = (λ(q)−1q1/2)λ(a)|a|1/2IqZq(a);

˘̃Wψ
η

(
a 0
0 1

)
= ηK,q(aq−1)λ(aq−1)|aq−1|1/2IZq(aq−1)

= (ηK,q(q)q1/2λ(q)−1)ηK,q(a)λ(a)|a|1/2IqZq(a).

Now setting

Wψ,+
η (g) = W̃ψ

η (g)− q−1/2(ληK,q)(q)
˘̃Wψ

η (g);

Wψ,−
η (g) = Wψ

η (g)− q−1/2λ(q)W̆ψ
η (g).
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we see that

Θ′
η =

1
2
ηq(−ν0v){Wψ,−

η ±Wψ,+
η } =

1
2
ηq(−ν0v){Wψ,−

η⊗χt
±Wψ,+

η⊗χt
}

for any t ∈ Σ. Also, Aq(s) = (1 − q−s)−1, Bq(s) = (1 − q−s)−1, ζK,q(s) = (1 − q−s)−1 and
ζQ,q(2s) = (1− q−2s)−1. Thus Cq(s) = (1 + q−s)−1. Set cq = q + 1.

5.2.3. q | N+. In this case, K is split, so we fix an isomorphism K ⊗ Qq ' Qq × Qq. Set
r = Zq × Zq.

Subcase (i): q - ν, χ is unramified at q. We may pick δq ∈ NGL2(Qq)(O×χ,q) such that

iδq(a, b) =
(

a 0
0 b

)
. Let jq =

(
0 −1
1 0

)
and v = (1,−1) ∈ Qq × Qq. Then ϕq = ς ⊗ ϑ

where ς = Ir0 and ϑ = I(Zq×qZq)jq
. Set Θ′

η(g) = Θ′
η(gωq), where ωq =

(
q 0
0 1

)
. Set

λ = λ1/λ2, where ηq = (λ1, λ2). Then λ is unramified, µq(−1) = 1, Θ′
η, Θµ, Θ0 are invariant

by n(x),n(y), x, y ∈ Zq, and

Θ′
η

(
a 0
0 1

)
= |aq|1/2λ1(ν0aq)

λ−1(aq)− 1
λ−1(q)− 1

IZq(a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

If we pick λ1 and λ2 to be unramified,

Θ′
η

(
a 0
0 1

)
= |q|1/2λ1(q)|a|1/2 λ1(aq)− λ2(aq)

λ1(q)− λ2(q)
,

so that Θ′
η = |q|1/2λ1(q)W̃

ψ
η . One checks easily that Cq(s) = 1.

Subcase (ii): q - ν, χ is ramified at q. We may pick δq ∈ O×χ,q such that either iδq(a, b) =(
a 0
0 b

)
or iδq(a, b) =

(
b 0
0 a

)
. Let jq =

(
0 −q

q−1 0

)
and v = (1,−1) ∈ Qq × Qq.

Then ϕq = ς ⊗ ϑ where ς = Ir0 and ϑ((a, b)jq) = χq(a)IZ×q (a)IqZq(c) or ϑ((a, b)jq) =
χq(c)IZ×q (c)IqZq(a). We assume we are in the former case, since the latter case is exactly

similar. Set Θ′
η(g) = Θη(gωq), where ωq =

(
q 0
0 1

)
. Note that η′q(a, b) = χ−2

q (b)

if a, b are units, ηq(−1) = η′q(−1, 1)χqχν,q(−1) = χq(−1) and µq(−1) = 1. Now one
checks that Θµ,Θ0 are invariant by n(x),n(y), vq(x) ≥ 0, vq(y) ≥ 0, Θ′

η is invariant by
n(x),n(y), vq(x) ≥ 0, vq(y) ≥ 1 and

Θ′
η

(
a 0
0 1

)
= q−1/2|a|1/2λ1(ν0aq)IZq(a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IqZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

For any a ∈ Z×q , λ1λ
−1
2 (a) = ηq(a, a−1) = η′q(a, 1)χqχν,q(a) = χq(a). Thus we may pick η

such that λ2 is unramified and λ1 is ramified with conductor q. Then πη,q ' π(λ1, λ2) has
conductor q and Θ′

η = λ1(ν0q)W̃
ψ
η . (If on the other hand, ϑ((a, b)jq) = χ−1(c)IZ×q (c)IqZq(a),

one gets Θ′
η = λ2(ν0q)W̃

ψ
η .) In this case, Aq(s) = (1 − q−s)−1, Bq(s) = 1, ζK,q(s) =

(1− q−s)−2, ζQ(2s) = (1− q−2s)−1 and Cq(s) = (1 + q−s)−1.
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Subcase (iii): q | ν. In this case, χ has been chosen to be unramified at q. We may

pick δq ∈ O×χ,q such that either iδq(a, b) =
(

a 0
0 b

)
or iδq(a, b) =

(
b 0
0 a

)
. Let jq =

(
0 −1
1 0

)
and v = (1,−1) ∈ Qq × Qq. Then ϕq = ϕq = ς ⊗ ϑ where ς = Iqr0 and

ϑ((a, b)jq) = χν,q(a)IZ×q (a)IqZq(c) or ϑ((a, b)jq) = χν,q(c)IZ×q (c)IqZq(a). Without loss we
may assume we are in the former case. In this case, η′q is unramified, ηq(−1) = χν,q(−1)
and µq(−1) = 1. Arguing as in the previous case, λ1λ

−1
2 (a) = χν,q(a) = %(a) for a ∈ Z×q ,

so we may assume that λ2 is unramified and λ1 is ramified, but λ1χν,q is unramified. One
may check that Θη, Θµ, Θ0 are invariant by n(x),n(y), vq(x) ≥ 0, vq(y) ≥ 1, and

Θη(d(a)) = q−1/2|ν0a|1/2λ1(ν0a)IZq(a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IqZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

We see that Θη = λ1(ν0)|ν0|1/2W̃ψ
η . Aq(s) = (1− q−s)−1, Bq(s) = 1, ζK,q(s) = (1− q−s)−2,

ζQ(2s) = (1− q−2s)−1 and Cq(s) = (1 + q−s)−1.

5.2.4. q | N−. In this case, K is inert at q; we use the notation of Sec. 3.2 in what follows.
We pick an isomorphism Kq ' Lq and identify Kq and Lq via this isomorphism. Set
r = Zq + Zqω.

Subcase (i): q - ν, χ is unramified at q. We may pick δq ∈ B×
q such that iδq(a) = a. Clearly,

ϕδ
q = ϕq, since Bq has a unique maximal order. Also, ϕq = ς ⊗ϑ, where ς = Ir0 and ϑ = Iru

and we may set jq = u. In this case, ηq and µq are unramified, hence ηq = λ ◦ Nm for an

unramified character λ. Let Θ′
η(g) = Θη(gωq) with ωq =

(
Nm(ω) 0

0 1

)
. Then Θ′

η, Θµ, Θ0

are invariant by n(x),n(y), x, y ∈ Zq and

Θ′
η

(
a 0
0 1

)
=

1
2
(1 + ηK,q(ν0a))|a|1/2λ(ν0a)IZq(a) =

1
2
(1 + ηK,q(a))|a|1/2λ(a)IZq(a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

Hence Θ′
η = W̃ψ

η . Also, Cq(s) = 1.

Subcase (ii): q - ν, χ is ramified at q. We may pick δq ∈ B×
q such that iδq(a) = a. It is easy

to check that ϕδ
q = ϕq. Also, ϕq = ς ⊗ ϑ, where ς(av) = χq(a)IZ×q (a) and ϑ = Iru. Then

η′q(a) = χ−1
q (Nm(a)) for a any unit in r, ηq|K(1) is trivial and µq(−1) = χq(−1). Thus ηq =

λ ◦ Nm for some unramified character λ. Set Θ′
η(g) = Θη

(
g

(
Nm(ω) 0

0 1

))
. Then Θ′

η

is invariant by n(x),n(y), vq(x) ≥ 0, vq(y) ≥ 0, Θµ, Θ0 are invariant by n(x),n(y), vq(x) ≥
0, vq(y) ≥ 2 and

Θ′
η

(
a 0
0 1

)
=

1
2
(1 + ηK,q(a))|a|1/2IZq(a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZ×q (a), Θ0(d(a)) = 0.

As in the previous case, Θ′
η = W̃ψ

η . Again, Cq(s) = 1.
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Subcase (iii): q | ν. In this case, χ has been chosen to be ramified at q, indeed χq(−1) =
−1. We may pick δq ∈ B×

q such that iδq(a) = a. It is easy to check that ϕδ
q = ϕq and

η′q(a) = χ−1
q (Nm(a)) for a ∈ r×. Also, ϕq = ς ⊗ ϑ, where ς = Iqr0 and ϑ is given by the

following formula: ϑ(bu) = 0 unless N(b) ∈ (Z×q )2. In that case, write b = c ē
e for some

c ∈ Z×q , e ∈ r×. Then ϑ(b) = χν,qχq(c) · χν,q(N(e)). Note that for x ∈ r×,

ηq(x/xρ) = η′q(x)χqχν,q(Nmx) = χν,q(Nmx).

In particular, η does not factor through the norm, hence πη is supercuspidal. Setting x = v,
one gets ηq(−1) = χν,q(Nmω) = −χν,q(−1) = χqχν,q(−1). Hence we may assume that
µq = η−1

q |Q×q · χqχν,q is unramified. One checks that Θη is invariant by n(x),n(y), vq(x) ≥
0, vq(y) ≥ 2, and

Θη

(
a 0
0 1

)
= |a|1/2χν,q(εa)

∫

K
(1)
q

ϑ(εah̃−1h−1)ηq(h̃h)d×h,

for any h̃ ∈ K×
q with Nm(h̃) = εa. Now ϑ(εah̃−1h−1) = 0 unless εa ∈ (Z×q )2. Suppose

εa = b2. Pick h̃ = b, so that εah̃−1h−1 = bh−1. Let us write h = x/xρ for some x ∈ r×.
Then

ηq(h̃h) = ηq(b
x

xρ
) = χqχν,q(b) · χν,q(Nm(x)),

ϑ(εah̃−1h−1) = ϑ(bh−1) = ϑ(b
xρ

x
) = χν,qχq(b) · χν,q(Nm(x)),

whence from (5.5) above, we see that

Θη

(
a 0
0 1

)
=

1
2
|a|1/2χν,qχq(εa)(1 + %(εa))IZ×q (a).

Thus for t1, t2 ∈ Σ, with q - t1, q | t2, Θη = 1
2χν,qχq(ε){W̃ψ

η⊗χt1
⊗ χt1 ± W̃ψ

η⊗χt2
⊗ χt2} where

the ± sign appears according as %(ε) = ±1. Also Θµ,Θ0 are invariant by n(x),n(y), vq(x) ≥
0, vq(y) ≥ 1 and

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IqZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

In this case, Aq(s) = 1, Bq(s) = (1− q−s)−1, ζK,q(s) = ζQ(2s) and Cq(s) = (1− q−s).

5.2.5. q = 2. We assume that K is split at 2; the other cases can be handled similarly.
Pick δq, i

δ
q, jq as in Case (A), subcase (i). Then ϕq = ς ⊗ ϑ, where ς = Ir0 , ϑ = I2rjq .

Since η′, χ2 and χν,2 are unramified, we may pick η and µ to be unramified. Let Θ′
η(g) =

Θη(g ·
(

2−2 0
0 1

)
). One checks that Θ′

η = (λ1λ2)(2) · W̃ψ
η . Further, Θµ,Θ0 are invariant

by n(x),n(y), v2(x) ≥ 0, v2(y) ≥ 2 and

Θµ(d(a)) = |a|1/2µψ0(a)χd,2(a)IZq(a), Θ0(d(a)) = |a|1/2µψ0(a)χd,2(a).

5.2.6. q = ∞. Let j∞ =
(

1 0
0 −1

)
. Then M2(R) = C + Cj∞ and ϕ = (−2i)k|ν|−1/2 ·

ϕ′1,∞ ⊗ ϕ′2,∞ where ϕ′1,∞(x) = e−2π|x|2/|ν|, ϕ′2,∞(yj∞) = yke−2π|y|2/|ν|. Here we think of

C ↪→ GL2(R) via x = a + bi 7→
(

a −b
b a

)
. Suppose α−1j̃α = y0j∞ for y0 ∈ C. Then
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ϕ(α−1(x + yj)α) = (−2i)kϕ1,∞(x)ϕ2,∞(yj) where ϕ1,∞(x) = e−2π|x|2/|ν| and ϕ2,∞(yj) =
|ν|−1/2y−k

0 yke−2π|y|2/|ν|. One checks easily that

Θη

(
a 0
0 1

)
= y−k

0 |ν| k2 |a| k+1
2 e−2πaIR+(a);

Θµ(d(a)) = |a|1/2µψ0(a)e−2πa2/|ν|, Θ0(d(a)) = |a|1/2µψ0(a).

Set c∞ = |ν|k/2. Also notice that y0 = −=(z)J(j̃, z)j(α, i)2 (see the discussion on p. 940 of
[22]). Hence

(−y0)−k{J(j̃, z)=(z)}kj(α, i)2k = 1.

5.3. Statement of the main theorem and proof of rationality. We begin by summa-
rizing the calculations of the previous section in more classical language. For each prime q
define integers lq, rq,mq, nq, sq as below.

(i) If q - 2Nνd, lq = rq = mq = nq = sq = 0.

(ii) If q - 2N, q | d, q - ν,

lq = 0, rq = 1,mq = nq = 1, sq = 0.

(iii) If q - 2N, q | ν,

lq = 0, rq = 1,mq = nq = 1, sq = 0, if K is split at q,
lq = 1, rq = 0,mq = nq = 2, sq = 0, if K is inert at q,
lq = 2, rq = 0,mq = nq = 2, sq = 0, if K is ramified at q.

(iv) If q | N+,

lq = rq = 0,mq = 1, nq = 0, sq = 1, if q - ν and χ0,q is unramified,
lq = rq = 0,mq = 2, nq = 1, sq = 1, if q - ν and χ0,q is ramified,
lq = 0, rq = 1,mq = nq = 1, sq = 0, if q | ν.

(v) If q | N−,

lq = rq = 0,mq = 1, nq = 0, sq = 0, if q - ν and χ0,q is unramified,
lq = rq = 0,mq = 2, nq = 0, sq = 0, if q - ν and χ0,q is ramified,
lq = 0, rq = 1,mq = nq = 2, sq = 0, if q | ν.

(vi) If q = 2, lq = rq = 0, mq = 2, nq = 0, sq = 2.

Set l =
∏

q qlq , r =
∏

q qrq ,m =
∏

q qmq , n =
∏

q qnq , s =
∏

q qsq . Let κ be the Grossen-
character of weight (k, 0) defined by κ = η̃ and set κt = κ · (χt ◦ Nm) for t ∈ Σ. It is easy
to check that cκt = cκ = cη̃ for all t ∈ Σ where cκt (resp. cη̃) denotes the conductor of κt

(resp. of η̃.) Let

θµ(z) =
∑

j∈Z≥0

µ(j)e2πij2z, θκt(z) =
∑

a∈OK
(a,cκ)=1

κt(a)e2πiN(a)z

and denote by θ̃κt the modular form obtained by dropping the Euler factor at q for q ∈ Σ′ in
the Euler product expansion of θκt . When t = 1, we simply write θκ or θ̃κ. Let s′ =

∏
q∈Σ′ q.

Note that θκt ∈ Sk+1(Γ0(n/s′), η|−1
Q×ηK) while θ̃κt ∈ Sk+1(Γ0(n), η|−1

Q×ηK). Let Vq denote the
Atkin-Lehner operator usually denoted by the symbol Wq2 , and for t′ ∈ Σ′, set Vt′ =

∏
q|t′ Vq.

Then the computations of the previous section express Lη′ explicitly as a linear combination
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of the Petersson inner products 〈hχ(lz)θµ(rz), Vt′ θ̃κt(sz)〉 for t ∈ Σ and t′ ∈ Σ′. For a vector
b = [l, r, s], set

Ib,t′
f,χ (µ, η̃) = 〈V ∗

t′ {hχ(lz)θµ(rz)}, θ̃κt(sz)〉,
where η̃ is the algebraic Hecke character corresponding to η̃. We have then more precisely,

(2πi)k{π=(z)J(j̃, z)}kLη′ = (2πi)kπk+1
∑

t∈Σ

∑

t′∈Σ′
cb,t,t′
f,χ (µ, η̃)Ib,t′

f,χ (µχt, η̃ · χt ◦Nm),

(5.5)

with explicit coefficients cb,t,t′
f,χ (µ, η̃) ∈ K(f, χ, η̃) that are p-adic integers and satisfy

(
ik|ν|1/2cb,t,t′

f,χ (µ, η̃)
)σ

= ik|ν|1/2cb,t,t′
fσ,χσ(µσ, η̃σ)(5.6)

for any σ ∈ Aut(C/Q). Recall now that Ω is the CM period associated to K, that is well
defined up to a p-adic unit, and Ω(η̂) is the CM period associated to the pair (K, η̂), that
is well defined up to an element of Q(η̂)×. Also Ω(η̂) = (2πi)2kp(η̂, 1) where p(η̂, 1) is the
period that occurs in [10].

Theorem 5.2. (a) For all σ ∈ Aut(C/K),
(

π2k+1ik
√−d · g(χχν) · I l,s

f,χ(µ, η̃)

Ω(η̂)

)σ

=
π2k+1ik

√−d · g(χσχν) · I l,s
fσ,χσ(µσ, η̃σ)

Ω(η̂σ)
.

(b) Suppose that p is split in K, p - hK , p > 2k + 1 and p - Ñ . Then, for all t, t′, the ratio

π2k+1cb,t,t′
f,χ (µ, η̃) · Ib,t′

f,χ (µχt, η̃ · χt ◦Nm)

Ω2k

is a λ-adic integer.

Proof: The p-integrality of part (b) may be proved along the lines of Thm. 4.15 of [22],
using Rubin’s theorem on the main conjecture of Iwasawa theory for imaginary quadratic
fields with some modifications to account for the more complicated situation of the present
article. We defer the details to the next section.

The reciprocity law of part (a) may be obtained as follows. By [27] Lemmas 3, 4 (and
their proofs), for all σ ∈ Aut(C/K),

(
I l,s
f,χ(µ, η̃)

〈θκ, θκ〉

)σ

=
I l,s
fσ,χσ(µσ, η̃σ)

〈θκσ , θκσ〉 .

Also, by equation (2.5) of [27],
√

dπk+2〈θκ, θκ〉/L(1, κ−1κρ) ∈ Q×. But L(1, κ−1κρ) =
L(k + 1, κ−1κρNk) = L(k + 1, η̌ · (χχν) ◦Nm) where η̌ = (η̂ρ)−1 . By [27], Thm. 1,(

g(χχν)L(k + 1, η̌ · (χχν) ◦Nm)
L(k + 1, η̌)

)σ

=
(

g(χσχν)L(k + 1, η̌σ · (χσχν) ◦Nm)
L(k + 1, η̌σ)

)
.

Finally, by the main theorem of Blasius’s article on Deligne’s conjecture for Hecke L-
functions of K ([2]) reinterpreted as in [12], Appendix (see also the correction in [11],
p.82) (

L(k + 1, η̌

(2πi)k+1p(η̂, 1)

)σ

=
L(k + 1, η̌σ)

(2πi)k+1p(η̂σ, 1)
,

from which the required reciprocity law follows. ¥
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Corollary 5.3. (a) ik+τg(χ)β ∈ Q(f, χ). (b) vλ(β) ≥ 0.

Proof: Part (a) follows from part (a) of the theorem, the rationality criterion in Prop. 5.1
(a) and equations (5.5) and (5.6), using that g(χχν)/g(χ)g(χν) ∈ Q(χ) and g(χν)|ν|−1/2iτ ∈
Q×. Part (b) follows from part (b) of the theorem and the integrality criterion Prop. 5.1
(b), since there exist infinitely many Heegner points with p split in K and p - hK . ([22],
Lemma 5.1.) ¥

Let us then set β = ik+τg(χ)β. The following reciprocity law for β is now immediate:

Corollary 5.4. For any σ ∈ Aut(C/Q),

(β(g, χ))σ = β(gσ, χσ).(5.7)

5.4. Integrality of the Shimura lift. We indicate in this section the modifications to
the arguments in [22] needed to prove part (b) of Thm. 5.2. Since b is fixed and the p-adic
valuation of cb,t,t′

f,χ (µ, η̃) is independent of t and t′, in what follows we omit the superscripts
b, t, t′ and simply write cf,χ(µ, η̃). Also, since the pair (µχ̃, η̃ · χ̃ ◦Nm) is again of the form
(µ, η̃), we may assume without loss that t = 1. Let S = Sk+1(m, η|−1

Q×ηK). By Thm. A.1
of the Appendix, V ∗

t′ {hχ(lz)θµ(rz)} is a p-integral modular form in S. It suffices then to
prove the following theorem.

Theorem 5.5. Suppose that p is split in K, p - hK , p > 2k + 1 and p - Ñ . Let g be any
p-integral form in S. Then

cf,χ(µ, η̃) · π2k+1〈g(z), θ̃κ(sz)〉
Ω2k

is a p-adic integer.

Let T0 be the set of primes q (dividing 2N+) such that nq = 0 but sq > 0 and let T be
the set of primes q in T0 such that aq(θκ)2 ≡ qk−1(q + 1)2 mod p. For q ∈ T , let αq, βq

be the parameters associated to θκ at q, ordered such that αq/βq ≡ q mod p. Denote by
T̃ the subalgebra of EndC(S) generated by the Hecke operators Tq for q - m and the Uq for
primes q ∈ T . If V ⊂ S denotes the oldspace corresponding to θκ, then V is T̃-invariant
and the action of T̃ on V is diagonalizable. Let P denote the set of eigencharacters of T̃
that appear in its action on V . For every i ∈ P, the corresponding eigenspace Vi ⊂ V is one
dimensional. Let Ti ⊂ T be such that the action of Uq on Vi is by αq for q ∈ Ti and by βq

(or 0, if 2 ∈ T and q = 2) for q ∈ T \ Ti. For g any p-integral form in S, we may expand g
as

g =
∑

i∈P

δigi + g′

where each gi ∈ Vi is a p-unit and g′ is orthogonal to the oldspace of θκ.
Let F ′ be a number field that contains all the Hecke eigenvalues of all eigenforms in S, O

the ring of integers of F ′ and π̃ any prime of F ′ over p. We shall prove in fact the following
theorem from which Thm. 5.5 follows immediately.

Theorem 5.6. Suppose p satisfies the assumptions of the previous theorem. Then, for all
i ∈ P,

δi · cf,χ(µ, η̃) · π2k+1〈gi(z), θ̃κ(sz)〉
Ω2k

is a p-adic integer.
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Let us now take and fix an i ∈ P. The following lemma is the analog of Lemma 4.2 of
[22].

Lemma 5.7.

vπ̃

(
cf,χ

π2k+1〈gi(z), θ̃κ(sz)〉
Ω2k

)
≥

∑

q|ν,q-N
fq +

∑

q∈Ti

vπ̃

(
αq

βq
− q

)
+ vπ̃

(
πk−1 · hK · L(1, κ−1κρ)

Ω2k

)

where fq = (k+ 1
2)vπ̃(q) (resp. fq = vπ̃(q+1), resp. fq = vπ̃(q−1)) if q is split (resp. inert,

resp. ramified) in K.

Remark 5.8. The assumption that p - hK made earlier in the article will be essential later
in this section. However some of the initial propositions do not require this, hence we do
not make this assumption in the beginning but introduce it later when needed. Also we
write cf,χ instead of cf,χ(µ, η̃) for simplicity of notation.

Proof: Let P be defined by

P =
∏

q|2N+,q 6∈T

qmq−nq ·
∏

q|N−,q-ν
qmq−nq ·

∏

q∈Ω̃′

q.

Let θi ∈ Vi be the T̃-eigenform normalized to have its first Fourier coefficient equal to 1 and
let uq denote the eigenvalue of Uq acting on θi i.e. the L-series associated to θi is obtained by
obtained by dropping the factors (1−αqq

−s) (resp. (1−βqq
−s), resp. (1−αqq

−s)(1−βqq
−s))

for q ∈ Ti (resp. for q ∈ T \ Ti, uq = αq, resp. q ∈ T \ Ti, uq = 0) from the L-series for θκ.
Then the collection {θi(d′z); d′ | P} is a basis for Vi over C and one checks easily that gi

is a p-integral linear combination of the elements of this basis. For d′ | P , one finds using
Lemma 3 of [27] (and its proof) that

〈θi(d′z), θ̃κ(sz)〉 =
∏
q

Rq · 〈θκ, θκ〉,(5.8)

where Rq = 1 except in the cases listed below:
(i) If q | N+, q - ν, q 6∈ T ,

Rq =
aq(θκ)

qk(q + 1)
, if q - d′, Rq = q−(k+1), if q | d′.

(ii) If q | N+, q ∈ T ,

Rq =
qβq − αq

qk+1(q + 1)
, if q ∈ Ti, Rq =

qαq − βq

qk+1(q + 1)
, if q ∈ T \ Ti.

(iii) If q | N−, q - ν, χ0,q unramified,

Rq = 1, if q - d′, Rq = 0 if q | d′.
(iv) If q | N−, q - ν, χ0,q ramified,

Rq = 1, if q - d′, Rq = 0 if vq(d′) = 1, Rq = q−(k+2) if vq(d′) = 2.

(v) If q ∈ Ω̃′,

Rq =
q − 1

q
, if q - d′, Rq = 0, if q | d′.
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(vi) If q = 2 6∈ T ,

Rq =





aq2(θκ)− εθκ(q)qk−1

q2k−1(q + 1)
, if q - d′;

aq(θκ)
q2k−1(q + 1)

if vq(d′) = 1;

q−2k if vq(d′) = 2.

where εθκ is the central character of θκ. On the other hand, if q = 2 ∈ T ,

Rq =





βq(qβq − αq)
q2k(q + 1)

, if q ∈ Ti;

αq(qαq − βq)
q2k(q + 1)

, if q ∈ T \ Ti and uq = αq;

0, if q ∈ T \ Ti and uq = 0.

Further
(4π)k+1

k!
〈θκ, θκ〉 = Ress=k+1 D(s, θκ̄, θκ) =

∏
q

Cq(1) · L(1, κ−1κρ)L(1, ηK)
ζQ(2)

.

(5.9)

Recall that we have defined for each q (including q = ∞) an algebraic integer cq such
that

∑
q vπ̃(cq) = vπ̃(cf,χ). Since p - q(q + 1) for q | N , p - d and L(1, ηK) = 2πhK/w

√
d,

combining (5.8) and (5.9), we get

vπ̃

(
cf,χ

π2k+1〈gi(z), θ̃κ(sz)〉
Ω2k

)
≥

∑
q<∞

vπ̃(cqCq(1)) + vπ̃(c∞) +
∑

q∈Σ′
vπ̃(q − 1) +

∑

q∈Ti

vπ̃

(
αq

βq
− q

)
+ vπ̃

(
πk−1hKL(1, κ−1κρ)

Ω2k

)
.

One checks immediately that for finite q, vπ̃(cqCq(1)) = 0 unless q | ν, q - N and q is
unramified in K, in which case it equals k+1

2 vπ̃(q) or vπ̃(q + 1) according as q is split or
inert in K. On the other hand, vπ̃(c∞) = k

2vπ̃(ν), whence we get the equality of the lemma,
noting that if q | ν and q = p, q must be split in K. ¥

Note that in the case vπ̃(δi) ≥ 0, Thm. 5.6 follows immediately from the above lemma
since all the terms on the right in the statement of the lemma are nonnegative. Therefore
we may assume that vπ̃(δi) = −ei with ei > 0. Now write

S = Vi ⊕⊕j 6=iVj ⊕W

with W the orthogonal complement to ⊕jVj (the oldspace of θκ). Further suppose W =
W1 ⊕ W2 where W1 is the subspace of W spanned by all the oldspaces corresponding
to newforms in S that are theta functions associated to Grossencharacters of K and are
congruent to θκ modulo λ. Thus g′ = g′1 + g′2 for a uniquely determined g′1 ∈ W1, g

′
2 ∈ W2.

We will now need to study in more detail the space W1. We have the following proposition.

Proposition 5.9. Let κ′ be a Grossencharacter of K of type (k, 0) such that θκ′ ∈ S and
θκ′ is congruent modulo λ to θκ. Then κ′ = κ · ε for a finite order character ε of K×

A that
satisfies
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(i) ε|Q×A = 1, and

(ii) ε is unramified outside the set of primes Ω̃′′ := {q | ν, q - N,
(

d
q

)
= −1}.

Proof: We begin with a modification of the argument in the proof of Prop. 2.2 of [14].
Let κ′ be a Grossencharacter of K of type (k, 0) such that θκ′ is congruent modulo λ to
θκ. Thus the mod λ representations of Gal(Q/Q) associated to θκ′ and θκ must be equal.
Restricting to Gal(Q/K) one must have κ̃λ ⊕ κ̃ρ

λ = κ̃′λ ⊕ κ̃′λ
ρ
.

We claim that, with our assumptions, κ̃λ 6= κ̃′λ
ρ
. Indeed, if p - ν, both κ and κ′ are

unramified at p, and the same argument as in [14] shows that κ̃λ 6= κ̃′λ
ρ

provided p > k + 1.
If on the other hand p | ν, κ2 is unramified at p, whence κ′2 must also be unramified at p.
Since κ2 has weight (2k, 0), the argument cited above then shows that (κ̃λ)2 6= (κ̃′λ

ρ
)2 (and

hence κ̃λ 6= κ̃′λ
ρ
) provided p > 2k + 1.

Thus we must have κ̃λ = κ̃′λ. Let ε = κκ′−1 so that ελ = κ−1
λ κ′λ and ε̃λ = 1. Since

θκ′ ∈ S, it must have the same central character as θκ. Thus ε is a finite order character
with ε|Q×A = 1.

We now show that ε must be unramified outside the set of primes of K that lie over
{q | ν,

(
d
q

)
= −1}. To start with, it is clear that ε must be unramified outside the primes

above m. If q | N+, q = qq in K, the condition ε|Q×A = 1 forces fε,q = fε,q. Since vq(mi) ≤ 2,
one sees that ε is at worst tamely ramified at q and q. But ε̃λ = 1 and p - q − 1 by
assumption, hence ε must in fact be unramified at q and q. Similarly, if q | N−, so that q is
inert in K, ε must be at worst tamely ramified and hence unramified at q since p - q2 − 1.
If q | d and q - ν, vq(mi) ≤ 1, hence κi and ε must be unramified at such q. If q | ν and
q = qq is split in K, identifying Kq ' Qq ×Qq one has κq = (κq,1, κq,2) where κq,1χν,q and
κq,2 are unramified. As before, the condition ε|Q×A = 1 forces fε,q = fε,q. Since vq(mi) ≤ 1,
if ε were ramified at q and q, εqχν,q and εqχν,q would both have to be unramified. However
the condition ε̃λ = 1 now forces ε to be unramified at q and q since p 6= 2 and χν,q|Z×q
is a nontrivial quadratic character. Finally, if q | (ν, d), vq(mi) ≤ 2, hence ε is at worst
tamely ramified at q. However the condition ε|Q×A = 1 forces ε to be unramified at q. This
completes the proof of the proposition. ¥

Recall from the statement of the proposition that Ω̃′′ has been defined to be the set of
primes q | ν, q - N such that q is inert in K. Let κ′ and ε be as in the proposition and
let q ∈ Ω̃′′. Since vq(mi) ≤ 2, ε must be a tamely ramified or unramified character with
εq|Z×q =1. Let Uq = O×Kq

. Then εq|Uq factors through the quotient Uq/U ′
q where U ′

q is the
subgroup Z×q (1 + qOKq) of index q + 1. Set U ′ =

∏
q 6∈Ω̃′′ Uq ×

∏
q∈Ω̃′′ U

′
q so that ε factors

through the abelian extension K ′ of K corresponding the open subgroup K×U ′K×∞ of K×
A .

We may thus think of ε as being a character of G′ where G′ is the p-part of the Galois
group Gal(K ′/K) ' K×

A /K×U ′K×∞ (thought of as a quotient of Gal(K ′/K)). In this way
one obtains a bijection between the set of κ′ with θκ′ congruent to θκ modulo λ and the
nontrivial characters ε of the group G′. Notice that vπ̃(|G′|) = vπ̃(hK) +

∑
q∈Ω′′ vπ̃(q + 1).

Also note that for any such character ε, ε|Q×A = 1 (thinking of ε as a character of K×
A ). In

particular for any prime q = qq split in K at which ε is unramified, ε(q)ε(q) = 1.
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Suppose that G′ ∼= C1×C2× . . . Cv with Cl being the cyclic factors of G′ and |Cl| = pal .
For l = 1, . . . , v, let ξl be a generator of Cl and εl be a generator of the character group of
Cl. Also, we now pick for each l, l = 1, . . . , v, a prime ql such that

(i) ql is split in K, ql = qlql and ql, ql are unramified in K ′.

(ii) Frobql
corresponds to the element (1, . . . , ξl, . . . , 1) i.e. the element of G′ that projects

to 1 on the factor Cj for j 6= l and that projects to ξl on the factor Cl.

(iii) ql - pN and (η′ · χ0 ◦ N)2(ql) 6≡ 1 mod π̃.

Since (η′ · χ0 ◦ N)2 is a Hecke character of type (−2k, 2k) with conductor only divisible
by the primes above N (recall p > 2k + 1), and since ε has conductor divisible only by the
primes in Ω′′, a simple application of Chebotcharev’s theorem allows us to pick primes ql

satisfying the properties above. Now define a Hecke operator ∆ by

∆ =
v∏

l=1

pal−1∏

j=1

(Tql
− κ(ql)ε

j
l (ql)− κ(q)εj

l (ql)).

Since

g = δigi +
∑

j 6=i

δjgj + g′1 + g′2

we see that gi ≡ H mod π̃ei where H is given by

H = −δ−1
i (

∑

j 6=i

δjgj + g′1 + g′2).

Notice that H is in fact p-integral since H = gi−δ−1
i g and that H ∈ ⊕j 6=iVj⊕W . Applying

the integral Hecke operator ∆ to the equation gi ≡ H mod π̃ei , we see that

∆gi ≡ ∆H mod π̃ei .

We now state and prove two lemmas about ∆gi and ∆H.

Lemma 5.10. ∆H ∈ W̃ := ⊕j 6=iVj ⊕W2.

Lemma 5.11. ∆gi = α̃gi with α̃ ∈ F ′ satisfying vπ̃(α̃) = vπ̃(|G′|).
We first prove Lemma 5.10. It suffices to show that ∆ annihilates any newform θκ′ which

is congruent to θκ mod λ. Write κ′ = κ · ε and suppose that ε =
∏v

l=1 εbl
l for 0 ≤ bl ≤ al.

Since ε is not the trivial character we may pick j such that bj 6= 0. The Hecke operator
Tqj − κ(qj)ε

bj

j (qj) − κ(qj)ε
bj

j (qj) occurs as a factor of ∆. On the other hand this Hecke
operator acts on θκ′ with eigenvalue

κ(qj)
v∏

l=1

εbl
l (qj) + κ(qj)

v∏

l=1

εbl
l (qj)− κ(qj)ε

bj

j (qj)− κ(qj)ε
bj

j (qj)

= κ(qj)ε
bj

j (qj){
∏

l 6=j

εbl
l (qj)− 1}+ κ(qj)ε

bl
l (qj){

∏

l 6=j

εbl
l (qj)− 1}

= 0

since εl(qj) = εl(qj) = 1 for l 6= j. Thus ∆θκ′ = 0 as well, as was required to be shown.
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Now we prove Lemma 5.11. Clearly ∆gi = α̃gi, where

α̃ =
v∏

l=1

pal−1∏

j=1

(κ(ql) + κ(ql)− κ(ql)ε
j
l (ql)− κ(q)εj

l (ql)).

Here εl(ql) = ζl, with ζl a primitive palth root of unity. Let βl = κ(ql)+κ(ql)−κ(ql)ε
j
l (ql)−

κ(q)εj
l (ql). Then

vπ̃(βl) = vπ̃

(
κ(ql)(1− ζj

l ) + κ(ql)(1− ζ−j
l )

)
= vπ̃(1− ζj

l ) + vπ̃

(
ζj
l κ(ql)− κ(ql)

)
.

We claim that vπ̃

(
ζj
l κ(ql)− κ(ql)

)
= 0. Suppose to the contrary that ζj

l κ(ql) − κ(ql) ≡ 0

mod π̃. Then κ(ql) ≡ ζj
l κ(ql) ≡ κ(ql) mod π̃. Since κ(κρ)−1 = η̃(η̃ρ)−1 = η′ · (χ0χν ◦ N),

we get η′ · (χ0χν ◦ N)(ql) ≡ 1 mod π̃, hence (η′ · χ0 ◦ N)
2
(ql) ≡ 1 mod π̃. However we

have chosen ql to expressly avoid this congruence, hence the claim above is verified. Thus

vπ̃(α̃) =
v∑

l=1

pal−1∑

j=1

vπ̃(1− ζj
l ) =

v∑

l=1

vπ̃(pal) = vπ̃(|G′|),

which proves Lemma 5.11.
Now consider the congruence α̃gi ≡ ∆H mod π̃ei . If vπ̃(α̃) ≥ vπ̃(ei), Thm. 5.6

follows again from Lemma 5.7 since vπ̃(α̃) = vπ̃(|G′|) = vπ̃(hK) +
∑

q∈Ω̃′′ vπ̃(q + 1) =
vπ̃(hK) +

∑
q∈Ω̃′′ fq. Thus we may assume that vπ̃(α̃) < vπ̃(ei). In this case, gi ≡ α̃−1∆H

mod π̃ei−vπ̃(α̃) and α̃−1∆H is a p-integral form in W̃ . Set e = ei − vπ̃(α̃). Let T′ be
the subalgebra of EndC(W̃ ) generated by the image of T̃ and let T = T′ ⊗ O. Define
I = AnnT(α̃−1∆H mod π̃e). Then T/I ' O/π̃e and the elements T ′ − λθi

(T ′) ∈ I for all
T ′ ∈ T′.

Let [W̃ ] be a set of representatives for the eigenspaces of T̃ contained in W̃ and F be the
ring

∏
h′∈[W̃ ] F

′ (where by h′ ∈ [W̃ ] we mean h′ is any normalized eigenform of T̃ contained

in W̃ , i.e. with first Fourier coefficient equal to 1.) Then T is naturally a subring of F via
the embedding given by the various characters of T′ and T ⊗O F ′ = F . Let V = F ⊕ F
and L =

∏
h′∈[W̃ ] O

2 ⊂ V . Then L is a sublattice of V that is stable under the action
of T. Below we write K ′

h′ for the appropriate copy of the field F ′ in F (and O′h′ for the
appropriate copy of O) so that F =

∏
h′∈[W̃ ] K

′
h′ .

Let β be the maximal ideal of T̃ containing I and let Lβ denote the completion of L at
β. The natural map L 7→ Lβ factors through

∏
h′∈[W̃ ](O

′
h′,λ)2. As in [22], Lemma 4.5 and

Lemma 4.6 (note our slightly different notation), one has

Lemma 5.12. (i) If (O′h′,λ)2 is not in the kernel of the map L → Lβ, then h′ is congruent
to θi mod λ i.e. the characters of T̃ corresponding to h′ and θi are congruent mod λ.

(ii) If h′ is an eigenform in W2 corresponding to a theta lift from K, then (O′h′,λ)2 is in
the kernel of this map.

(iii) The terms (O′θj ,λ)2, j 6= i are in the kernel of this map.

Lemma 5.13. Let [W] denote the set of forms h in [W̃ ] such that one of the eigenforms
h′ of T̃ corresponding to h is congruent to θi mod λ. Then, for each such h exactly one of
the eigenforms corresponding to h can be congruent to θi mod λ. Denoting this eigenform
by h′, one has Lβ ' (

∏
h∈[W] O

′
h′,λ)2 and Tβ ⊗O F ′ ' ∏

h∈[W] K
′
h′,λ.
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Since Vβ = Lβ⊗OF ′ ' (
∏

h∈[W] K
′
h′,λ)2 ' ∏

h∈[W](K
′
h′,λ)2, and Kh,λ is contained in K ′

h′,λ,
Vβ2 is naturally a representation space for Gal(Q/Q), the action on the component Vh,λ =
(K ′

h′,λ)2 being via ρh,λ. The Galois action preserves Lβ and thus Lβ is a Tβ[Gal(Q/Q)]
module with commuting actions of the Galois group and the Hecke algebra. We shall only
be concerned with its structure as a Tβ[Gal(Q/K)] module.

Let κλ and κρ
λ denote the λ-adic characters associated to κ and κρ respectively, and

denote by κ̃λ and κ̃ρ
λ their reductions mod λ. An application of the Brauer-Nesbitt theorem

gives

Lemma 5.14. Let L be a compact sub-bimodule of Vβ. Suppose that U is an irreducible
subquotient (as Tβ[Gal(Q/K)] module) of L/πrL for some r. Then U has one of the
following two types.
(i) U ' Tβ/βTβ ' Oπ/πOπ with Gal(Q/K) acting via κ̃λ.
(ii) U ' Tβ/βTβ ' Oπ/πOπ with Gal(Q/K) acting via κ̃ρ

λ.

We say that U is of type κ or κρ respectively in these two cases. Note that these types
are distinct since κ̃λ 6= κ̃ρ

λ. Indeed since p > 2k + 1, κ̃λ is ramified at p and unramified at p

while κ̃ρ
λ is unramified at p and ramified at p.

By the method of [22] (p. 947-950) one constructs a compact sub-bimodule L of Vβ such
that L/IL sits in an exact sequence of bimodules

0 → C → L/IL → M → 0(5.10)

such that M is a free module of rank one over Tβ/I, C ' L0/IL0 for a faithful Tβ module
L0 and the action of Gal(Q/K) on C (resp. M) is given by κ̃λ (resp. κ̃ρ

λ). Let g be the
conductor of η′ · χ ◦N, Kg denote the ray class field of K modulo g and set K0 = Kg(

√
ν).

Let K∞ be the unique Z2
p extension of K0 abelian over K (so that κλ factors through

Gal(K∞/K)) and L′ the splitting field over K∞ of the representation L/IL. Denote by G′
the Galois group Gal(L′/K∞). We define a pairing

G′ ×M → C, 〈σ,m〉 7→ σm̃− κλ(g)m̃,(5.11)

where m̃ is any lift of m to L/IL. The following lemma may be proved in exactly the same
way as Lemma 4.12 of [22].

Lemma 5.15. The extension L′/K∞ is unramified outside the primes lying above Ξ ∪ p
where Ξ is the following set of primes in K.

Ξ = {2} ∪ {q; q | ν} ∪ {q; q ∈ Ti} ∪ {q, q; q | N+, nq > 0} ∪ {q; q | N−, nq > 0}.
We view the pairing (5.11) as one of Gal(Q/K) modules where Gal(Q/K) acts on G′ in

the usual way (via conjugation). Then we obtain a Galois equivariant injection

G′ ↪→ HomR(M,C).(5.12)

Let Rκ be the ring generated over Zp by the values of κλ = χλ(χρ
λ)−1. The image of G′

under (5.12) is easily seen to be stable under Rκ, and this gives G′ the structure of an Rκ

module. We thus get a map φ : G′ ⊗Rκ Oπ → HomOπ(M, C) = C.

Lemma 5.16. The map φ is surjective. Also FittOπ(G′ ⊗Rκ Oπ) ⊆ πe.

Proof: See [22], Lemma 4.13. ¥
We now assume that p - hK . Thus p - [K0 : K] as well. An application of the main

conjecture as in [22], Sec. 4.3 yields
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Proposition 5.17. Let ε = κ(κρ)−1N, and let γ be given by

γ = G(ε)
(

1− ε(p)
p

)
(1− ε−1(p))

πk−1Lg ∪ Ξ(1, κ−1κρ)
Ω2k

,

where G(ε) is the modified Gauss sum defined in [6] Thm 4.14. Then

FittRκ(G′) ⊇ (γ).

One can check easily that 1− ε(p)
p and 1−ε−1(p) are λ-units and vπ̃(G(ε)) = (k+ 1

2)vπ̃(|ν|).
(For the computation of vπ̃(G(ε)) the reader may also refer to II Sec. 6.3 of [6] or the remarks
in Sec. 7.6 of [7].) Further one checks immediately that for q ∈ g ∪ Ξ, the Euler factor at q
of ε−1 evaluated at 0 is a p-unit except possibly when q2 = (q), q | (ν, d) or q ∈ Ti. In these
case, the inverse of the Euler factors evaluated at 0 have p-adic valuation equal to that of
q − 1 and αq

βq
− q respectively. Since fq = (k + 1

2)vπ̃(q) for q | ν,
(

d
q

)
= 1, fq = vπ̃(q − 1) for

q | (ν, d), and (γ) ⊆ (πe) from the previous proposition and lemma, we get

e ≤
∑

q|ν,q-N,
(

d
q

)
6=−1

fq +
∑

q∈Ti

vπ̃

(
αq

βq
− q

)
+ vπ̃

(
πk−1 · L(1, κ−1κρ)

Ω2k

)
.

Since e = ei − vπ̃(α̃) where vπ̃(α) =
∑

q∈Ω′′ fq + vπ̃(hK), we get finally

Theorem 5.18. Assume p - hK . Then

ei ≤
∑

q|ν,q-N
fq +

∑

q∈Ti

vπ̃

(
αq

βq
− q

)
+ vπ̃

(
πk−1 · hK · L(1, κ−1κρ)

Ω2k

)
.

Combining the theorem above with Lemma 5.7 completes the proofs of Thms. 5.6 and
5.5.

Remark 5.19. We have assumed that p - hK since we need p - [K0 : K] in order to apply
Rubin’s theorem [25]. However we have stated the above theorem including the term hK

since the statement above is presumably true even without the assumption p - hK .

6. Applications

6.1. A plethora of formulae. Recall the following notation and results from the previous
chapters:
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f ∈ S2k(Γ0(N)), g ∈ S2k(Γ), g := JL(f)

ν an odd fundamental quadratic discriminant, χν =
(ν

·
)

, ψ′ := ψ1/|ν|

χ a finite order character, N ′ := cχ | 4N,M := gcd(4, N ′N)
F0 = a number field over which B splits.
F̃0 = Q if k = 1, F̃0 = F0 if k ≥ 2.

F = a number field containing F0 and all the eigenvalues of f.

F (χ) = the field generated over F by the values of χ.

Q(f, χ) = the field generated over Q by the eigenvalues of f and the values of χ.

sgχ := a newform in π′ ⊗ χ, well defined up to a λ-unit in Q(f, χ).

hχ ∈ Sk+ 1
2
(M, χ, fχ), t := thχ ∈ Ãk+ 1

2
(M, χ0, fχ), both well defined up to

a λ-unit in Q(f, χ).
s := sgχ ⊗ χ−1χν ◦Nm ∈ π′ ⊗ χν .

ϕ ∈ V (A), t′ := t(ψ′, ϕ, s), s′ := T (ψ′, ϕ, t).

We have shown that

t′ = α′u+(gχ)t = αuε(g)t, i.e. t′ = tαuε(g)hχ
.

s′ = βs, with α := α/g(χ) ∈ F (χ), vλ(α), vλ(α) ≥ 0,

β := ik+τg(χ)β ∈ Q(f, χ), vλ(β) ≥ 0.

We now write down several formulae that explain the relations between the objects and
quantities mentioned above. All the constants below are completely explicit, but for ease
of notation we suppress their exact values.
1. See-Saw duality

〈t, t′〉 = 〈s′, s〉.
⇒ ᾱuε(g)〈hχ, hχ〉 = β〈gχ, gχ〉.(6.1)

2. The formula from Prop. 4.1 for the Fourier coefficients of t′: for ξ satisfying the conditions
(a) If q | N , q - ν,

(
ξ0
q

)
6= −wq;

(b) If q | N , q | ν,
(

ξ0
q

)
= −wq;

(c) ξ0 ≡ 0, 1 mod 4;

|αuε(g)aξ(hχ)|2 = C(f, χ, ν)π−2k|νξ|k− 1
2 L(

1
2
, πf ⊗ χν)L(

1
2
, πf ⊗ χξ0) ·

〈gχ, gχ〉
〈fχ, fχ〉

(6.2)

for an explicit nonzero constant C(f, χ, ν) ∈ Q×.

3. A formula of Baruch and Mao [1] for the Fourier coefficients of hχ: for the ξ satisfying
conditions (a),(b),(c) above,
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|aξ(hχ)|2
〈hχ, hχ〉 = C ′(f, χ)

π−k|ξ|k− 1
2 L(1

2 , π ⊗ χξ0)
〈f, f〉(6.3)

for an explicit nonzero constant C(f, χ) ∈ Q×.

4. Taking the ratio of (6.2) to (6.3), we get

|αuε(g)|2〈hχ, hχ〉 =
C(f, χ, ν)
C ′(f, χ)

· π−k|ν|k− 1
2 L(

1
2
, π ⊗ χν)

〈f, f〉
〈fχ, fχ〉 · 〈gχ, gχ〉.(6.4)

Set C ′′(f, χ, ν) := C(f,χ,ν)
C′(f,χ) ·

〈f,f〉
〈fχ,fχ〉 . Now substituting (6.1) in (6.4) yields the fundamental

formula

Theorem 6.1.

αβuε(g) = C ′′(f, χ, ν) · π−k|ν|k− 1
2 L(

1
2
, π ⊗ χν).(6.5)

5. As a bonus, multiplying both sides of (6.1) by β̄ gives

ββ̄〈gχ, gχ〉 = ᾱβ̄ūε(g)〈hχ, hχ〉 = αβuε(g)〈hχ, hχ〉.
i.e. 〈s′, s′〉 = 〈βg, βg〉 = C ′′(f, χ, ν) · π−k|ν|k− 1

2 L(
1
2
, π ⊗ χν)〈hχ, hχ〉.(6.6)

This is nothing but the explicit version of the Rallis inner product formula.

6.2. Period ratios of modular forms. Proofs of Thms. 1.1 and 1.2:
We begin by making use of the main formula (6.5). In the notation of the introduction,

we have

αβuε(g) = C ′′(f, χ, ν)A(f, ν)uε(f)

since α = α/g(χ), β = ik+τg(χ)β and g(χν) = iτ |ν|1/2. Under the assumption p - Ñ ,
one checks easily that C ′′(f, χ, ν) is a p-unit in Q. Since α ∈ F (χ),β ∈ Q(f, χ) and
A(f, ν) ∈ Q(f), we have uε(f)/uε(g) ∈ F (χ). Setting χ = 1 (and making an appropriate
compatible choice of ν), we obtain the reciprocity law of Thm. 1.1 by combining (4.5),
(5.7) and Thm 1, (iii) of [31]. Further, we have shown that vλ(α) ≥ 0, vλ(β) ≥ 0. Thus, if
A(f, ν) is a p-unit, we get vλ(uε(f)/uε(g)) ≥ 0. This completes the proof of Thm. 1.2 of
the introduction. ¥

6.3. Isogenies between new-quotients of Jacobians of Shimura curves. We show
now, if N is odd and square-free, that J0(N)new and Jac(X)new are isogenous /Q without
using Faltings’ isogeny theorem. Indeed it suffices to prove the following

Theorem 6.2. Let Af and Ag denote the abelian variety quotients of J0(N) and Jac(X)
corresponding to newforms f and g that are Jacquet-Langlands transfers of each other. Then
Af and Ag are isogenous over Q.

Proof: Let Vf = ⊕Cfσ ⊂ S2(Γ0(N))new, Vg = ⊕Cgσ ⊂ S2(Γ)new, where σ runs over
the embeddings of Q(f) in C. Then we have canonical identifications of Vf , Vg with the
cotangent space at the identity of Af , Ag respectively. Further, if f, g are chosen to be Q(f)-
rational, then the Q-subspaces Vf,0 := {∑σ aσfσ : a ∈ Q(f)}, Vg,0 := {∑σ bσgσ : b ∈ Q(f)}
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are identified with the natural Q-structures on Vf , Vg respectively coming from the Q-
structures of Af , Ag. Let ξf : V ∨

f → Af , ξg : V ∨
g → Ag denote the canonical exponential

uniformizations and Lf , Lg the kernels of ξf , ξg respectively.
Define a C-linear isomorphism ϕ : Vg → Vf by ϕ(gσ) = fσ. Clearly ϕ restricts to

a Q-linear isomorphism of Vf,0 onto Vg,0. Now consider the dual map ϕ∨ : V ∨
f → V ∨

g .
We claim that ϕ∨ maps Lf ⊗ Q isomorphically onto Lg ⊗ Q. To prove this note first
that H1(X0(N),C) ' H1

p (Γ0(N),C) is spanned by the classes ξ±(f ′) (for varying f ′ ∈
S2(Γ0(N)). (Here we use the notation of Sec. 4.3, except we write ξ± for ξ±(f ′,Kf ′)).
Since J0(N) ³ Af , H1(Af ,C) ⊆ H1(X0(N),C). Further the Q-subspace H1(A,Q) is given
by

H1(Af ,Q) = {
∑

σ

(aσξ+(fσ) + bσξ−(fσ)) : a, b ∈ K(f)}.

Likewise H1(X,C) ' H1
p (Γ,C) is spanned by the classes ξ±(g′) for varying g′ and

H1(Ag,Q) = {
∑

σ

(aσξ+(gσ) + bσξ−(gσ)) : a, b ∈ K(f)}.

Now Lf ⊗Q ' H1(Af ,Q), Lg ⊗Q ' H1(Ag,Q). Let {ξ∗±(fσ)} (resp. {ξ∗±(gσ)}) denote the
basis of H1(Af ,Q) (resp. of H1(Ag,Q)) that is dual to the basis {ξ±(fσ)} (resp. {ξ±(gσ)}).
It is easy to see that

ϕ∨(ξ∗±(fσ)) =
u±(fσ)
u±(gσ)

ξ∗+(gσ).

The rationality result Thm. 1.1 implies then that ϕ∨ carries Lf ⊗ Q isomorphically
onto Lg ⊗ Q and hence Lf into a lattice commensurable with Lg. Thus nϕ∨ for n a
sufficiently large integer, induces an isogeny from Af to Ag, that must be defined over some
number field. Since ϕ restricts to a Q-linear isomorphism of Vf,0 = H0(Af,Q,Ω1) onto
Vg,0 = H0(Ag,Q,Ω1), this isogeny must in fact be defined over Q. ¥

Appendix A. An integrality property for the Atkin-Lehner operator
by Brian Conrad

Let Q and Q′ be relatively prime positive integers and let N = QQ′. For k ≥ 1 let wQ,k

denote the usual Atkin-Lehner involution on the space Mk(Γ0(N)) of weight-k classical
modular forms on Γ0(N), defined by

f 7→ f |k
(

a b
c d

)

for any a, b, c, d ∈ Z such that N |c, Q|a, Q|d, and ad−bc = Q. For f ∈ Mk(Γ0(N)) such that
the q-expansion f∞(q) ∈ C[[q]] at the cusp ∞ has all coefficients in a number field K ⊆ C,
it is an easy consequence of the algebraic theory of modular forms (as in [16, §1]) that
the q-expansion (wQ,k(f))∞(q) also has all coefficients in K. We aim to prove a stronger
integrality property:

Theorem A.1. Fix a prime p - Q and a prime p of K over p. If f ∈ M(Γ0(N)) satisfies
f∞(q) ∈ OK,p[[q]] then likewise wQ,k(f) has p-integral q-expansion coefficients at ∞. More
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generally, if R ⊆ C is any Z[1/Q]-subalgebra and if f has all q-expansion coefficients at ∞
lying in R then the same holds for wQ,k(f).

To prove this theorem we wish to use an integral model for a modular curve by interpreting
f as a section of a line bundle and identifying wQ,k as the pullback operation on its global
sections induced by line bundle map covering a self-map of such an integral model. The most
natural way to do this is to work with the moduli stack X0(N) over SpecZ that classifies
generalized elliptic curves equipped with a Γ0(N)-structure (i.e., ample finite locally free
subgroups of the smooth locus that have order N and are cyclic in the sense of Drinfeld);
working over SpecZ(p) for a prime p - Q is all that we really require. This stack is generally
only an Artin stack (especially when working over Z(p) with p2|N , which is certainly a case
of much interest). In [4] the basic theory of such stacks was systematically developed by
building on the work [5] of Deligne and Rapoport over Z[1/N ] and the work [17] of Katz and
Mazur over Z away from the cusps, and for example it is shown there (see [4, Thm. 1.2.1])
that X0(N) is a normal (even regular) Artin stack that is proper and flat over Z with
geometrically connected fibers of pure dimension 1.

Remark A.2. For the purposes of proving Theorem A.1 it will turn out to only be necessary
to work with certain open substacks of X0(N) that are Deligne–Mumford stacks. In fact,
by working systematically with enough auxiliary prime-to-p level structure to force stacks
to be schemes it is possible to prove Theorem A.1 for normal R without leaving the category
of schemes. (The role of normality is to make it harmless to check the result after adjoining
roots of unity to R so that the Tate curve over R[[q]] admits enough auxiliary level structure.)
However, it is certainly more natural to work directly with stacks, and to avoid unnecessary
normality hypotheses on R it seems to be unavoidable to use stacks. For these reasons, we
have decided to work directly on X0(N) rather than try to avoid it.

Since R is a flat Z[1/Q]-algebra we have R = ∩p-QR(p) with the intersection taken inside
of RQ = R⊗Q. It therefore suffices to prove Theorem A.1 for each R(p), so from now on we
may and do assume that R ⊆ C is a Z(p)-subalgebra for a fixed choice of prime p - Q. We
let U ⊆ X0(N)Z(p)

be the open substack that has full generic fiber and (irreducible) closed
fiber classifying level-structures with multiplicative p-part. The idea for proving Theorem
A.1 is rather simple: identify the space of classical modular forms having p-adically integral
q-expansion at ∞ with the space of U -sections of the line bundle of weight-k modular forms
over X0(N), and then invoke the fact that for any line bundle on a Z(p)-flat normal Artin
stack (such as U ) any section over the generic fiber extends (uniquely) to a global section
if it extends over some open locus meeting every irreducible component of the closed fiber
(as then it is “defined in codimension 1”). To make this idea work we use a geometric
Atkin-Lehner self-map wQ of both U and the universal generalized elliptic curve over U ,
and the construction of this map rests on the fact that p - Q and UFp classifies precisely
the level structures in characteristic p with multiplicative p-part. The relevant technical
problems were either solved in [4] or will be settled by adapting arguments given there.

As a first step, we shall translate our given setup into purely algebro-geometric language.
The underlying set of the classical analytic modular curve X0(N) is identified with the
set of isomorphism classes of objects in the category X0(N)(C), and in this way the cusp
∞ arises from the object in X0(N)(SpecZ) given by the standard Néron 1-gon C1 over
SpecZ equipped with the cyclic subgroup µN ⊆ Gm = Csm

1 . This object over SpecZ
canonically lifts to a morphism SpecZ[[q]] → X0(N) given by the Tate curve Tate equipped
with Γ0(N)-structure µN ⊆ Tatesm[N ]. We refer the reader to [4, §2.5] for a review of
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the basic facts from the algebraic and formal theories of the Tate curve, including the
existence and uniqueness of an isomorphism of formal Z[[q]]-group schemes Tate∧0 ' Ĝm

(formal completion along the identity) lifting the evident isomorphism modulo q. Since
global sections of the relative dualizing sheaf of a generalized elliptic curve are canonically
identified (via restriction) with invariant relative 1-forms over the smooth locus (as each of
these spaces of sections is compatibly identified with the space of sections of the cotangent
space along the identity section), the relative dualizing sheaf of Tate → Z[[q]] admits a
unique trivializing section whose pullback to Tate∧0 goes over to the invariant 1-form dt/t
on the formal multiplicative group; this trivializing section is also denoted dt/t. Let us
now briefly recall how the Tate curve underlies the algebraic theory of q-expansions, and
the relation of this algebraic theory with the analytic theory of q-expansions. If E → S
is a generalized elliptic curve then we write ωE/S to denote the pushforward of its relative
dualizing sheaf; this is a line bundle on S whose formation commutes with any base change
on S [5, II, 1.6], so we get an invertible sheaf ω = ωE /X0(N) on X0(N). For any ring A
we write ωA to denote ωEA/X0(N)A

(with EA → X0(N)A denoting the scalar extension of
E → X0(N) by Z→ A), so there is a canonical A-linear map

H0(X0(N)A, ω⊗k
A ) → H0(SpecA[[q]], ω⊗k

TateA /A[[q]]) = A[[q]]

using the basis (dt/t)⊗k (with TateA denoting the scalar extension on Tate by Z[[q]] → A[[q]]).
This map is called the algebraic q-expansion at ∞ over A. In the special case A = C, descent
theory and GAGA provide a canonical C-linear isomorphism

H0(X0(N)C, ω⊗k
C ) ' Mk(Γ0(N))

that identifies the analytic q-expansion at∞ and the algebraic q-expansion at∞ over C; this
is proved as in [5, IV, §4] (which treats Γ(N)). Since the natural map M ⊗B B[[q]] → M [[q]]
is injective for any module M over any noetherian ring B (such as B = Z), the image of
the q-expansion map over a ring A lies in A⊗Z Z[[q]].

By descent theory, the q-expansion principle as in [16, 1.6.2] ensures that for any Z[1/N ]-
algebra A ⊆ C the A-submodule of classical modular forms in Mk(Γ0(N)) with q-expansion
in A[[q]] coincides with

H0(X0(N)A, ω⊗k
A ) ⊆ H0(X0(N)C, ω⊗k

C ).

However, this fails for more general subrings of C in which N is not necessarily a unit
because fibers of X0(N) in characteristic dividing N are reducible. This is why we will
need to make fuller use of the structure of X0(N) near ∞ in characteristic p in order to
prove Theorem A.1.

We now construct the analytic operator wQ,k algebraically over Z(p) for an arbitrary
prime p (allowing p|Q). Using primary decomposition for cyclic subgroups in the sense of
Drinfeld, for any scheme S the objects in the category X0(N)(S) may be described as triples
(E; CQ, CQ′) where E → S is a generalized elliptic curve, CQ and CQ′ are finite locally free
cyclic subgroups of the smooth locus Esm whose respective orders are Q and Q′, and the
relative effective Cartier divisor CQ + CQ′ on E is S-ample. Letting Y0(N) ⊆ X0(N) be
the open substack classifying such triples (E; CQ, CQ′) for which E is an elliptic curve, we
can define a morphism w0

Q : Y0(N) → Y0(N) by the functorial recipe

(E;CQ, CQ′) Ã (E/CQ; E[Q]/CQ, (CQ + CQ′)/CQ).
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This is an involution in the sense that there is a canonical isomorphism of 1-morphisms
w0

Q ◦ w0
Q ' idY0(N) via the canonical isomorphism E/E[Q] ' E induced by multiplication

by Q on E. The quotient process defining w0
Q makes no sense over X0(N) because for

generalized elliptic curves there is no reasonable general theory of quotients for the action
by a finite locally free subgroup scheme of the smooth locus when there are non-smooth
fibers, but there is a unique way (up to unique isomorphism) to extend this construction
over the open substack V ⊆ X0(N)Z(p)

complementary to the closed substack of cusps in
characteristic p whose level structure has p-part that is neither étale nor multiplicative. (If
ordp(N) ≤ 1 then V = X0(N)Z(p)

.) The following lemma makes this precise.

Lemma A.3. Let (E ; C Q, C Q′) → X0(N) be the universal object, and let (E 0; C 0
Q, C 0

Q′) →
Y0(N) denote its restriction away from the closed substack of cusps. The open substack
V ⊆ X0(N)Z(p)

defined as above is Deligne–Mumford and up to unique isomorphism there
is a unique generalized elliptic curve E ′ over V equipped with a Γ0(N)-structure restricting
to

(E 0/C 0
Q; E 0[Q]/C 0

Q, (C 0
Q +C 0

Q′)/C 0
Q)

over Y0(N)Z(p)
.

Proof: By [4, Thm. 3.2.7], V lies in an open substack of X0(N)Z(p)
that is Deligne–

Mumford. Thus, V is Deligne–Mumford. Since Y0(N)Z(p)
⊆ V is the complement of a

relative effective Cartier divisor (as this even holds for Y0(N) viewed inside of X0(N),
by [4, Thm. 4.1.1(1)]), the uniqueness up to unique isomorphism follows by descent after
applying the uniqueness criterion for extending generalized elliptic curves equipped with
ample Drinfeld level structures in [4, Cor. 3.2.3] (applied over a smooth scheme covering
V ). For existence, one argues exactly as in the deformation-theoretic arguments in [4, §4.4]
where it is proved that the pth Hecke correspondence Tp on moduli stacks is defined over Z
(including the cusps). The main points in adapting this argument to work for our problem
over the Deligne–Mumford stack V are that (i) the property of p-torsion at cusps that
makes the analysis of Tp work in [4, §4.4] is that such torsion is either multiplicative or étale
on fibers (this is the main reason that we work over V rather than X0(N)Z(p)

) and (ii) if
G is a multiplicative or étale cyclic subgroup of order pn (n ≥ 1) in an elliptic curve E over
an Fp-scheme then E[pn]/G is étale or multiplicative respectively. ¥

Since the Deligne–Mumford stack V is normal, by [4, Lemma 4.4.5] the morphism w0
Q/Z(p)

has at most one extension (up to unique isomorphism) to a morphism wQ : V → V ,
and moreover such a morphism does exist via the generalized elliptic curve with Γ0(N)-
structure over V provided by Lemma A.3 (the key point is that it suffices to solve the
extension problem on deformation rings at geometric points, again by [4, Lemma 4.4.5]).
The resulting isomorphism w∗Q(E ) ' E ′ respecting Γ0(N)-structures over V defines (by
pullback) a map of line bundles ωE /V → ωE ′/V . Fix a Z(p)-algebra A, so passing to kth
tensor powers for any k ≥ 1 and using extension of scalars thereby defines an A-linear map

(A.1) H0(VA, ω⊗k
A ) → H0(VA, ω⊗k

E ′A/VA
).

We want to compose this with another map to obtain an endomorphism of H0(VA, ω⊗k
A ), at

least if Z(p) → A is flat.
Consider the canonical isogeny of elliptic curves φY : E 0 → E 0/C 0

Q over Y0(N). Since
X0(N)Q is a regular 1-dimensional Deligne–Mumford stack we can use descent theory and



62 KARTIK PRASANNA

Néron models over étale scheme covers of this stack to uniquely extend the isogeny φY/Q over
Y0(N)Q to a homomorphism φX over X0(N)Q = VQ from the relative identity component
of (EQ)sm to the relative identity component of (E ′Q)sm. But global sections of the relative
dualizing sheaf of a generalized elliptic curve are canonically identified with global sections
of the relative cotangent space along the identity section, so we can use the cotangent space
map induced by φX to define a (necessarily unique) map of line bundles ωE ′Q/VQ → ωQ over
X0(N)Q. This can be glued to the canonical pullback map over Y0(N)Z(p)

induced by φY

to define a map of line bundles from ωE ′/V to ωZ(p)
over the open substack V ′ ⊆ X0(N)Z(p)

complementary to the cusps in characteristic p. (This open complement is contained in V .)
Passing to kth tensor powers and composing with (A.1) after extending scalars to A and
forming global sections defines an A-linear map

H0(VA, ω⊗k
A ) → H0(V ′

A, ω⊗k
A ).

If Z(p) → A is flat then I claim that the target of this map coincides with the module of
VA-sections of ω⊗k

A . By the compatibility of cohomology and flat base change it suffices to
treat the case A = Z(p). Since V is a Z(p)-flat normal Deligne–Mumford stack and the open
substack V ′ contains the entire generic fiber and is dense in the closed fiber, we get the
desired equality of modules of sections.

To summarize, for any prime p and any flat Z(p)-algebra A we have defined an A-linear
endomorphism of H0(VA, ω⊗k

A ). Moreover, if p - Q then since Q-isogenies of elliptic curves
induce isomorphisms on p-power torsion, the exact same method works with V replaced by
the open substack U whose closed fiber consists of the geometric points of X0(N)Fp whose
level structure has p-part that is multiplicative. In particular, for p - Q we have constructed
an A-linear endomorphism

wQ,k/A : H0(UA, ω⊗k
A ) → H0(UA, ω⊗k

A ).

(Obviously via restriction this is compatible with the endomorphism that we have just con-
structed on sections over VA.) Note that as a special case of working over either U or V ,
by setting A = C we have constructed a C-linear endomorphism of H0(X0(N)C, ω⊗k

C ). It
is a straightforward matrix calculation with the standard Γ0(N)-structure on the universal
Weierstrass family over C−R to verify that the algebraically-defined operator wQ,k/C coin-
cides with the analytic Atkin–Lehner involution on Mk(Γ0(N)), as follows. For τ ∈ C−R and

(E; CQ, C ′
Q) = (C/Lτ , 〈1/Q〉, 〈1/Q′〉) with Lτ = Z ⊕ Zτ , if we pick γ =

(
a b
c d

)
∈ SL2(Z)

such that Q′|c and Q|d then multiplication by 1/(cτ + d) induces an isomorphism of triples

(E/CQ; E[Q]/CQ, (CQ + C ′
Q)/CQ) = (C/LQτ , 〈τ〉, 〈1/Q′〉) ' (C/Lγ(Qτ), 〈1/Q〉, 〈1/Q′〉).

Hence, wQ,k/C acting on H0(X0(N)C, ω⊗k
C ) ' Mk(Γ0(N)) is the operator

f 7→ f |k
(

aQ b
cQ d

)
,

and since N = QQ′ divides cQ this is indeed the analytic Atkin–Lehner involution wQ,k.
Thus, to conclude the proof of Theorem A.1 it remains to prove:

Lemma A.4. If p - Q and R ⊆ C is any Z(p)-subalgebra then the subset H0(UR, ω⊗k
R ) ⊆

Mk(Γ0(N)) is precisely the subset of modular forms whose q-expansion at ∞ lies in R[[q]].
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Proof: One containment is obvious by the compatibility of the algebraic and analytic
theories of q-expansion at ∞. For the reverse inclusion, suppose a modular form f ∈
Mk(Γ0(N)) satisfies f∞(q) ∈ R[[q]] ⊆ C[[q]], so at least by the q-expansion principle over
RQ = R[1/p] we may identify f with a section of ω⊗k

RQ
over X0(N)RQ = UR[1/p]. We need

to show that this section extends (necessarily uniquely) to a section of ω⊗k
R over UR. By

chasing p-powers in the denominator, it is equivalent to show that if a section σ of ω⊗k
R

over UR has all q-expansion coefficients in pR then σ/p is also a section of ω⊗k
R over UR.

A standard argument due to Katz reduces this to the case R = Z(p), as follows. Since the
q-expansion lies in the subset R ⊗Z Z[[q]] ⊆ R[[q]] and this inclusion induces an injection
modulo p, it is equivalent to prove exactness of the complex

H0(U , ω⊗k
Z(p)

⊗Z(p)
R)

p→ H0(U , ω⊗k
Z(p)

⊗Z(p)
R) → (R/pR)⊗Z Z[[q]].

By Z(p)-flatness of R and the compatibility of quasi-coherent cohomology with flat base
change, this complex is the scalar extension by Z(p) → R of the analogous such complex for
the coefficient ring Z(p), so indeed it suffices to treat the case R = Z(p).

Consider the map SpecZ(p)[[q]] → X0(N)Z(p)
associated to (Tate, µN ). This lands inside

of the open substack U and sends the closed point to ∞ in characteristic p. I claim
that the resulting morphism SpecZ(p)[[q]] → U is flat. To prove this, it suffices to check
flatness of the composition of ϕ with the faithfully flat map SpecW (Fp)[[q]] → SpecZ(p)[[q]].
Since U is Deligne–Mumford there is a well-defined complete local ring at each of its
geometric points (namely, the universal deformation ring of the structure corresponding
to the geometric point), and (Tate, µN ) over W (Fp)[[q]] is the unique algebraization of the
universal deformation of (C1, µN )/Fp

(proof: it is harmless to drop the multiplicative µN

in this deformation-theoretic claim since Csm
1 = Gm, and on underlying generalized elliptic

curves the claim is part of [4, Lemma 3.3.5]). Thus, SpecW (Fp)[[q]] → U is flat, so the
morphism ϕ : SpecZ(p)[[q]] → U is indeed flat.

To exploit this flatness, we need one further property: the image of ϕ hits each irreducible
component of UFp . In fact, UFp is irreducible. Let us briefly recall the proof. Since the
cuspidal substack in X0(N) is a relative effective Cartier divisor over Z, the cuspidal sub-
stack in UFp is a Cartier divisor. Hence, it suffices to prove irreducibility of the complement
of the cusps in UFp . This complement is the open substack of Y0(N)Fp whose geometric
points have level structure with multiplicative p-part, and to prove that this is irreducible
it suffices to check the irreducibility of the corresponding open set in the coarse moduli
space. The case p - N follows from the fact [4, Thms. 3.2.7, 4.2.1(1)] that the proper map
X0(N)Z[1/N ] → SpecZ[1/N ] is smooth with fibers that are geometrically connected (and so
geometrically irreducible), and if p|N then the irreducible components of the coarse moduli
space of Y0(N)Fp are worked out in [17, Ch. 13] where it is proved that one of these com-
ponents contains the locus with multiplicative p-part in the level structure as a dense open
subset. This furnishes the desired irreducibility.

It now remains to prove a general result on extending sections of line bundles over normal
Artin stacks by working generically on the closed fiber. To be precise, let S be a normal
locally noetherian Artin stack that is flat over a discrete valuation ring R with fraction
field K, and let ϕ : S → S be a flat map from an algebraic space S whose image hits each
irreducible component of the closed fiber of S → SpecR. If F is an OS -flat quasi-coherent
sheaf and ση ∈ FK(SK) is a section such that the pullback section ϕ∗K(ση) ∈ (ϕ∗KFK)(SK)
lies in the subset (ϕ∗F )(S ) then I claim that ση lies in the subset F (S ) ⊆ FK(SK). Using
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a smooth covering of S by an algebraic space, descent theory reduces us to the case when S
is an algebraic space, and we then similarly reduce to the case when S and S are schemes.
Working Zariski-locally then permits us to assume S = SpecA and S = Spec A′ are affine.

Letting M be the flat A-module associated to F , we seek to prove that if mη ∈ MK has
image in MK ⊗AK

A′K = (M ⊗A A′)K lying in M ⊗A A′ then mη ∈ M ⊆ MK . By Lazard’s
theorem we can express M as a direct limit of finite free A-modules, so we reduce to the
case M = A. Hence, if π is a uniformizer of R then denominator-chasing on mη reduces us
to checking that A/πA → A′/πA′ is injective. Since SpecA′ → SpecA is flat and hits every
irreducible component of the special fiber of SpecA over SpecR, for each generic point p of
this special fiber there is a point p′ of Spec A′ over p. The local map Ap → A′p′ is flat, so
it is faithfully flat. Hence, if a ∈ A becomes divisible by π in A′ then a is divisible by π in
Ap. By R-flatness of A we conclude that the rational function a/π on SpecA is defined in
codimension ≤ 1, so by normality of A we get a/π ∈ A as desired. ¥
Remark A.5. The reason we had to work with U rather than V in the above analysis is that
we only imposed an integrality condition at one cusp, namely ∞ (and UFp is the irreducible
and connected component of VFp passing through ∞). The need to work with U rather
than V is the reason we had to require p - Q in Theorem A.1.
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Ã0, 14
ε̃2(·), 14
η̃, 33
ψ̃, 35
ϕ, 19
ϕq, 19
d, 35
f , 15
fχ, 15
g, 17
h′, 20
hK , 33
hχ, 15, 23
j(γ, z), 10
pK(·, ·), 32
s, 19
s′, 23
sg,χ, 19
sgχ , 19
t, 23
t′, 20
tψ′ , 17
v0, 35
w, 7

65



66 KARTIK PRASANNA

References

[1] Baruch, Ehud Moshe, & Mao, Zhengyu, Central values of automorphic L-functions, GAFA, Vol 17-
2(2007),333-384.

[2] Blasius, Don On the critical values of Hecke L-series, Ann. of Math. (2) 124 (1986), no. 1, 23–63.
[3] Casselman, William On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301–314.
[4] Conrad, Brian, Arithmetic moduli of generalized elliptic curves, Journal of the Inst. of Math. Jussieu.,

6, pp 209-278.
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