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Abstract

We prove that the theta correspondence for the dual pair (SE, PB*), for B an indefinite
quaternion algebra over QQ, acting on modular forms of odd square-free level, preserves
rationality and p-integrality in both directions. As a consequence, we deduce the rationality
of certain period ratios of modular forms and even p-integrality of these ratios under the
assumption that p does not divide a certain L-value. The rationality is applied to give
a direct construction of isogenies between new quotients of Jacobians of Shimura curves,
completely independent of Faltings isogeny theorem.
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1. INTRODUCTION

In his seminal paper [26], Shimura initiated the systematic study of holomorphic modular
forms of half-integral weight and showed that one could associate to a Hecke eigenform h of
half-integral weight k—i—% a Hecke eigenform f of integral weight 2k such that the p?th Fourier
coefficient of h is closely related to the pth Fourier coefficient of f. The correspondence
which associates f to h is often described as the Shimura correspondence, and f is called
the Shimura lift of h. Later, Shintani [33] described a method to go in the other direction,
namely construct modular forms of half-integral weight beginning with forms of integral
weight using the theta correspondence. At around the same time, Niwa [21] also explained
the original Shimura lift in terms of theta lifts. (In the case of Maass forms, there is a much
earlier construction due to Maass [20] of the lift to forms of half-integral weight; see [8] for
an exposition.)

The relation between f and the square-free Fourier coefficients a, (h) of h remained highly
mysterious, but for a suggestion of Shimura ([31]) that these should somehow be related to
special values of L-functions associated to f. In two remarkable articles ([36], [37]) Wald-
spurger settled this question, showing (roughly) that a, (h)? is proportional (as v varies) to
the value L(k, f ® x,) where x, is the quadratic character associated to the field Q(1/v).
A central tool that Waldspurger employs is the theta correspondence between the groups
SLg and PGLg as in the work of Shintani and Niwa. In a later article ([38]), Waldspurger
also studied the theta correspondence for the pair (§I\;, PB*) for B a quaternion algebra,
and its relation to the Jacquet-Langlands correspondence between PGLy and PB*.

Waldspurger’s results are representation-theoretic in nature. In particular, he does not
study the arithmetic properties of the theta-lifts in either direction. This issue was however
considered by Shimura [32], who showed that (for suitable choices of theta function) the
theta lift from §Lv2 to PB* is algebraic and further, in the opposite direction, there is a
canonical transcendental period modulo which the theta lift is algebraic. In this article, we
will prove analogs of Shimura’s results for rationality over specified number fields and also
p-adic integrality. As a consequence we deduce several results relating periods of modular
forms on different Shimura curves. These results, in fact, constituted the main motivation
for this article and we begin by describing them in more detail.

Let N = NTN~ be an odd square-free integer with N~ a product of an even number
of primes. Let f be a holomorphic newform of even weight 2k on I'o(N), g a holomorphic
newform with respect to the unit group of an Eichler order O of level NT in the indefi-
nite quaternion algebra B ramified at the primes dividing N, and with the same Hecke
eigenvalues as f. Let (Fp, ®) be a pair consisting of a Galois extension of Q that splits
B along with a suitable splitting ® : B ® Fy ~ My(Fp) (see Sec. 2.2.1). Set Fy = Q if
2k = 2 and F,y = F, otherwise. Let F be any number field containing Fy and all the Hecke
eigenvalues of f, let p be a prime not dividing NV and A a prime in F lying over p. As shown
in [22] and as will be recalled below, f and g may be normalized canonically up to A-adic
units in . One has attached to f and g, canonical fundamental periods uy(f, F,\) and
ux(g, F, \), well defined up to A-adic units in F. For o € Aut((C/Fo), let ug (f7,F7,\%)
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and ug (g%, F?, A7) be the fundamental periods attached to f” and ¢g”. These periods are
chosen such that the period pair (us(f, F,\),us(f7, F7,\7)) gives a well defined element
in (C* x C*)/(1,0)F* (and likewise with f replaced by g). To begin with, we have the
following theorem on rationality of period ratios.

Theorem 1.1.

(ui(f,F,)\)>U _ usr(f7,F7,\%)
u+(g, F, \) u+ (9%, Fo,07)

In the special case k = 2, the above theorem can be used to construct directly isogenies
defined over Q between quotients of Jacobians of different Shimura curves, without the
crutch of Faltings’ isogeny theorem. This application is treated in the last section of the
article. (The idea that one should be able to construct such isogenies by proving the
rationality of period ratios was suggested by Shimura [32].) In the case of higher weight,
one might be able to use Thm. 1.1 to derive relations between the motives associated to
the forms f and g, but we have not pursued this theme further in this article.

Indeed, our main interest is in integrality results for the ratios appearing above. With this
in mind, let us define u4(f) (resp. ux(g)) to be us(f, F, \) (resp. us(g, F, A) for any choice
of F', so that both periods are well defined up to A-adic units. Let v be a quadratic discrim-
inant and x, the quadratic character (Z) It is known under rather general conditions (see
[34]) that A(f,v) == [v|*'g(xu)(2mi) * Lk, f,x0)/ux(f) = v[* 'a(x.)(2mi) *L(5,7; @
Xv)/u+(f) is a A-adic integer, where g(x,) is the Gauss sum attached to x, and the + sign
holds according as x, (—1)-(—1)¥ = £1. Here m; denotes the automorphic representation of
PGLsy attached to f and the L-function is being evaluated at the center of the critical strip,
this being the point s = k in the classical normalization and s = 1/2 in the automorphic
normalization.

The integrality result we have in mind is motivated by the following observation. If f
has weight 2, and A is not Eisenstein for f (i.e. the mod A Galois representation associated
to f is irreducible), one may show, again using Faltings’ isogeny theorem that uy (f)/u+(g)
is a A-adic wnit. So it is reasonable to ask if such a result holds for arbitrary even weights.
The following theorem provides a conditional result in that direction.

Theorem 1.2. Suppose p > 2k + 1 and p 4 N := [Tynvalg +1)(g—1). Let xy be the

quadratic character associated to an odd fundamental quadratic discriminant v and set € =
sign((—1)*v). Suppose A(f,v) Z0 mod X. Then

w (i) 20

It is naturally of interest then to ask if there always exists a quadratic discriminant v with
prescribed sign and parity such that A(f,v) # 0 mod A. This question in general seems
to be extremely hard. However, as mentioned above, in the case of weight 2 (for instance
for elliptic curves) and non-Eisenstein primes A, we know a priori from Faltings’ isogeny
theorem that uc(f)/uc(g) is a A-adic unit. Feeding this information into the methods
and results of this article, one obtains interesting applications to questions about the p-
divisibility of the central values of quadratic twists of f. Assuming the exact form of the
Birch-Swinnerton Dyer conjecture for elliptic curves of rank 0, one further gets applications
to questions about p-torsion of Tate-Shafarevich groups. These applications are treated
in a subsequent article ([24]), in which we also explain an intriguing relation between the
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Waldspurger packet on SAfg and congruences of modular forms of integral and half-integral
weight.

The reader will note that the statements of Thms. 1.1 and 1.2 do not involve forms of half-
integral weight. Nevertheless, their proof depends crucially on arithmetic properties of the
Shimura correspondence and of forms of half-integral weight. We now give an introduction
to our main theorems regarding the Shimura correspondence and the methods of this article.

Suppose x is a character of conductor N’ dividing 4N with x(—1) = 1 and set M =
lem(4, NN'). Set xo = x - (ll)k, let x = x - (%1)#” (where 7 = 0 or 1) be such that y
is unramified at the prime 2, and use the same symbols xo and x to denote the associated
adelic characters. Also suppose f, and g, are newforms in 7 ® x and 7’ ® x respectively
where 7 and 7’ are the automorphic representations of GLg(A) and B*(A) associated to f
and g.

It follows then from work of Waldspurger that the space S 1 (M, x, fy) consisting of

holomorphic forms of weight k + % on I'g(M) with character x, and whose Shimura lift is
fx, is two dimensional. Further this space has a unique one dimensional subspace, called
the Kohnen subspace S];: . (M, x, fy), consisting of forms whose only non vanishing Fourier

coefficients a¢ are (possibly) those such that (—1)7¢ is congruent to 0,1 mod 4. Let us
denote by h, a nonzero vector in this subspace with algebraic Fourier coefficients. We may
normalize h, to have all its Fourier coefficients be A-adic integers in Q(f, x), and further so
that at least one is a A-adic unit. Here Q(f, x) is the field generated over Q by the Hecke
eigenvalues of f and the values of the character .

The form h, may in fact be obtained as a theta lift from PB* as follows. For ¢ | N, denote
by wg and wg the signs of the Atkin-Lehner involutions acting on f and g respectively, so
that wy = +w}, the + (resp. —) sign holding exactly when B is unramified (resp. ramified)
at ¢. Fix v, an odd quadratic fundamental discriminant such that (—1)" = sign(v) and such
that the following local conditions are satisfied at the primes dividing V:

(a) If ¢ | N but ¢t v, xo,4(—1) = w; “Xv,q(q)-
(b) If ¢ | N and ¢ | v, Xx0,4 is ramified exactly when ¢ | N~ and for such ¢, xo4(—1) = —1.

Let us denote by ¢’ the form g, ® (xx, o Nm)~! € 7/ ® x,,. One now considers the theta

correspondence for the dual pair (SLa, PB*). It is shown in Sec. 3 below that the conditions
(a) and (b) above imply (again from work of Waldspurger) that the form h, occurs in the
theta lift © (1’ ® xy, 1) where ¢ = 1'/I"| and 4 is the usual additive character on Q \ Ag.
Let V be the subspace of B consisting of the trace 0 elements. For an appropriate explicit
choice of Schwartz function ¢ € V(A) (see Sec. 3), one has 0,(g') = agh, and 6, (hy) = B¢’
for scalars g and (3. The arithmetic properties of the complex numbers oy and 3 are then
of crucial importance. It will turn out that g is algebraic, while «q is an algebraic multiple
of the period uc(g) where ¢ = sign((—1)*v). In fact it is natural to write ag = ag(x)ue(g),
and "7 3 = g(x) '3, where g(x) is the Gauss sum attached to x. The following is one of
our main theorems regarding the Shimura-Shintani-Waldspurger correspondence.

Theorem 1.3. The complex numbers o, 3 are algebraic, and o € F(x),8 € Q(f,x)-
Further, assuming p > 2k + 1 and p{ N, we have

(a) va(ax) > 0.

(b) vA(B) = 0.
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The algebraicity of a and 3 is due to Shimura [32]; our contribution is the rationality
of these over F(x),Q(f,x) respectively and the A-adic integrality. It turns out that the
theorem for e is quite easy and with adequate preparation, is almost tautological (see
Section 4). On the other hand, the rationality and integrality of 8 is much harder and
requires the very detailed analysis of Section 5. Here is a brief description of the ideas
involved. To check for rationality or integrality of 3, it suffices to evaluate 6,(hy) = By’ at
specific CM points j : K — B associated to an imaginary quadratic field K and check that
the resulting values are rational or integral multiples of appropriate CM periods. From a
computational point of view, it is easier to compute a sum of values at all Galois conjugates
of a Heegner point, twisted by a Hecke character 1’; the resulting sum is interpreted as a
period integral L,y on a torus. Now one applies see-saw duality. It turns out that this is
rather subtle, involving the choice of two characters k, 1 depending on /. Here & is a Hecke
character of K of weight (k,0) at infinity, while y is a finite order character of Q. Further
the pair (1, 7) is only well defined up to replacement by (k- (woNmg qg), p-w?) for any finite

order character w of Qg. Let 7, denote the automorphic theta representation of SLy(A)
associated to p and 7, the automorphic representation of GLy(A) associated to the Hecke
character k. Then by an application of see-saw duality one gets roughly an expression for
L,y as a triple integral

(1.1) Ln’(efo(hx)) = hy(0)8,(0)8,(0)do,

/SL2(@)\SL2(A)
for some vectors ¢, and 0, lying in 7, and 7, respectively. Let K 0 be the trace 0 elements
of K, and K the orthogonal complement to K for the norm form on B. With respect
to the decomposition V = K? + K+, the Schwartz function ¢ € V(A) splits up as a sum
Y icr PLi ® p2; over an indexing set I. More precisely, what one gets then is not a single
integral of the form (1.1) but in fact a sum of such integrals indexed by the set I and
depending on the splitting of the pure tensor ¢ as a sum of pure tensors. The data of such
splitting is in general highly ramified, as are the local representations involved, and so one
needs an elaborate argument to show that the sum of integrals so obtained may indeed
be replaced by a single integral with convenient choices of vectors in 7, and m,. This
argument occupies all of Sec. 5.2. We should remark here that the weights of h,, 8, and
0, are k + %, % and k + 1 respectively. As for the possibilities for the local representations
at non-archimedean primes, many different types of ramification could occur, including
for instance the possibility that 7, and m, are both supercuspidal, even though we have
restricted the ramification of m¢ to be at worst Steinberg. 2

The upshot of the argument is that one has an expression for the period integral as ¢ -
(H,6,) for some constant ¢ (that depends on f, x, &, ) and a modular form H of weight k+1
with coefficients that are A-integral and lie in Q(f, x), (-, -) being the usual Petersson inner
product. (It is at this point we make use of the appendix due to Brian Conrad; indeed the
form H is naturally presented as wg Hy for a form Hy with A-integral Fourier coefficients and
an Atkin-Lehner operator wg with @ | N 2. The main theorem of the appendix guarantees
then that H has A-integral Fourier coefficients as well.) Now one applies an argument similar
to that of the authors’ previous article [22] to show that ¢ - (H,6,)/Q is a A-adic integer

21f u is the trivial character, 0,, is an Eisenstein series. In this case, the integral (1.1) is identified with the
values at s = k (in the classical normalization) of the Rankin-Selberg Dirichlet series D(s, hy, 0,) associated
by Shimura to the cusp forms hy and 6, of weights k + % and k 4+ 1 respectively.
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for a suitable CM period 2. One needs to use here a refined study of congruences between
0. and other forms as well as the main conjecture of Iwasawa theory for the imaginary
quadratic field K, which is a deep theorem of Rubin [25]. The constant ¢ above arises from
the delicate computations with the local integrals mentioned above, and is a p-integer but
not necessarily a p-unit. Miraculously, its p-adic valuation turns out to be exactly what
is needed to make the argument using Iwasawa theory and congruences go through. One
needs to be particularly careful here since the choice of auxiliary quadratic discriminant v
introduces extra level structure into the problem, and with an eye on applications, one does
not want to make any assumptions on v other than those in Thm. 1.2. The rationality
proceeds somewhat differently: the CM period must be chosen more carefully (to depend
on k), and one then needs to apply the rationality results of Blasius [2] for the special values
of L-functions of Grossencharacters of K.

To use the integrality of e and 3 we need several formulas. In what follows we will use
the symbol ~ to denote equality up to less important factors, and refer the reader to the
main text of the article for more explicit equations. Crucial to us is a formula for the Fourier
coefficients of the theta lift 6,(¢") that is proved in [23]. This formula states roughly that

1 P e 82

for &y = (—1)7¢ satisfying a particular set of congruence conditions. This formula is used in
two ways. Firstly it shows that the theta lift 6,(¢g’) is nonvanishing for the particular choice
of Schwartz function ¢ since L(,7®X,) # 0 and we can find a £ such that L(%, m®xe,) # 0.
Secondly, comparing it with the following formula of Baruch-Mao [1] which is proved using
the relative trace formula of Jacquet,

ag(h)? _ L(h, 7 © )
(h.h) G

(1.3)

and applying see-saw duality
(1.4) (0s(9'), hy) = (9,05, (hy)),

one obtains the following important formula

(1.5) L(%m@xy) ~ afue(g).

The integrality of ue(f)/uc(g) follows immediately from (1.5) using the integrality of o and
B and the assumption on A(f,v) being a p-unit. As a bonus, if one combines (1.5) with
(1.4), one gets

(16) (6Ly), 0 (1)) ~ L5 7 @ o) (g, ).

which is nothing but the explicit version of the Rallis inner product formula in this situation,
obtained in a completely different way than the original method of Rallis!

It would be very interesting to generalize the results of this article to totally real fields
other than @Q, but this seems to be much harder. For instance, for a real quadratic field,
one would like integral period relations between the periods usually denoted w4, u4—, u_4
and u__. Another interesting question is to study the integrality properties of theta lifts
from gi/g to PB* for B a definite quaternion algebra over Q. Very surprisingly, this seems
harder than the indefinite case: the reader may find a discussion of the issues involved in
the article [24].
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The article is organized as follows. Sec. 2 contains preliminaries on modular forms of
integral and half-integral weight and some results extracted from Waldspurger’s article [37].
In Sec. 3, we work out, using the results of Waldspurger’s article [38], some facts regarding
the theta correspondence for (SVLQ, PB*) and study the same for a certain explicit choice
of theta function. Sections 4 and 5 are devoted to proving the rationality and integrality of
the Shintani and Shimura lifts respectively. Finally, in Sec. 6 we explain in more detail the
various formulas mentioned above, and discuss the applications to arithmeticity of period
ratios and isogenies between new-quotients of Jacobians of Shimura curves.

Acknowledgements: The author would like to thank Don Blasius, Haruzo Hida, Steve
Kudla, Jon Rogawski, Chris Skinner and Akshay Venkatesh for useful discussions, Peter
Sarnak for pointing out the work of Maass referred to above, Brian Conrad for very kindly
agreeing to provide the Appendix and Michael Harris for his comments and a correction to
an earlier version of this article. In addition, thanks are due to the anonymous referee for
a careful reading of the article and numerous comments towards improving it. Finally, it
will be clear to the reader that the author owes a tremendous intellectual debt to Shimura,
Shintani and especially Waldspurger, whose very powerful techniques and results provide a
stepping stone on which this article builds.

2. MODULAR FORMS OF INTEGRAL AND HALF-INTEGRAL WEIGHT

2.1. Preliminaries.

2.1.1. Metaplectic groups. Here we follow the exposition and notations of [37] II § 4. If v
is a place of Q, let S, denote the metaplectic (degree 2) cover of SLa(Q,). Likewise, let
Sa denote the metaplectic (degree 2) cover of SLy(A). We may identify S, (resp. Sa) with
SLo(Qy) x {£1} (resp. SLg2(A) x {£1}), the product of two elements (o,¢€), (o, €) being
given by

(o,€)(0’,€") = (00, ¢€ B0, ")),

where (3, is defined as follows. For o = < Ccl Z ) € SLa(Qy), let z(0) = cif ¢ # 0, z(0) = d,

if c=0. For v real, let s,(0) = 1. For v = ¢ a finite place, let s,(0) = (¢,d), if ¢d # 0 and
vg(c) is odd, s,(0) = 1 otherwise. Here (-,-), denotes the Hilbert symbol. Then

Bu(0,0") = (2(0), 2(0"))u (~2(0)x(0"), 2(00"))50(0)s0(0")s0(0").

If 0 € SL2(Qy,), we denote also by the same symbol o the element (o,1) € S,. The map
o+ (0,]1,(s0(0))),0 € SLa(Q) is a homomorphism of SLy(Q) into Sa, the image of which
we denote by the symbol Sg.

For z € Q,, o € Q, define ni(z),n(z) and d(a) to be the elements of S, given by

a0 = (o 1) m@=( 1) aw=(5 N)

Let w = < _01 é ) € gv and notice that

(2.1) n(z) =d(-1) -w-n(-z) - w,

in gv, a relation that we will use repeatedly.
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2.1.2. For t € Q; and % an additive character of Q,, let v,(t) be the constant associated
by Weil to the character ¢ and the quadratic form tz2. Recall that for v = ¢, a finite prime,
v (t) may be computed to be

n—oo

(2.2) Yo (t) = lim /—"Z Y(tz?)dy,

where d;z is Haar measure chosen to be autodual with respect to the pairing (z,y) — ¥(tzy).
We denote 7,(1) simply by the symbol ~,. Define

(2.3) i () = (£, 1)y ()7 (1)~ = 7 (D) (1)

Then one has the equalities:

pp(tt’) = (& )opup () pp(t').
py(t?) = 1.
Thus i, defines a genuine character of @, the extension of QX by {£1} given by the

Hilbert symbol. For a € QJ, let ¥ denote the character defined by ¢¥®(z) = ¢(az). One
checks easily that

fryer (t) = (o, t)opty (1)

2.1.3. Let (V,(,)) be a quadratic space over Q, and v an additive character of Q,. Suppose
Q(z) = Lz,z) = Zle a;z? in terms of an orthogonal basis for V', where d = dim(V). Set

d
Y. = | [ e
=1

d
(—1)d=1/2 Hai if d is odd,
i=1
Dgq := p
(—1)%/21 Hai if d is even.
i=1
Then there exists a representation 7y of gv on 8y(V), the Schwartz space of V, called
the Weil representation, which is characterized by

(2.4) rp(m)e(z) = P(nQ(x))e(x),

(2.5) ro(d(@)p(z) = py(a)! (e, Dg)vlal”p(az),
(2.6) ry(w)p(r) = vpFp(ep),

(2.7) ry(Le)p(x) = elp(x),

where F, denotes the Fourier transform with respect to the pairing (z1,z2) — ({1, z2)),
the Haar measure on V' being chosen such that Fy(Fy(¢))(x) = ¢(—x) for all ¢ € 8 (V).



ARITHMETIC PROPERTIES OF THE SHIMURA-SHINTANI-WALDSPURGER CORRESPONDENCE 9

2.1.4. Suppose ¢ is an odd prime. Let ¢ be the character on 7./qZ given by 1[1(1) = e~ 2mi/q
and x any character on (Z/qZ)*, extended to Z/qZ by setting x(0) = 0. Define the Gauss
sum

G()A(ﬂ[}a) _ Z )2(5)6727”;(15/(1’

6€(Z/qZ)>

so that G(x,¥*) = ¥ Ya)G(n,¥). If g is the unique nontrivial quadratic character of
(Z/qZ)*,

Clod V¢, if¢g=1 mod 4.
(,9) = i@, ifg=3 mod 4.

Hence G(0,7)? = o(—1)q.

2.1.5. Let g be a fixed finite prime and v the character on Q, with kernel Z, such that
¢(é) = e 2m/4 Ifg#2and t € Zy, one easily computes that v, (t) = 1 and py(t) = 1.
Thus

(2.8) g (t) = (0,0,
for any o € Q. If ¢ = 2, py(t) = 5[1 — i+ (14 i)x-12(t)] for t € Zy. In par-
ticular, py(—1) = —i. Note that ppe(—1) = (=1,a)2 - i and py(a)® = (@, @)opy(a) =
(=1, @)opy ().

Suppose now that ¢ is odd , and ¢/ = ¢ with v4(a) = —1, g = a mod q,a € (Z/qZ)*.
Then set G(x,¢') := G()Z,Qﬁa). One computes from (2.2) that

(2.9) Yo = a4 PG (0. 9") = 47 G0 Y) = o(a)g*G (0, ¢).
If ¢ = oo, and ¥(z) = €*™® we have j,(—1) = i.

2.1.6. Let x be a Dirichlet character of conductor M. We denote by x the associated
Grossencharacter of Qj, satisfying x4(¢) = x(¢) for almost all . If x, is a character of Q
of conductor g, we denote (in Sec. 3.2 alone) by X, the induced character on Z; /(1+¢Z,) =~

(Z/qz)*.

2.1.7. Measures. We use the same conventions here as in [22]. In the interest of brevity, the
reader is referred to §1 of that article for the measure normalizations used on the different
local and adelic groups, the only difference being that the indefinite quaternion algebra is
called D in [22] as opposed to B in the present article.

2.2. Modular forms of integral weight on an indefinite quaternion algebra. There
is nothing original in this section, the only purpose of which is to set up notation.

2.2.1. Classical and adelic modular forms. Let B be an indefinite quaternion algebra over
Q with discriminant N~, and O a maximal order in B. As in [15] we pick once and
for all a finite Galois extension Fy/Q (contained in C) that splits B and an isomorphism
® : B® Fy ~ Ma(Fp) such that ®(B) C My(FyNR) and ®(0) C Ma(R) where R is the ring
of integers of Fy. Thus ® induces an isomorphism ®, : B&R ~ My(R). Let Nm denote the
reduced norm on B. Via ®,, the group of reduced norm 1 elements in B ® R is identified
with SLo(R), hence acts in the usual way on the complex upper half-plane §, the action
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being v -z = (az + b)/(cz + d) for v = < (CZ 2
§(3,2) = (det 7)Y (cz + d).

To define adelic modular forms, let w be a finite order character and use the same symbol w
to denote the associated Grossencharacter of Q5. We view B* as an algebraic group over Q;
Bf, Bgf, By will denote its group of adelic points, points over the finite adeles and rational

) € SLa(R), z € H. Set J(vy,2) = cz+d and

points respectively. Let Lz(Bé \ B;,w) be the space of functions s : By — C satisfying
s(yzB) = w(2)s(B) Vy € By, z € Qf and having finite norm under the inner product
(s1,82) = % 0} BX\B} s1(8)s2(B)d* 3. Also let Ag(w) = L%(Bé \ B ,w) C LQ(B(S \ B}, w)
be the closed subspace consisting of cuspidal functions.

For U any open compact subgroup of Bgf and @ any character of U whose restriction

to U N ng equals W|Um@§ , denote by S (U, ©) the set of s € Ap(w) satisfying s(zurg) =
: !

cosf sinf
—sinf cosf

exist t; € Bgf, i=1,...,hy, such that

s(z)o(u)e*? for u € U, kg = < ) By strong approximation for B, there

(2.10) By = UMY B*tU(BX)",

where hy is the cardinality of Q* \ Qg /Nm(U)(QX)*. Let I';y(U) = By N tU(BX) Tt
and define w; to be the character on I';(U) defined by w;(y) = @~ (t; *4t;). One defines the
space Sk (I, w;) to consist of holomorphic functions f : $ — C satisfying

(i) g(v2) = j(v, 2)*wi(7)9(2),

(ii) ¢ vanishes at the cusps of I';(U).

If & (resp. w;) is the trivial character, we write simply Si(U) (resp. Sk(Ii(U))).
Also, if hy = 1, we simply write I'(U) instead of I'1(U). Given a collection of elements
g = {9}, 9i € Sk(Ti(U),wi), define sg € Sp(U, @) by sg(8) = gi(Bo0(2))7(Boos 1) "0 (u), if
8 = Ytiufso, v € B@,u € U, B € (BX)". This is easily seen to be independent of the
choice of the decomposition 3 = vt;u~. The assignment g —— sg gives an isomorphism
®;Sp(T;(U),w;) ~ Sk(U,w).

Remark 2.1. Suppose B = M(Q), w has conductor M and U = [[ U, where

U= {< Z Z) € GL2(Zy),c=0 modM}.
Then hy =1, I'(U) = T'g(M), and the character w on I'(U) is identified with the character

( CCL cbl > — w(d) on L'o(M). Thus Sk(U,w) = Sp(T'(U),w) = Sk(L'o(M),w).

2.2.2. Shimura curves. Let H* = 9 if B # M2(Q) and H* = H UQ U oo if B = My(Q).
Consider the analytic space

Yii" = B*\ B /U -R*SO2(R) = B* \ § x Bgf/U,
and its compactification

XiP = B\ 9" x B /U = LU Ti(U) \ 97,

=1

the last equality corresponding to the decomposition in (2.10). Shimura has shown that
X" is the analytic space associated to a smooth curve Xy defined over Q. The curve Xis
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is possibly disconnected, each component being defined over the class field of Q, denoted
Qu, corresponding to the open subgroup Q* Nm(U)(R*)" of Q. The set of components
of Xy is canonically identified with Gal(Qy/Q).

Suppose g = {g;} € @iSar(T;(U)). For each i, the differential form (2midz)®*g;(z) is
I';(U) invariant, hence descends to a section of QF on I';(U) \ $* (by the cuspidality of g;),
which we denote by §;. Let g be the section of QF on X that equals §; on the component
[;(U) \ *. The assignment g — g gives an isomorphism

@Sk (T4(U)) = H(Xyc, QF).

2.2.3. Automorphic representations and newforms. Let m be any irreducible representation
of the Hecke algebra of B; that occurs in Ag(w). It is well known that 7 factors as an
infinite tensor product m = ®y<co7y, Where 7, is an irreducible representation of (the Hecke
algebra of) B*(Qq). In this article, we will only consider those 7 that satisfy the following
two conditions: . .
(*) Teo is the weight-2k discrete series representation o(|-| 2 ,|-| 2 ) of GL2(R).
(**) If ¢ | N7, my is a one-dimensional representation of B> (Q).

In this case, one may pick a distinguished line in 7, defined to be the span of a vector
v = ®4vq Where the v, are defined as follows:
(a) For any finite ¢ ¥ N~, by a theorem of Casselman [3], there exists a unique power ¢"
such that the space of vectors in 7, that is invariant under

{72@ Z)eGLQ(Zq),czo mod ¢",d = 1 mOdqnq}

is one-dimensional. We take v, to be any such non-zero vector. Note that if n, > 1, v, is
the unique vector up to multiplication by a scalar that transforms under

{7: < Z Z) € GLy(Zy),c =0 mod q"q}

by the character v — wy(d).
(b) For ¢ | N™, we take v, to be any non-zero vector in the one-dimensional representation
g
(c) For ¢ = oo, the restriction of 7 to SLo(R) splits as the direct sum of the weight-2k
holomorphic and antiholomorphic discrete series, and we take v, to correspond to a lowest
weight vector in the former.

Any multiple of v will be called a newform in 7.

2.2.4. Some relevant open compact subgroups. We now pick some specific examples of open
compact U that will play an important role in this article. We fix once and for all isomor-
phisms @, : B® Q; — M2(Q,) for ¢ { N~ such that ®,(0 ® Z;) = Ma(Z,). Let N* be
an integer coprime to N~ and O’ the unique Eichler order of level N in B such that for
gt N~

@q(o'®zq):{<‘é 2>€M2(Zq),050 modN+},

and for ¢ |[ N7, O' @ Zy = O ® Z,.
Set N = NTN~. Let x be a character of conductor N, dividing N. Let O'(x) be the
unique Eichler order in B such that 0'(x) ® Zq = O’ ® Zg, unless ¢ | Ny and ¢ | NT, in
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which case

O, (x) ® Zy) = {< ‘Z Z ) € My(Zg),c=0 mod qQ}.

We now define the following open compact subgroups of Bgf.
(1) Uy = Hq U()7q where U07q = (O/ & Zq)x.
(2) Uo(x) = [1, Uo,e(x), where Up4(x) = (0'(x) ® Zg)*.
(3) U1(x) = [1, Ur,4(x), where Uy 4(x) = Uo,q = Unq(x) if ¢ Ny or if gt NT, and

b .
Ug(x) = {( Z d > € Upq(x), d=1 mod q} if ¢| Ny, and ¢ | N™.

Let wy, = x?. We define below a character @y on Up(x) such that @, |,x = wy|;x. Firstly,
for each ¢ define @, 4 on Uy 4() as follows:

e For gt Ny, @y q(u) =1 for any u € Uy 4(x)-
a b
d € UD,(](X)‘
e For ¢ | Ny and ¢ | N7, @y 4(u) = xgq(Nm(u)) for u € Up4(x).
Then, set @y, =[], Wy,q on Uo(x). Now letting I' (resp. I'y) be the group of norm 1 units
in O (resp. O'(x)), we see from the previous section that we have canonical isomorphisms

(2.11) Sor(Ty, X)) = Sar(Uo(x), @y)-
Sor(I') >~ Sar(Up).

where \' is defined to be the restriction of W L'to I'y € Uy, (Note that in the case
a b
B=Ma(@), ') =) for o = (& ) €Ty
Let I}, = B* N Ui (x)(BX)". Since B = B*(Ui(x)(B%)", and X'Ir1 is the trivial
character, we have an isomorphism

(2.12) Sok(T'y) =~ Sar(Ur(x), @y)-

Let g € Soi(I") = Sar(Up) be a newform. Denote by 7, the automorphic representation
of B} generated by s4. Since N is square-free, m, satisfies both conditions (*) and (**), and
54 is a newform in m,. For x as above, we denote by 7, the representation 7, ® (x o Nm).
It is clear that 7, also satisfies conditions (*) and (**), and it follows from Casselman’s
theorem mentioned above that there is a vector g, € S (Up(X), @y ), unique up to scalar
multiplication, such that sy, is a newform in 7y .

For the moment, g and g, are only well defined up to scalars, but we will see below that
(at least for p t+ N) they may be canonically normalized up to p-adic units in a suitable
number field.

e For ¢ | Ny and ¢ | N*, &, 4(u) = x4(d)? for u =

2.2.5. Complex conjugation and action of an element of negative norm. For § any unit in
O'(x) with reduced norm —1 and ¢’ € Sor(Ty, X') (vesp. ¢’ € Sax(I'y, X)), denote by ¢'|d
the form given by (¢/10)(2) = J(8, 2) 2/ (9)g/(5%) (resp. (¢'16)(2) = J(6,2) 2\ (6)g/(62).)
If &' is any other such element, then v := §6'~ € 'y, hence ¢/|d is independent of the choice

of §. Let ¢’ = ¢/|6 for any such choice of §. If ¢’ € So(Ty, x’) (vesp. Sax(T'y,x’)) then

d'|6 € Sax(Ty, X’) (resp. Sor(Ty, X')) and ¢’ € Sor(T'y, X') (vesp. Sar(Ty, X)) It is easy to
check that (¢'[0)]d = ¢’ and ((¢')) = ¢ .
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1
0 1
given by sg,(ﬂ) = sy(Bd). Let B € B and suppose that § = yuB and 53 = 7'u/BL, be
decompositions given by (2.10) with U = Up,. Thus yu = 7'v’ and vfs = 7/,.d. Let
§ = (")~ 1y, so that also § = vw'u~! = 3. dB=!. Thus ¢ is a unit in Og( of negative reduced
norm, whence Nm(é) = —1. Now, letting z = B - 2, we see that
sg(69) 9 (B5 (1) (Bae, 1)~ @y (u') = ¢/ (8% (2)) T (B, 1)~ Nm(BL) Fy (o)
9 (053(1)) T (06503, 2) " Nm(sc) "oy (du)

9'(62)7(6,2) 25 T (Boo, —1) 2 Nm(Boo)" T (3,2) "2 (X) 71 (8) Dy ().

Let g denote the element < -1 0 ) € BX = GLy(R) and let s? o be the element of 4

Thus

$5(8) = sg(B3) = J(8,2) 72X (8)g'(62) (Boor 1) (@) ™" (1) = 54715(8),
TJ

so that s7, = sg/s.

2.2.6. Rational and integral structures. Let L := L, be the field generated by the Hecke
eigenvalues of g, and let p be a prime not dividing N. Fix once and for all an embedding

A : Q — @, The inclusion Uj, 2, Up, yields an inclusion ¢* : Sop(Up(x),@y) —
Sor(Ui(x),@y) = Sgk(Fi) ~ HO(XUI(X),Q’“). The curve X := Xy, (,) has good reduction

over Z[3-] and hence in particular at p. Let 2~ be the minimal regular model of X over Z,.
Thus we have inclusions

HO(Xp, Q%) — HY(Xp,, Q%) « HY(Zo,, 0%%) = M,z

For any o € Gal(Q/Q), let (gy)? be the newform (defined up to a scalar) whose Hecke
eigenvalues are obtained by applying o to the Hecke eigenvalues of g,. We then normalize

the collection {(gy)?} by requiring that ¢*(s(y y-) € H*(Xfe, Q%k) | be a primitive element
in the lattice Mo , and further that the compatlblhty condition

5907 = 6" (gx)

be satisfied for all o. This defines s
primes above p.

When B = Ms(Q), the rational and integral structures defined above agree with the
usual structures provided by the g-expansion principle. When B # Ms(Q), no g-expansions
are available; however evaluating at CM points provides a suitable alternative criterion for
rationality and integrality. (See Prop. 5.1 for an exact statement.)

gy)° Up to an element of (L7)* that is a unit at all

2.3. Modular forms of half-integral weight: review of Waldspurger’s work.

2.3.1. Classical and adelic modular forms. For v = ( CCL Z ) €T'g(4) and z € C, define

C

iy, 2) = (g) pp2(d)(cz + d)2,

so that j(v,2)* = j(v,2)%. Here () denotes the Kronecker symbol as in [26] p.442. Let
M be a positive integer, divisible by 4, kK = 2k + 1 be an odd positive integer and x a
Dirichlet character modulo M such that x(—1) = 1. Let xo = x - (ll)k and use the same
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symbol xo to denote the associated adelic character. We denote by S, /2(M, x) the space
of holomorphic functions h on $), that satisfy

h(y(2)) = j(7, 2)"x(d)h(2)

¢ € T'o(M), and that vanish at the cusps of T'o(M).

b

for all v = ( e d
We now review the adelic definition of forms of half-integral weight. Let p denote the
right regular representation of the Hecke algebra of SA on Ao, the space of cusp forms

on Sg\ Sa. Also let I'y = SLa(Zq) and I'y(n) = {z = < ¢ Z > € I'y,d = 0 mod ¢"}.

We define, following Waldspurger [37], A, /2(M, x0) to be the subspace of Ag consisting of
elements t satisfying
(i) If gt M and 0 € T'y, pg(o)t =t;

(i) 16 | M, g # 2 and o = ( ’ ) & Ty(u(M)), fylr)t = xo00(d)t:
)

b -
(iii) For o = ( J > € Ty(va(M)), pa(0)t = & (o) x02(d)t;
(iv) 1£ 0 € R, fm(R(6))(t) = €0/2¢;
(v) pr(D)t = [ — )3}t o i
where p, denotes the restriction of p to S,, D is the Casimir element for Sg and é(o), £(6)

are defined on p. 382 of [37]. For z = u +iv € 9, let b(z) € Sx be the element which is 1
at all the non-archimedean places and equal to

o2 yu—1/2
0 v 1/2
at the real place. If h € S /5(M), there exists a unique continuous function ¢, on Sg \gA,
such that for all z € $,0 € R,

trh(b(2)R(0)) = v/ 4e™0/2(2).

Proposition 2.2. ([37] Prop. 3) If h € S, )3(M,X), tn € fl,iﬂ(M, X0).- The assignment
h— ty, gives an isomorphism S, j2(M, x) =~ AK/Q(M, X0)-

Remark 2.3. (a) Our x and yo play the role of the symbols x and x( respectively of
Waldspurger’s article [37]. We will also use the symbol x below, but for a character that
does not play any role in [37].

(b) When convenient, we identify S, /»(M, x) and A, /2(M, x0) via the isomorphism above.

2.3.2. Fourier coefficients: rational and integral structures. Let h € S,{/Q(M). Then A has

a familiar g-expansion
h= " a(h)d
£€Z,£6>0

2miz

where ¢ = e*™*. We say that h is algebraic (resp. F-rational, resp. A-integral) if for all &
the coefficients a¢(h) are algebraic (resp. lie in F', resp. are A-integral.) Further, h is said
to be A-adically normalized if it is A-integral and if at least one Fourier coefficient of h is a
unit at \.
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Let t € Ag. Let ¢ denote the usual additive character of Q\ A i.e. ¥oo(z) = 2™ and v,
is the unique character on Q, with kernel Z, such that v, (z) = e 7@ for x € Z[é]. Define
the 1¢-th Fourier coefficient of ¢ to be the function on S given by

W(t,0%,0) = [ tlno)f(~n)dn
Q\A
The relation between the classical and adelic Fourier coefficients is

Proposition 2.4. ([37], Lemma 8) Let h € S,;5(M). Then
ag(h) = v~ 1T (8, 45, dr (v'/?)).

2.4. The Shimura correspondence. We now assume that N is odd and fix, as in the
introduction, a holomorphic newform f € Soi(I'g(/V)). The following proposition can be
extracted from the main result of [37]. (The form f, that occurs below is a newform in
Tr®Xx as defined in section 2.2.4. Also the reader is referred to [37] Sec. 1.2 for the definition
of the space Sk+%(M, X, fy) in the statement of the proposition.)

Proposition 2.5. Let x be a character of conductor dividing 4N with x(—1) =1, N’ :=

cond(x) , M := lem(4, N'N), and suppose x = X - (%l)kJrT

S 1(M,x, fy) © Ay 1(M,xo) is two dimensional. Further, it admits a unique one-
2 2

1s unramified at 2. Then

dimensional subspace S;;:; (M, x, fy), called the Kohnen subspace, consisting of forms h, all
2

whose nonzero Fourier coefficients ag¢(h) satisfy xo2(—1)§ =0,1 mod 4 i.e. (—1)7¢=0,1
mod 4.
More precisely, if h, denotes a non-zero vector in S;:_Jr;(Mva fx), wq the eigenvalue of
2

the Atkin-Lehner involution (at q) acting on f, & = (—1)"€ and ag(hy) denotes the £th
Fourier coefficient of hy, then ag(hy) = 0 unless the following conditions are satisfied:

(a) For all q | N,q1 N’, (%) # —wj.

(b) For all ¢ | N’, (%) = X0,4(—1)wg = xq(—1)wy.
(c) & =0,1 mod 4.
If (a),(b),(c), are satisfied, and &y is a fundamental quadratic discriminant, then

_ 1
ag(hy)® = A~ [¢[*72L(5, ™ ® Xeo),
for a nonzero constant A depending on f,x and the choice of h,.

Proof: For the benefit of the reader, we indicate how this may be deduced from [37].
We refer the reader to Sec. VIII of the same article for the notations used in this proof.
Recall that f, is the newform of character x? associated to the representation 7 ® .
Then cond(fy) = M/4. Waldspurger has defined for each ¢ and each integer e, a set
Uq(e, fx) consisting of functions on Q with support in Z; and invariant by (qu)z. Let
E be any integer and e, = vy(E). For A any function on the square-free integers and

cp = (cq) € I1, Ugleqs fy). let

hicg,A)(z) = Zan(QE,A)e%mz,

1
an(cp, A) = A @D/ ] o),
q
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where nf denotes the square-free part of n. Let U(E, fx,A) be the span of all such functions
h(cp,A) as cp varies. The main result of [37], Thm. 1, p. 378, states that for any integer
M,

Sk+% (M/v X5 fx) = ®%|E|M/U(E’ fvafX)v
where Afx is a function on the square-free positive integers satisfying

AN (&) = L(1/2, f ® xg ' xe)e(1/2, x5 " xe) = L(1/2, f ® xg0)e(1/2, X ' xe)-
It follows from this and the computations below (at the prime 2) that S, 1 (M, x, fy) =
U(M, fy, A'x). To check that Sht 1 (M, x, fy) is two dimensional, it is sufficient to check

(with E = M) that Ugy(eq, fy) has cardinality equal to 1 for all ¢ # 2 and Us(ez, fy) has
cardinality equal to 2. As for the statement about the Fourier coefficients one needs to
review carefully the definition of the sets Ugy(eq, fy) which may be found on p. 454-455 of
[37]. We consider various cases:

Case A: If ¢ # 2,q | N, ¢ 1 N', we are in Case (4) of [37]: g = my = e = 1, =
—q x4 (q)wy. Then Uyle, fy) = {3 M)} Tu € 2,
calrgl(u) = { 22 if (q,u)g = —q"*x0.q(a N, i if (q,(—1)u)q = wg,
0, otherwise, i.e. if (¢, (—1)"u)y = —wy.

If u € qZ, then c;[\](u) = 1. Thus Ug(e, fy) indeed consists of a single element ¢, and
cq(§) #0 1f and only if ¢ satisfies condition (a) of the proposition.

Case B: If ¢ # 2,q | N’, we are in Case (1) of [37]: my = Q,A; =0,e=1n4,=2. Let e bea
unit in Zg which is not a square. Note that x4(—1) = x0,4(—1). By [37] Prop. 19, p. 480,
Q7 /(@O N\ (=1)7e(Q5)? if xg(—1) = x0q(—1) = Liwg = 1,

(Q5 /(@) \ (=1)7(Q)? if xq(—1) = X0q(=1) = Liwg = —1,
(—1)7e(@)? if xq(—1) = X0,4(=1) = —Lwg = 1,

(=D)7(Q)% if xg(—1) = X0,4(=1) = —1,wg = 1.

Hence Uy(e, fx) = {7[0,v];v € we(fy), vg(v) = 0(2)} = {70, u],vq(u) = 0, ((=1)"u, q)q =
X0,g(—1) - wq}. Thus Uy(e, fy) consists of a single element ¢, and ¢,(§) # 0 if and only if &
satisfies condition (b) of the proposition.

wq(fx) =

Case C: ¢ = 2. We are now in Case (8) of [37]: mgo = 0,772 = 2 and we only need to
consider e = 2. If ap # af, Ua(e, fy) consists of two elements 61 = chlan], b2 = c5las]. If
¢ = 01 — d2, one checks that ¢(u) = 0 unless (—1)"u = 0,1 mod 4, and that any linear
combination of 1,y with this property must be a scalar multiple of ¢. If ae = o, = «,
say, Ua(e, fy) consists again of two elements v, = c4[a], 72 = c¢4[a]. Now one checks that o
satisfies y2(u) = 0 unless (—1)"u = 0,1 mod 4, and that this is the only linear combination
of 1 and 79 with this property. B

3. EXPLICIT THETA CORRESPONDENCE

3.1. Theta correspondence for the pair (éﬁ;, PB*). Let ¢/ be any character of Q\ A.
Let V C B be the subspace of trace 0 elements, thought of as a quadratic space with
Q(r) = —Nm(x) and let (,) denote the associated bilinear form, (z,y) = —(zy* + ya?), i
being the main involution. The metaplectic cover Sp(WW & V') splits over the orthogonal
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group O(V) whose identity component is identified with PB*, the action of § € PB* on
V being given by R(3)(v) = pv3~!. Thus, for each place v of Q, the Weil representation

of Sp(W ® V), yields a representation of S, x PB} on Sy (V ® Qy) denoted wys. The
restriction of wy to S, is a genuine representation of S,, denoted ry/, satisfying

(3.1) ry(m)e(z) = ¢'(nQ(x))e(x),
(3.2) ro(d(@)p(z) = pyla)(a,—1)ola**p(az),
(3.3) ry (W, €)p(x) = ey Ty ().

where we write ¢’ instead of 1/ and the sign in (3.3) is + or — depending on whether v
is unramified or ramified in B. The Haar measure on V ® Q, is picked to be autodual
with respect to the pairing (x1,z2) — ¢'({z1,22)). Further, wy (o, 8) = ry (o) R(B), where
R(B)p(x) = (B 2p).
For s € A, t € Ay, @ € 8y/(Va), define
0 p,0,0) = Y ry(0)R(B)e(x),

zeV

teles) = [ 0o BB
Q A

Ty (0, 8,1) = 0(¢', 0, 0,B)t(o)do.

/SL2(Q)\SL2(A)
If V, V denote representations of the Hecke algebra of PB g,gA respectively, we set

O, ¢ = {ty(p,-s);s eV, pe8y(Va)},
G(vﬂﬁ/) = {T’l/z"(@a '7t);t € ‘7790 € 8w’<VA)}7

these being representation spaces for the Hecke algebras of gA, PBJ respectively. If we need
t/(llzvork with PB* and PGLy simultaneously, we write 0 i{l\sﬁead of © for the lifts between
SLs and PGLy to distinguish these from the lifts between SLo and PB*.

Let v be an odd quadratic discriminant, § = v/|v| and set ¢/ = ¢V = /v (In
future we will write F(p) for Fy (). with this choice of 9'.) Also let 7 be such that
d = (—1)7. For f as in the previous section let m denote the automorphic representation
of PGLs corresponding to f and 7’ the corresponding representation of PB* associated by
Jacquet-Langlands. Thus 7’ = 7, for a newform g € Sy, (I"). We normalize g as in Sec.
2.2.6. We now compute the central character of 7 := O(7’ ® x,,¢’) using results in [38].

Lemma 3.1. Let v, be defined by e(mq @ Xu.q,1/2) = YgXu,q(—1)e(mq,1/2). Then

Lifq{ N,

Xvq(q) ifq| N,qfv,
wq ZfQ|N7Q|V7
sign(v) if ¢ = oc.

Yq =

Proof: For q{ N, this is easy to check. Assume q | N. Let 7, ~ o(u, p~ 1) and {1,7,¢,nq}
with 7 a unit in Z, be a set of coset representatives for QX /(Qy)% If p # |- |'/2, then
wg = 1, and Qq(my) = Q \ n(Q)? by [38] Lemme 1, p. 226. (We refer the reader to the
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same article for the definition of Q,(m,).) If u = | -|'/?, then w, = —1 and Q,(m,) = (Q;)2
by the same lemma. Finally, Qu (7o) = R%. By [38] Thm. 2,

(g @ Xu,q, 1/2) = £x0,q(—1)e(mq, 1/2),

where the + or — sign holds according as v € Q,(m,) or not. The lemma follows. W
Proposition 3.2. Let oy := +1 according as ¢ | Nt or q | N~. Then
1if g1 2N,
Xva(@wy if ¢| N,qtv,
To(—1) =< aq ifq| N,q|v

(—1)%i if g =00
| — 0t if ¢ =2.

Proof: Let 7, = @(77:1 ® Xv.q» 7,!121). For convenience of notation we drop the subscript ¢ in
the equations below.

m(-1) = e(@ )y (-1)
= (00 @ xu,¥"),¢) - (v, —1) - pry(=1)
= (6v,—1) - py(=1) - £(O(7 ® xv, ¥'),¢") ([37) Thm. 2, p. 277)
(0v, —1) - pry(—1) - e(m ® X, 1/2) ([37] Lemme 6, p. 234)
Y (6, =1) s py(=1) re(m 1/2) =y - (6,-1) - py(—1) - w
= 7 (6,~1) - py(=1w’
Note that for ¢ = 2, v = 1, pup(—1) = —i and wh = wy = 1. The proposition is now
immediate from the preceding lemma. B

« -
= -
«

We can now show that the form h, can be constructed as a theta lift from PB*. Indeed,
we have the following proposition.

Proposition 3.3. Suppose that L(%,ﬂ' ® xv) # 0 and that x is a character of conductor
dividing AN with x(—1) = 1 and satisfying the following conditions:

(a) If g | N,q1v, X0,4(=1) = Xu.q(@)wi(= agxvq(q)wy)-

(b)) If | N,q | v, x04(=1) = g.
Then for x = X - (#)IHT, one has that x is unramified at 2 and S, 1(M,x, fy)
(" ® xuv, ). In fact if ® denotes this last representation, we have Sk:% (M, x; fy)
Sk+%(M,X, 7) (notation as in [37] p.391.)

Proof: We shall see below that x is unramified at 2 and hence S, 1(M,x;, fy) is one
2
dimensional by Prop. 2.5. Assuming this for the moment, let h be any non zero form
in S, 1(M,x, fy) and denote by T the automorphic representation of Sy generated by h.
2

By [37] Prop.4 (p. 391), V' (¢, T) = Vo ® xg ' where Vj is the automorphic representation
of GLy(A) generated by f,. (See [36], p.99 for the definition of V'(4, )) If V is the
automorphic representation of PGL2(A) generated by f, we see that Vp ® Xo =Veox. 1-
By the definition of V'(t,T), there exists o € Q* such that Oy(T,¢*) =V @ X7, ® Xa-
(Here ©¢ denotes the lift to PGLy.) Hence Og(V @ X7 ; ® Xa,¥*) = T. Then 7 = O(n' ®
X7 ® X|V|,¢"’|) = O(7' ® xu,?') is non-zero by [38] Prop. 22, p.295 and is in the same
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Waldspurger packet as T. By [38] Thm. 3, p. 381, to show that 7 = T', it suffices to show
that their central characters agree i.e. that the central character of & is equal to the central
character of . This is clear at the finite places q, ¢ # 2 and for ¢ = co from the previous
proposition and from conditions (a) and (b). For ¢ = 2 one notes that

1 1
(@ xg) = [0 ®xay)

q

= I ve-ogwe- [T 1@ xwal-1- (-1

q|N,qv q|N,q|v

= H (v, =q)qrqwq - H (=1, q)qq - Xv2(—1) - (_1)k
q‘Nuq*V qlN,q‘l/

= HXO,q(_l) : H Xwg(—1) * X0,00(—=1) = x0,2(=1) - Xv,00(—1)
qlN ql2v

Since L(3, 7 ®xu) # 0, X02(—1) = Xp,00(—1) = 8. Thus 7(—1) = —di = &2(—1)x0,2(—1), as
required. This shows that 7' = 7 and hence S,H_%(M,X, Ix) € S]H_%(M,X,’ff). The other
inclusion follows from [37] Prop. 4 (ii) (p. 391) since V'(1,7) = Vo ® xg'. Finally, note
that since x = xo - (;1)7, x2(—1) = 1 and x is unramified at 2 as promised earlier in the
proof. W

In Sec. 3.2 we shall pick an explicit Schwartz function ¢ € 8y/(Va) and a vector s € 7' ®x,,
such that ¢y (g, -, s) equals (some multiple of) h,,.

3.2. Explicit theta functions. For ¢ | N7, let L, be the unique unramified extension of
Qq of degree 2, m a uniformizer in Z; and B, be the quaternion algebra given by

B, = Ls+ Lgu

um = Tmu for m € L
2

u = 7

Fix once and for all an isomorphism B ® Q; ~ By. This isomorphism must necessarily
identify O’ ® Z, with R, + Rqu, where R, is the ring of integers of L,. Also fix once and
for all a unit w € R, with w? € Zgq, such that R, = Z4 + Zqw. Hence RS = Lqw.

Let x, v, X0, X, %' be as in the previous section. Let s, be a newform in 7' ® x = 7, ® x,
normalized as in Sec. 2.2.6, and s, the unique element of 7, such that sy, (5)-x(Nm(3)) =
5, (B) ie. sg5 ® (x o Nm) = gy. Also set s = 55, ® (xp, o Nm) € 1y ® X,

We now make the following choice of Schwartz function ¢ = ¢y, € Sy(Va): ¢ =[], ¢o
where:

(a) If ¢ is odd and ¢t NN, ¢y = [ze 00z, tr(z)=0}-

(b)Ifq|v, gt N, ¢q < [2 :Z ) = 0, unless a, b, c € Z,,b*> — ac € qZ,, in which case

b —a\ | xvqla)resp. xuq(c)), if v4(a) =0 (resp. v4(c) = 0),
Pq ( ) - {

=0
c —b 0, otherwise i.e. if both v,4(a) = 0 and vy(c) = 0.

(c1) If ¢ | N*, ¢ fv, and xo,4 is unramified, ¢, = Iz, tr(z)=0}-
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(2)Ifq | NT, g fv, and xo,4 is ramified, ¢, < I; :Z > =0, unless a € %Zq, b€ Zyc€ ¢*Z,
in which case
. ( b —a ) [ Ginaxag)(a’) = xg4(a) if vg(a) = —1,a =d'/q,
“\c -b 0, if vy(a) > 0.

—a

(e3)If ¢| NT,q | v, and xo,4 is unramified, ¢, < lc) b

> =0, unless a € Zgy,b € qZg,c €

qZq in which case

b —a . (Xu,qxa’l)(a) = Xu,q(a) if Uq(a) = 07
g0q< c —b > B {O, iqu(qa)ZI.

(d1) If ¢ | N7, qfv, gg(a+bu) =0 unless a € Rg,b € R, in which case

(X,,’qxaé)(a’),if X0, 1s ramified, and vy(a) = 0,
@qla+bu) =< 0, if xo,4 is ramified and vy(a) > 1,

1, if x0,q is unramified.
(d2) If ¢ | N7, q | v, set m = ve where € is chosen to be a unit in Z; with (¢, q) = wj = —w,.
Then ¢q(a + bu) = 0 unless a € gR,, Nm(b) € (Z;)Q. In that case, write b = c -
c€Zy and e € Ry. Then set o (a+bu) = (Xl,,qxa’(ll)(c)-xl,(Nm(e)). Ifb=cS= c1- gk, then
setting e/ = ey /e, ¢ = c1/c, we see that ¢/ = €//e/, hence (¢')? = Nm(c) =1 = ¢ = £1. If
d=1,thene =€ = ¢ €Z; = x1q(Nm(e)) = 1. If ¢ = —1, (nyqx&;)(c’) = —Xv,q(—1).
Also ¢/ = —¢/ = € € Zjw = Nm(e') € (ZqX)QNm(w) = —(Z;)2w2 = Xvq(Nm(e')) =
Xv.q(—w?) = —xu,4(—1). In any case, we see that ¢, is well defined, i.e. independent of the

choice of decomposition b = ¢ - g Further, by a similar argument we may check that for

a € qRy, ¢q4(a + bu) depends only on the congruence class of b mod g.
(e) ¢ = 2. Set

/
q
e

¢ for any

e (070 ) = Tl ()l 0

c
(f) If ¢ = o0, set

b —a T . k —f2"(*“2+172+*62)
S — — [v]
Poo < . b ) |V|1/2(a 2ib — c)%e p) 2/,

The choice of Schwartz function is crucial to what follows and is inspired by computations
in Shintani [33], Kohnen [18] and Waldspurger [37].

Proposition 3.4. Let t' =ty (p,0,s). We have
(1) ¢ € Ay, 1 (M, xo).
(2) Let b € SkJr% be such that t' = ty,. Then I/ € Sk+%(M,X,fX).
Proof: It suffices to show that ¢ € ﬁk+%(M, X0). For then from the result of Prop.

3.3, t' =t € /IkJr%(M,XO) N 7, hence h' € S,H_%(M,x,fr) = Sk+%(M7X>fx)- Let D
denote the usual Casimir operator for PGL2(R). By [36] Lemma 42, p.73-74, Roo(D)poo =
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471 00 (D) oo + 3 oo, hence Ty oo(D) (') = [K(r — 4)/8]t'. Tt is enough then to check (i) -
(iv) below.

(i) If gt M and 0 € T'g, 7yr,4(0)(0g) = ¢4;

(

.. a b
100 | Mg 2 2and o= (¢ 1) €Ty (0), roalo)on = xaa(des = xa(dhor

(iii) If 0 = ( Z Z > € To(v2(M)), ryr 2(0)p2 = X0,2(d)p2;

(iv) If 0 € R, 7y 0o (R(0)) (9o0) = €92 0.
We may verify these using (3.1) - (3.3). We begin with the following observation which
will be used repeatedly in what follows: for n > 1,

(3.4)  Ty(n) is generated by 0i(x),d(a),n(y), for x € Zg, o € Z;,y € ¢"Zy,
and for n = 0,
(3.5) [',(0) =Ty is generated by ni(x),d(a),w, for x € Zg, o0 € Z;; .

(i) This is immediate for ¢ t vM by (3.5), noting that Fp, = ¢, for ¢ { vM. For q | v,
g1 N, one first computes Fgg:

Fq ( b —a ) = q3/2/ ©q < y - )W(Qby —az — cx)dxdydz.
c —b 23 z =y

Let a = ( i :Z ) and T = < Z :?:j . Since 4 is invariant under the transformation

r— x+q,y—y,2z+— z and under the symmetric transformations sending y — y + ¢ and
z + z+ ¢, one sees that Fp,(a) = 0 unless a, b, c € Z,;. Thus letting a, b, c € Zg,

Fo,@) = ¢** Z / 0q(T)Y' (2by — az — cx)dxdydz
a,B,7€Z/qL 2,Y,2€Lq,x=0,y=0,2=7(q)

=q 7 Y (208 —ay - ca)pg ( " 4 )

o,BYEL/GL i
_ 0 —« 0 0
=q3/2[ > wean () o) X vema( ) p)
a€(Z/qZ)* vE(Z/qZ)>

> w’(2bﬁ—a7—6a)wq<§:g>]

a,B,7€(Z/qZ)*
=q 7 [ Z W' (—ay)Xwq(7) + Z P (—ca)xug(a)
YE(Z/qZ)* a€(Z/qZ)*

4 Z ¢/(2ba5 — aad? — Ca)XV,q(a)]

o,0€(Z/qZ)*

= ¢ G0, ¢) [o(—a) +o(=)+ Y o(—ad®+265—)|,
S€(Z/42)"
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where o denotes the unique nontrivial quadratic character of (Z/qZ)*. Using the fact that

—1,ifx#0,
52+x:{ .
aezgzzd ! ¢—1 ite=0,

we see that Fp, = o(—1)g~/2G (0,9 )p4- Now, from (2.9),
ry (w)(9g) = Y1700 - o(=1)g G (0,4 ) g = @q.

Since q # 2, ry/(d(a))(pqg) = V()X q(a)pq = @q (by (2.8).) Finally, ry(0(2))pq = ¢q
for x € Zy. Thus, ¢, is indeed invariant under I'; as required.

(ii) We need to work through the cases (c1)-(c4) and (d1)-(d2).
Case (cl): ¢ | NT, ¢t v and 0,4 unramified;

5 b —a\ [ 1 ifvgla) = —1,v4(b) = 0,v4(c) =0,
Ya\e b )~ 0, otherwise.

Thus Fp, is invariant by n(y) for y € ¢Zy, hence using (2.1) and (3.4) one sees that ¢ is
invariant by T'¢(1).
Case (¢2): ¢ | NT, ¢t v and x4 ramified;

%q< b —a ) _ {G(X;l,w’)c), if vg(c) = 0,v4(b) > 0,v,4(a) > -2,

c —b 0, otherwise.

Thus F, is invariant by n(x) for vy(x) > 2. Since ry(d(a))(¢q) = X&;(a)goq and g is
invariant by n(z) for x € Z,;, we see that ¢, transforms as required under I'j(2).
Case (¢3): ¢ | NT, ¢ | v and x0,4 unramified;

Fo, < b —a ) _ {G(X;,;a (%)), if vg(e) = 0,v4(b) > 0,v4(a) >0,

c —b 0, otherwise.

F(pq) is invariant by n(z) for vy(x) > 1. Since ¢, is invariant by n(z) for z € Z, and
ry (d(a)) (@) = Xvg(@)pqg(a-) = @q4, we see that ¢, transforms as required under I'y(1).
Case (d1): For ¢ | N7,q { v and X0, unramified, ¢, is invariant under d(a) and n(x),
x € Zg. Since

Fpqla+bu) = ]IRg+qu(a + bu),
q

we see that ry o(n(—y))Fp, = Fo, for y € ¢Z,, and consequently, ¢, is invariant under
Iy(1). Next let ¢ | N7,q {1 v with xo, ramified. Clearly ¢, is invariant under n(x) and
transforms under d(a) by xo,4(a™1). One easily computes that

/ 1 (1, ].
GL (W)Y, ifae ~RO\ R, a = —~w,b € ~R,,
ff"gp(a—i—bu): (Xq (1/}) ) a q q\ qa qw q q
0, otherwise.

so that 1y ,(A(—y))Fe, = Fp, for y € ¢°Z,, which shows that ¢, transforms as required
under I'y(2).

Case (d2): ¢| N7, q | v. In this case, necessarily xo 4 is ramified since xg4(—1) = —1. ¢q is
invariant under n(z),r € Z, and transforms under d(a) by xq, é(a). One checks also that
Fpq(a+bu) =0unlessa € Ry, b € %Rq. Thus ry o(A(—y))Fo, = Fq for y € ¢*Zy, whence
¢4 transforms in the required manner under I'y(2).
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(iii) We have é(n(z)) = é&2(n(y)) = 1 for © € Zs,y € 2°Zs. Also &(d()) = py(a™?), and
Ty (d(a))pa(z) = py (a)3pa(az). Note that

prygr (@) = ((vo, @)apig(@))® = (v, @)zpgp(a™).

Thus in any case 7y (d(a))p2 = éx(d(a))(vo, @)p2(a-) = é(d()) (v, ) xu,2()p2
— & (d(@)((~ )7 )2z = x0a(a)ea(d(e)) . Since

T (0 7)) =Ty (@, 0y, 0

2

Ty (A(x))(p2) = @2 and ry (D(—y)) T = T for x € Zo,y € 227,5.
(iv) See [33], Remark 2.1, p. 105. W

We will show later in Sec. 4 (see Prop. 4.2 and the paragraph following Thm. 4.5)
that h/,# # 0 and also that some nonzero scalar multiple of A’ has Fourier coefficients in
Q(f,x), the field generated over Q by the eigenvalues of f and the values of y. Assuming
this for the moment, let h, be a scalar multiple of A’ with Fourier coefficients in Q(f, x)
and suppose that we have chosen h, to be A-adically normalized i.e. the ideal generated
by the Fourier coefficients of h, is an integral ideal in Q(f, x) and prime to A. (Thus h,, is
only well defined up to a A-adic unit in Q(f,x).) Let t =t and set s’ = Ty(p, g,1).

Proposition 3.5. s’ = (3s for some scalar 3.

Proof: By [38] (proof of Prop. 22, p. 295), one knows that ©(7,¢') = 7’ ® x» = 73 ® Xu,
hence s’ € my ® x,. Recall that s was defined to be the unique vector in 74 ® x,, satisfying
s® (x;' o Nm) ® (x o Nm) = s5 where sg is a A-adically primitive newform in 7 ® .
Recall also that s, may be characterized (up to a scalar) as the unique vector v = ®,v,
where v, € 7y ® X4 satisfies

(a) veo is a lowest weight vector in the holomorphic discrete series representation of weight
2k;

(b) For finite ¢, v, transforms under Up 4(x) by @y 4.

cosf sind _ (k075

Cinf cosd ) R(Kg)Poo = . Thus to establish

It is easy to check that for kg := <

the proposition, it suffices to show that ((xu,qX,)oNm(u))  R(u)p = JJ(u) - for u € Uy 4(x)
i.e. for all finite ¢,

(3.6) () © Ni(u)) - Ru)ipg = Bpg ) - g for u € U g (x).

One checks that

(i) For ¢ vN, u € Up4(x), one has (XvX)(Nm(u)) =1, @y q(u) =1 and R(u)p, = ¢4
mﬂququu—< ) € U0 (v ) (Sma(0)) = o (Nin), Rl =
Xv,q(Nm(u))pg, Oy q(u) = 1.

i) For g | 5+ = (4 1) € U0 (o) (Nim(u) = voglad) g (), Rl =
Xq(d)Q-

\_/QQ

(Xu,qu )(d/a)SOq? Wy, q(u
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(iv) For ¢ | N—, suppose ' = o+ f'u € U,. Then @, 4(u') = xq(Nm(u')). Also

n— r 1 — / /
() Ha+bu)u = Nm(u/)(a—ﬁu)(a+bu)(a+ﬂu)
L ! al — baf )

(2af'a + a®b — B wh)u).

Since Nm(v') = Nm(a) — 7 Nm(f3'), both Nm(v') and Nm(«) are units. Now, if ¢ | v,
R(u)pq(a+ bu) = 0 unless a € gR, and b € R,. Since @?/ Nm(v') = Nm(a)/Nm(u') - @/
and X, 4, Xq both have conductor ¢, we see that

R(u,)Soq = (XV,qu_l)(Nm(a>/Nm<u/)> 'XV,q(Nm<O‘))(Pq
= Xvg(Nm(a))pg = Xuq(Nm(u'))p,.

The verification that R(u')¢q = xu.q(Nm(u'))g, in the case ¢ t v is simpler and is left to
the reader.

(v) If g =2, R(u)p2 = @2, x2(Nm(u)) = x,(Nm(u)) = 1 and @ (u) = 1.
We see in each case that (3.6) is verified. B

It will be important for us to know that 8 # 0. This will be established in Prop.
4.2(modulo the proof of Theorem 4.1, which appears in [23].)

4. ARITHMETIC PROPERTIES OF THE SHINTANI LIFT

4.1. Period integrals a la Shintani and Shimura. For w € C and a € V ®g C, define

i = (o0 (8 D)a(1)

= cw? - 2bw +a,

b —a

—b

z}, T, = G NT". Suppose that ¢’ € Sp(I'",w), and w|r; is the trivial character. Then put,
as in ([32] (2.5); see same reference for normalization of the measure below)

ifa= . For z € V and any subgroup I ¢ B let G, = {h € SLo(R),h~'zh =

Pt = [ ol (hw)d(Tin)
I \Ga

for any w € $. Denote by V* the set of z € V such that Nm(z) < 0 (i.e. Q(x) = —Nm(z) >
0.) By [32] Lemma 2.1, P(¢’, z,1”) is independent of the choice of w and is equal to 0 unless
x € V*. Let R(I) be the set of equivalence classes in V* for the conjugation action of I
and for C € R(I"), set N(C) = N(x) for any choice of z € C. By [32] (2.6), P(¢’,z,T") only
depends on the class of z in R(T"). Thus for € € R(I) we may set P(¢’,C,T") = P(¢’,z,T")
for any choice of z € C.

4.2. Fourier coefficients and nonvanishing of the Shintani lift. Let £ € Q. We now
compute the ¢¢-th Fourier coefficient of ¢’ =ty (¢, 0, s). As in [38] (p. 291), this is given



ARITHMETIC PROPERTIES OF THE SHIMURA-SHINTANI-WALDSPURGER CORRESPONDENCE 25

by
W S0) = W, W)VE o) = s(8) ryr(0) R(B) () 3
/ZA\BG\BAX :L‘EV,:%:W{ Y
= [ s HmE) 3 (RO
2B \By veV.q(z)=lvl¢

Since B = By - (Uo(x) x (BX)") and 9 (B) xox ) (Nm(B))R(B)p is invariant under
B — Bu for u € Uy(x),

WY, v5.0) = volW() [ B S () R(Bue)ple)d o

Iy \SL2(R) zeV,g(z)=|v|¢

= voltolx) 9x(B0) 3 7 (0) R(Boo )i (2)d ) .

eeR<rx>Z,q:(e>:|u|§/F><\SL2(R> : mze;:

Now, put o = dg(y'/?). Since vol(Uy(x)) = C/x? for C = 6[Uy : Up(x)] [Ty n+ (g +
D7 Tyw-(g = )71, we get

W(tlawgvo-) = Cﬂ-_Q Z Z@fm(x)/ gx(ﬁoo)'

CeR(Ty),q(C)=|v|§ z€C ' \SL2(R)
(A (y"/?) R(Boo) oo (2)d M) o
(4.1) - C Z i (2)](2),
CeR(Iy),q(€)=vl¢
where x is any element in €, and
1

(4.2) I(z) = = / gx(ﬁoo)rwl(dR(y1/2))R(/Boo)sooo(l")d(l)ﬂoo.

Iy, \SL2(R)

2
Since ¢ in (v 2y) = X (V)¢ fin(x), we see that ' restricted to I'y , is the trivial character
if prin(z) # 0, so that the integrand in (4.2) is indeed Ty, invariant, and the product
@in(z)I(x) is independent of the choice of x € C.

By [33] (Sublemma on p. 102) and [32] (2.23) (and taking into account that our additive
character is 1’ instead of 1),

I@) = e | 0 (Boo)ror (0(2))) R(Boc )00 )V
FX,a:\SL2(R)

Y
(4.3) — (vl 2D 2Py T ),

The formulas (4.1) and (4.3) above can be used to relate the Fourier coefficients ag¢(h')
to certain period integrals of g, along tori embedded in B*. Applying the method of
Waldspurger [39], one can show the following

Theorem 4.1. If a¢(h') # 0, then the following conditions must be satisfied:
(a) For all q | N,q1 N’, (%0) # —wj.

(b) For all g | N', (£) = xo4(~ 1),

(c) & =0 or1 mod 4.
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Suppose that conditions (a), (b), (c) are satisfied. Then

! — _1 1 1 s
lag(W)]> = C(f, x, v)m*F|wel* QL(Q,Wf®XV)L(2,7Tf®X§o)'m’

where C(f,x,v) € Q and is a p-adic unit if pt N := [Iynvalg+1)(g—1). (Recall that fy
is the Jacquet-Langlands lift of g, to GLa, normalized to have its first Fourier coefficient
equal to 1.)

The proof of the above theorem will appear in another article [23], since it uses methods
very different from those of the present article.

Let us set b/ = aghy. Then we have
Proposition 4.2. «g, 3 # 0.

Proof: One knows from Waldspurger [37] that there exists £ such that L(%, 7 ® xg,) # 0.
Further L(,7; ® x,) # 0. Hence |ag(h')| # 0 for some ¢ whence I/, # 0 and ag # 0. By
see-saw duality (see [19]),

<040hx,hx> = <gxyﬁgx>7
so that 3 # 0 also.

4.3. Fundamental periods of modular forms on quaternion algebras. Let n =

2k — 2, so that n is a nonnegative integer. Set Fy = Q if n =0 and Fy = Fy if n > 0. For A

any O Fo—algebra contained in C, let L(n, A) be the A-module of homogenous polynomials

in two variables (X,Y") of degree n with coefficients in A. There is a natural action of F)lc
on L(n,A) given by

(on(7)P)(X,Y) = P(aX + cY,bX +dY) if &(y) = < i 2 ) .

Thus we can define the (parabolic) cohomology group HZ} (Fi, L(n, A)), following Shimura.

Let Sp10 (F)lc) denote the space of antiholomorphic cusp forms of weight n + 2 on 1“>1<. The
theory of Eichler-Shimura gives for every such n, a canonical isomorphism

(4.4) ¢t Spp2(Ty) @ Sppa(Ty) =~ HY(Ty, L(n,C)).

We recall the definition of the map ¢ above. Put w(g') = ¢'(2)(X24Y)"dz for g’ € S, 42(I'})
and w(g') = ¢'(2)(Xz + Y)"dz for g’ € S,42(T'}). Define for any such ¢/,

c(g',7) = /720 w(g')

20
for some choice of 2y € $. The cohomology class of the map v — ¢(¢’,~) does not depend
on the choice of zp, and is denoted c[g'].

Suppose now that ¢’ = g,. Let T denote the Hecke algebra associated to the group
. Both sides of (4.4) carry a natural action of T and the isomorphism (4.4) is in fact
T-equivariant. In addition, both sides of (4.4) carry natural involutions x — z¢. On the
left, this is defined in Sec. 2.2.5. On the right, this may be defined as follows. First pick

a unit ¢ € O(x) of norm —1 and such that ®,(5) = (1) (1] mod ¢ for ¢ | ged(N,, NT).

Such a unit is known to exist by work of Eichler. Then for ¢ € Z(I'}, L(n, A)), define
(¢]0)(7) = —on(6)c(6~176). The asignment ¢ — ¢|§ preserves B(I'y, L(n, A)) hence induces
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an involution of H}D(F}(, L(n, A)), also denoted by the symbol §. If ¢’ is any other choice
of §, then &' = da for some a € T}. Now writing v = 07196, 0,(8")c((6")71y8) =
on(da)c(a 107 1v5a) = 0,(8)on( )c(a v a). But

on(a@)e(aa) = Un(a)[c(a Y+ on(a™e(y') + onla™)e(a)]
an(@)e(a™) +¢(v') + on(y)e(a
[(e(1) = c(@)] + ¢(v) + on(7)e(a)
(V) + (en(?) = De(a)
(7)) + 00 (0u(y) = Dow(d)e(a),

I
ix)

= ¢
since ¢(1) = 0. Thus
0 (8)¢((8")7178") = 0n(8)e(67148) + (on(y) — 1)on(8)e(a),

whence the involution defined above on the cohomology group Hg (Fi,L(n,A) is actually
independent of the choice of 6. We denote it by the symbol c. If ¢’ € Sy (Fi) then

nd) = [ g6 YT

20

vz
= d(2)J(0,0 1) KX e + V)" I (0L, 2) "2 Nm(d)dz
0z0
5v6—1.670
= - g (2)on (6N X2 4+Y)dz
6z0

= on(0 (65", g).
Thus [¢(g")] = [c(g")]¢ for g' € Sor(T'},). Likewise one may check that [¢(g"“)] = [¢(¢')]° for
g € Sigk(lﬂ;l(), whence the map (4.4) commutes with the involutions ¢. By multiplicity one,
the maximal subspace of Sy, 42 (T;) @ E(Fi) on which T acts by A, is two dimensional,
a basis for it being given by {gy, gi} The involution ¢ preserves this subspace and acts
diagonally, with eigenvectors {g, + 9y 9x — gfc}, the corresponding eigenvalues being 1, —1
respectively.

Since (4.4) commutes with the actions of T and ¢, the subspace Hl( L(2k —2,C))*Aax
of H} (Fl L(2k —2,C) on which T acts by the eigencharacter Ay, assomated to g and c acts
by il is one-dimensional. Let A be any O, —algebra in C that is a principal ideal domain
and contains all the eigenvalues of g,. Let fi (9x, A) be any generator of the free rank one
A-submodule H;(Fi,L(Qk —2,A))FAx. If 0 € Aut(C/F), then Fia = Fi and we may

choose &+ ((gx)7, A7) = (£x(9x, 4))7-
We can now define the fundamental periods u+(gy, A) (and u+((gy)7, A%)) by

o Eelgy] = ux(gy, A)éx(gy, A),
[(9:)7] £ c[((9x))] = ux((9x)7 A7)E£((9x)7, A7).

Up to units in A, these periods are independent of the choice of ®, g, and &4+ (gy, A). For
F any subfield of Q containing Fy and all the eigenvalues of gy, let Ap ) be the subring
of elements in F' with non-negative A-adic valuation. Define uy(gy, F, ) to be equal to
u+(gy, Ar). Also define u4(gy, A) to be u4(gy, F, A) for any choice of F' so that it is only
well defined up to a A-adic unit in Q.
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4.3.1. An auziliary description of the fundamental periods. Let us write

VR:{(Z _‘i),r,s,teR}.

Denote by ‘.P{Ei_l be the vector space over R of R-valued homogeneous functions h on Vg
of degree k — 1 satisfying (0%/0r? + 40%/9s0t)h = 0. Let Tfé_l = PE1 @ C and pj_; the
representation of Fi on TP(’E_I given by

[or-1(7)b](2) = b(v'z).

Finally, let o9;_o be the representation of I‘i on L(2k—2,C) defined in the previous section.
The following is well known.

Lemma 4.3. Forh € ?fé_l, define p(h) € L(2k —2,C) by

pOCY) bt | F X V],

Then p gives an isomorphism of representations of F)lc, (Pr—1, T(’éfl) ~ (o9k—2, L(2k —2,C))
sending iP{f{l to L(2k — 2,R). This induces an isomorphism of cohomology groups
pet HY(TL, PEY) = HY(TY, L(2k — 2,C)).
One may define an involution ¢ on H} (F}(,ﬂ’]j‘_l) as follows. For ¢ € Z (F;,ﬂ)]j‘_l) and

€ e Vg, set d(v,8) = (d(7))(§). For ¢ any unit as in the previous section, and for ¢’ €
Z(Fi,?fﬁ(l) define | by

(10)(7,€) = (=1)"/(6710,67'€d).
Since e 1ote = 6 = -6~ 1, for ¢/ € Z(F;,T(]gl), we get

(P(NB)NEXY) = —0u(®)(pc) (078, [ X Y ])

= (0, [ X Y ]9)
= (6710, e 16 [ i,( ] [ X Y ]9)
= (67 y0, -0 e [ ); } [ X Y ]9)

= p(d]0)(NX,Y).
Thus p.(c'|0) = (p«(¢')|d), whence the assignment ¢’ +— ¢/|§ induces an involution on the
cohomology group H; (Fi,ﬂ’fgl) that is independent of the choice of 4. We denote this
involution also by the symbol c.
Given z,z9 € 9, and x € V, define

X(220,2,9) = / [, w]* gy (),

20
t(7,20,7,9y) = X(7v20,20,T,9y)-

One checks easily that v(v, 20, x, gy ) as a function of (v, z) lies in Z (I‘)l(, ’P(Ié_l) and its coho-

mology class in HZ} (Fi, i]’(]é_l) is independent of the choice of zg. We denote this cohomology

class by ¢'[g,] and note that p.(c'[gy]) = ¢[gy]. Now let P5~! denote the sub-A-module of
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iP(Ié_l consisting of those h whose coefficients lie in A and note that ¢ preserves H; (F)lc, ‘PZ_I).
We may thus define another set of fundamental periods u/ (gy, A) (well defined up to ele-
ments of A*) by

Clo] gyl = uli(gx, AEL(9x, A),
lo7] £ [((9)7)] = ul(gy, A7) (g7, A7),

where &} (gy, A) is a generator of the free rank one A-submodule H; (F}(, Tfffl)
(93, A7) = (Ei(gx, 4))°-

We also have the following lemma whose proof we leave as an easy exercise for the reader.

Ehox and

Lemma 4.4. 1.
p(PE) C L(n, A).
2. Suppose that all primes q < 2k are invertible in A. Then
PP = L(n, A).

It follows from the lemma that we may pick &, (g, A) such that p. (£ (gx, A)) = &€+ (gy, A4).
Then u+(gy, A) = i (gy, A).

4.4. Rationality and integrality of the Shintani lift. Denote ¢’ now by the symbol
t and h, by hg, to denote the dependence on g, x and v.

g’X7V
Theorem 4.5. Write t’g%y = d/(g, X, v, F, Nuy(gy, Fy N hg for some non-zero constant
o'(g, x, v, L ).

(a) Let o € Aut(C/Fy). Then (o/(g,x,v, F,\)” = o/ (g7, x7, v, F7, \7).
Thus o/ (g, x, %, F, ) € F(x).

(b) vA('(g, x, v, F, X)) = 0.
Proof: With the preparation from the previous section, the proof is almost tautological.
In fact we only need to copy the proof of [32] Prop. 4.5 (which proves that the Shintani

lift is algebraic) with some care to take care of rationality and A-adic integrality. Letting
Cy=Iy: F)lc], we see by (4.3) that

ag(t') = v AW (9 dg(v'?))
= Z Sofin(x)(yg)_l/2p(g)(7xvFX)
CeR(I'x),q(C)=r¢

- Cl : Z gofm(x)(uf)flﬂp(gx, €, F)l()
CeR(Ty),q(C)=v¢

1 _ _ _
= S0 @)™ Y [erim(@)P(gy, 7.TY) + @pin (07 20) P(gy, 07 2, T )]
CeR(I'y),q(C)=v¢

1 _ _ _
= 501. Z [0 fin ()t (Y2, ) + @ pin (07 28)e(6 1,8, 61 wd)],
CeR(Tx),q(C)=v¢

where 7, is any generator of the group I} {£1}/{%1}. (Here t(ys,2) is defined to be
t(Vz, 20, z, gy ) for any choice of zp. This is independent of the choice of zy since v, fixes z.)

Now, ¢fin(8~12d) = X'(0)(x - Xu) (—=D)psin(x) = (=1)*X'(0) ¢ sin(z) and (81726, 0~ 20) =
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(—1)kx’(5)_1(t|6)('yx,x). Let I9%(z) = @in(2)e(Va, ) + gpfm(é_lxé)t(é_l'yxts, (5_1x6) and
A= AF,)\' Then
IX(x) = @rin(@)[t(yz, ) + (¢]0) (12, 2)] = ¢ (2)uly (95, AEL (g As Yas )
= o (@)ut(gx, A& (9x: Az, @)

where &, (9y, A, V2, x) is defined to be ¢(y,,z) for any ¢ € Z(F;,Tfﬁfl) in the class of

&' (gy, A). Again this is independent of the choice of ¢ since v, fixes . Thus I9X(x)/u(gy, A) =

goi’c’;fl’”(m)fgL (9x, A, vz, x) € A, which proves part (b) of the theorem. Finally,

(%) (5" ()€ (gys A7 )7 = @9 (2)E) ((9x)7 A, Yoy )
ui((9x)7,A%) )

whence part (a) is established too. W

The proof of the proposition shows that ¢'/u4(gy) has its Fourier coefficients in F(x).
In particular, the form h, is definable over F(x). Since h, may be obtained as a theta lift
from PGLy (i.e. the special case B = My(Q)) for an appropriate choice of v, and since F’
may be taken to be Q(f) in this case, we see that some nonzero multiple of h,, has all its
Fourier coefficients in Q(f, x) as had been claimed in Sec. 3.2 (see the paragraph before
Prop. 3.5.)

We now study the relation between the period u4 (gy) and uc(g) where € := sign(x(—1)) =
(—1)*sign(v). For each g | Ny, let x? be the finite order character corresponding to the
unique Grossencharacter that restricted to [, Z; x (R*)* is x4 at the factor ¢ and 1 at all
other factors. Thus x = [,y x? For ILC {l;1 | Ny}, set XM= TLen X

Proposition 4.6. Let v = u4(gy)/ue(g)-

(a) v/8(x) € F(x)-

(b) va(7) = 0.

(¢) If B = M3(Q), va(y) = 0.
Proof: Let Ul = [Tign Uog % TLien Uri(x)- Also set i = pxn (U (BX)*). Suppose
that ¢ & Il and ' = sy is a newform in Sy(I'!) = So(U™M). Define 77 := uuii(fxgq,) with
€g = x1(—1) where ¢’ and g;(q are arithmetically normalized as in Sec. 2.2.6. We claim that
the following statements hold:

(a)f ’)/;t/g(xq) € F(x), and
() 1r(r2) > 0.

Clearly (a) follows from (a)’ and (b) from (b)" since g(x),g(x?) are A-adic units and
800/ gn, 8(x?) € Q(x) € F(x). First consider the case ¢ f N™. We recall from [13]

how one can construct in this case some multiple of g;(q from ¢’. Fori =1,...,q— 1, set

0 = L
0

— e

) € (BeQy)~
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and identify o; with the corresponding element of By which is 1 at all other places. Now
set

Rya(s)(x) = (Z x4(0)s(x0iq )

for any s € So,(U™). Then Ry 4(sy) is a nonzero scalar multiple of s,/ .- Write 0; = o
X

for t; € BX,u; € Ul(x). If 8 corresponds to the classical form ¢/, Ry 4(s") corresponds to
the classical modular form 7, Xq( o b We then have a commutative diagram

SQ/C(FLH) H;(FLHvL(na (C))

ifoyq l‘z’x,q

SQk (FLHU{q}) - Hz% (FLHU{q}v L(na C))

where

Dx.q(v) qu t 'Vt)

and the horizontal maps are 1somorphlsms as in the previous section. Clearly,
d)X:fI(Hl (FLH? L(n’ AR/\))) - Hl (FLHU{q}a L(’IZ, AF,)\))'

Suppose Ry q(g") = 648(x?) 'g}a. To prove (a)’ and (b) it suffices then to show that
dq € F(x) and v)(d4) = 0 i.e. we need to compare the arithmetic properties of the form
Rya(g") with those of ¢’. We now apply the rationality and integrality criteria of [12] and
[22], formulated more precisely in our context in Prop. 5.1 below. Since Ryq(¢') and ¢’
are the same except at the prime ¢ and since ¢’ is arithmetically normalized, the criteria
above reduce the problem to studying the rationality and A-divisibility of a certain ratio of
local integrals at g. This ratio (being defined purely locally) is independent of the choice of
quaternion algebra and so to compute it we might as well assume that B = M2(Q). But in
1 —i/q

this case, we may pick t; , = < 0 1

>7 g = > yane’™* and directly compute

q—1 q—1 )
Rgld) = D xUDglr = D X0 D ane™™ 1) = g(x0) Y x(n)ane’?
i=1 i=1 n (n,q)=1
= 8(x9)gya(2),

which proves what is required. The case ¢ | N~ is somewhat easier since in this case g;(q
is a scalar multiple of ¢’. To study the arithmetic properties of this scalar we again apply
the criteria mentioned above, from which the desired result follows easily. (For (a)’, one
needs to make the observation that the CM periods px appearing in the rationality criterion
satisfy px (- xq 0 Nmg g, 1)/pr(n,1)8(xq) € K(n, xq) for any imaginary quadratic field K
and Hecke character n of K.)

Finally, we prove (c) (which in fact we never use in this article.) By [34], there exists
a character 1 such that g(n=1)[c,[*~1(2mi)"1L(1, f,7) ~ ue(f) where we use the symbol ~
to denote equality up to a A-adic unit. On the other hand L(1, f,n) ~ L(1, fy, X~ 'n) since
pt N and a(n1x)]e -1 F=1(2mi) "LL(1, fy, X 'n)/us(fy) has nonnegative A-adic valuation,



32 KARTIK PRASANNA

again by [34]. Thus vy(uc(f)/u+(fy)) > 0 and combining this with part (b) we see that
ua(y)=0. 1

Corollary 4.7. Let o/ = o/(g,x,v, F,\). Seta =o'y and o := - g(x)~!. Then a € F(x)
and vy(a),vx(a) > 0.

Finally, we specialize to y = 1. Writing (g, F, A) in this case to express the dependence
on g, F, A\, we have for all o € Aut(C/Fp), (and from part (a) of Thm. 4.5)

Proposition 4.8.
(4.5) (alg, F,0)7 = a(g”, F7, X%).

5. ARITHMETIC PROPERTIES OF THE SHIMURA LIFT

In this section, we study the rationality and integrality of the Shimura lift i.e. of the
constant § appearing in Prop. 3.5.

5.1. CM periods and criteria for rationality and integrality. Let K be an imaginary
quadratic field unramified at the primes dividing N and K — B be a Heegner embedding
for the order O'(x) i.e. an embedding of K in B such that O'(x) N K = Og. Such an
embedding exists exactly when K is inert at all primes dividing N~ and split at the primes
dividing N*. Let z be the associated Heegner point on $ (i.e. the unique fixed point
on 9 of (K ® R)*) and 7’ a Grossencharacter of K of infinity type (—k, k) i.e. satisfying
0 (27s0) = 1 (2)2E Too ™" for © € K, 200 € KX. Equivalently 1’ is the Grossencharacter
corresponding to an algebraic Hecke character of type (—k, k). Define

Ly(s) = (e s(za) (x)d*x
KXKE\K]

for s € 7 ® x and a € SLa(R) being any element such that «(i) = z or equivalently,
a-S0(R) - a~! = (K ® R)(M. Of particular interest to us are characters of the following
type. The inclusion K — B maps Uk into Up(x), where U := @;{ Let X i denote the
set of Hecke characters of K of infinity type (—k, k) whose restriction to Uk equals W Yo
Clearly Xk has cardinality equal to the class number of K. There is some abuse of notation
since Yk depends on the choice of Heegner point and not just on K. Note that for ' € X,
77/‘@11 =X

We now pick an element j € B such that j € Ngx (K*) and B = K + Kj. Let J be the
ideal in K given by J = {z € K;xj € O'(x)}. Since p is split in B and 0'(x) ® Z, is the
maximal order in B ® @), it is clear that we may pick j such that J and (hence) Nm j are
both prime to p. Let 77 = /N~ (where N is the usual norm character) and denote by 7) the
algebraic Hecke character corresponding to 7). Also let (7)) = (2mi)**px (7,1) € C*/Q(7)*
where pg (1, 1) is the period defined in [10] and let © be the period defined in [22], Sec. 2.3.3.
that is well defined up to a A-adic unit. The following proposition is a mild strengthening
of Prop A.9 of [12] Appendix, and Prop. 2.9 of [22]. (In the statement below, (')%is the
Grossencharacter associated to 77NF.)

Proposition 5.1. Suppose s = (s, .
(a) B € Q(f,x) if and only if for all (or even infinitely many) Heegner points K — B and
all ’17/ € Xk,

(2mi)" I (j, 2)3(2) Y Ly (s") /) € Q,
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and for all o € Gal(Q/K - Q(f,x)),
<<2m>kw<3, 2)S(2)} Ly (") ) T @mi)M{mI (G, 2)S () Ly (5")
Q) '
(b) Suppose 3 € Q. Then v\(B) > 0 if and only if for all Heegner points K — B with
pt hi (the class number of K ), and all ' € Yk,

~ L /(8”)
o (G 30 PE ) 0
Further, it suffices to check this last condition for any set of Heegner points that reduce mod
p to an infinite set of points on the special fiber of Xy, (y)-

In our case s’ = s and s” = s’ ® (xx, © Nm). Note that for any 1 € X, the character
7" ((xxv) o Nm) is trivial when restricted to Qj, hence there exists a Grossencharacter 7
of K of infinity type (0, %) such that 7(7?) ™! = n"- ((xxv) © NmK/@). (Here and henceforth,
p denotes the complex conjugation of K.) Picking such a character 7, we set n =1 - N—Fk/2
so that n(n?)~t =" ((xxv) © Nmg q) as well. In future, we will denote Nm g simply by
the symbol Nm, since it agrees with the reduced norm restricted to K — B.

Let B = K ® K+ be the orthogonal decomposition of B for the norm form, so that
V=K@ KL Set Vi = K° and Vo = K+. Then O(V;) = {1}, O(15)° = K. We will
need to work below with the corresponding (connected components of) similitude groups.
Note that GO(V)? is identified with PB* xQ*, the action of ([z], a) being by y + a-(z~yz).
Then we have the natural map ¢ : B* — PB* x Q* given by ¢(x) = ([z], Nmz) and the
form s” on B* is obtained by pulling back the form (s',xx,) on PB* x Q*. Let H be
the group G(O(V1) x O(V2))? = G(Q* x K*) = {(a,b) € Q% x K*,a® = Nmg gb}. For
(a,b) € H, we have Nmyg(a'b) = 1, hence there exists ¢ € K* such that a='b = ¢?/c.
Now the action of (a,b) on y = y1 + y2d € V is given by

P

y1 + y2d — ayr + by2d = ay1 + CLFH =a-c 'y +1y2d)ec,

so that the natural inclusion H — GO(V)? is identified with i : (a,b) — ([c7!],a) €
PK* x Q* C PB* x Q*. Set m2 = x 'xv» m = 7' - (xXxv) © Nmg/q, so that 5’ is the
pullback of (n1,72) via ¢. Recall that i has been chosen such that 7; = n(n”)~!. Thus
. _ cf
((m,m2) 0 4)(a,8) = m(e™)ma(a) = n(=-)m(a) = n(b)u(a),
where (a) =7t gx (a)n2(a). Diagrammatically, we have

BX ¢ PB* x QX (S’XXL;)(C
KX ¢ PK* x QX (mﬁi)(cx
(n.m)
Z G(K* x Q%)

where the solid arrows denote maps of algebraic groups and the dotted arrows represent
automorphic forms on the corresponding adelic groups.
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Suppose that @oo (@™ - @) = Q1,006 ® Y2,00 € Sy (V1(R)) ® 8 (Va(R)) and for finite primes
@ Pq = D er, Plic @ P2, € Sy (Vi(Qq)) @ Sy (V2(Qq)). By see-saw duality,

jlon i) Ly (s) = Ty (0, 9, )’ (9)(xxw) (Nm(g))d™ g

/H (Q\H(A)

/ Ty (e, (91, 92), hy ) 1u(g1)n(g2)d™ g1d™ g2
O(V1)xO(V2)(Q@Q)\O(V1)xO(V2)(A)
= (Ty (e, hy)(g1,92), 7(91)7(g2))
= > (ot ) -t (em)
i=(iq)€[], Iq

i=(iq)€]l, Iq

/ hx(a)two(@)(pl,iqv g, /’L)two(®¢2,iq7 g, U)d(l)Ua
SL2(Q)\SL2(A)

where 1)y = /.

In the following section, we will show that for the purposes of computing the integral
above, we may alter P, so that it is a pure tensor of a particularly simple form. With
this goal in mind, we set up some notation. Let ¢ be a prime and suppose that we have
fixed for all I # ¢, Schwartz functions ¢ € 84, (Vi(Q1)), % € Sy, (V2(Q;)). Then for any
<€ 8¢0 (Vl((@q))v (UAS Sibo (V2(Qq))a set

(5.1) I(,9) = / Ty (0t (s ® 6%, 0, )ty (9 @ 99, 0,m)d Vo,
SL(Q)\SLa(4)

where ¢7 = ®;£4G, 97 = @249, Suppose §, € By is chosen such that gpg(-) = goq(éq_l - 0q)
is a scalar multiple of ¢,. Let ig : K ® Qq — By be given by ig(x) = 6qx5;1 and set
W = ig(K ® Qq). Also let f : B — B denote the isomorphism given by conjugation by
§, ie. f(z) = dx6~'. Then f induces isomorphisms of quadratic spaces f : Vi, ~ W
and f : Vo, ~ W Now, for ¢ € 84(W), 9 € Sy(WL), set <% = f*(s),9° = f*(9) and
J(s,9) = I(s9,9%).

We now need to compute the theta lift of 1 to SLa(A). However it is more useful to
compute the theta lift of n to GL2(A) using the extension of the theta correspondence to
similitude groups (as in [12]). We have then for o € GLa(A),

@ o) = [ S )0 © 0) () b
K(l)\KA zeVh

- / Z Ty (07, hqilqwq(x)“bo (g, hqhq)ﬁd(x)n(hﬁ)dlxh
KO\K aclh

o R SR L T

A xzeV2

(5.2)
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for h € K} with Nm(h) = det(c), where the measure dh is defined as in [22], p.925.
Likewise,

ton( <1, 0,0) = [ 3 g0 WTR) I @)1 (7 B BN
{£F1\{£1}a zey,
(5.3)
for h € Qx with h? = det(c). For convenience of notation, set t1(s, ) = ty,(s° ® <%, 0, )
and t2(9, ) = ty, (0’ @ ¥4, 0,7).
Suppose @; € 8y, (Vi(A)), 1 = ®q§3, P2 = ®q192, with 6 = (§,4). Then for g € GLa(4),
det(g9) € Nm(K}), vo = —|v|,

tyo (p2,0,m) = > W#<<g (1)>g>’

£eQx
£vo Nm(j) "1eNm(K))

where, choosing h = (h,) such that Nm(h) = Nm(j)~ v det(g),
w _ .
W) = [ re@NmG) v bza( (i h = I

WY () = /K o8N () v0) g4, g3 (R )
q

Suppose fy(j) = agjg. Since ry,(a(Nm(ay)), af)dq() = |ag"/?9,(ay),
W#,q(gq) = |O‘q’_1/277(af1)_1@77(9q)7

Ou(a) = [ ) ren @(Nm(iy) ™ o)y )0, (b5

where now Nm(h,) = Nm(j,)~'v det(g,), and ©,(g,) = 0if Nm(j,) " v det(g,) & Nm(K).

On the other hand, the theta lift t,, (1,0, 1) could possibly be an Eisenstein series.
Suppose K = Q(v/—d) with d square-free and set vy = v/—d. Then setting ) = ¥d one
easily computes the Fourier development of t,(¢1,0, 1) (for o € §A) to be given by

to, p1,001) = Colo)+ Y Wi(d(€)o)
§€@>0
where
0, if u is not a square.

Co(o) = Tyo (O Hrwo 04)s(0) if p is a square.
and

Wio) = /{il}ATwo(mh)w(vo)u(h)dfh=g@u(aq),

@u(aq) = / rzbo(aq’h)gq(UO),“q(h)d h = ! [Two(aq)gq(UO) + pq(— l)mpo(aq)gq(—vo)],
{£1}

Oo(oq) = Tye(0g)s(0).
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Let ¢} denote the i4(—1) component of ¢; i.e. ¢§(0q) = [cq(0q) + pg(—1)sq(—04)] and set
Gt = ®gf;. Then

Colo) = 1y (0)"(0) Wi(o)—%(o) (v).

(o, p1,0, 1) = Ty (0)sH(0) + Z T4 Yo )sH (vg) = Z Tyo (0)6H (§00).
£eQ>0 £eQ20

5.2. Local analysis of the triple integral. Let 7, denote the automorphic representation
of GLy(A) corresponding to the character 7. Let Q be the set of primes dividing Nv at
which 7, is supercuspidal and Q) the set of primes dividing ged(v,d). We will see later
that m,; must be a ramified principal series representation at ¢ € (Y, hence Q and Q' are
mutually exclusive sets. Denote by 3 (resp. ') the set of positive square-free integers all
whose prime factors lie in (resp. (94 .) In what follows, ¢ will denote any element of ¥
and y; is as usual the quadratic character (t) Also we use the symbol WY to denote an

anti-newform in the 1)-Whittaker model of 7, i.e. one that transforms by a character of

a rather than that of d for ( CCL Z ) € GL2(Qq). Further, let Ay(s) = Dy(s — k,0y,0,,)

(defined as in [27]), By(s) = Lq(n(n”)~1, s) and set

Cq(s) = Aq(S)Bq(S)71CK,q(3)71CQ7q(23)7
so that

Lq(ﬁ(’?p)_l, S)CK,q(S)
Gl T )

For each ¢, we also define an integer ¢, that is set to be equal to 1 except when explicitly
listed below. In what follows, we denote by nx the quadratic character associated to the
quadratic extension K/Q. Further, for the rest of this section, ¥ will denote the Fourier
transform taken with respect to the character .

Dy(s+k,0,,0,,) =

5.2.1. Case A: (¢,2Nv) = 1. Subcase (i): K is split at ¢. Then K, ~ Q; x Qq, By ~
M>(Qq). Set v = Zy x Zq. We may pick 6, € GL2(Z,) such that ig(a,b) = < g 2 > Let
: 0 -1 _

Ja={1 o ).Thengoq:goq:g@)ﬁ,Wheregzﬂto,ﬁzl[tjq.

It is easy to see that ©,, ©, and O are right invariant by n(x), n(y) for vy(z) > 0,v4(y) >
0. Suppose = (A1, A2). Then A\;/Ag is unramified. Set A\ = )q\qu = )\2|Z;, and a =
A (m), B = Aa(m), for m a uniformiser in Z,. Also note that y1y(—1) = 1. Then

a 0 N g+l _ gntt . .
677 ( 0 1 > = |a|1/2>\(1/0a/7r ) 5 qu(a), if Uq(a) =n;
0u(d(@) = la'"?uyy(@)xae(@)z,(a),  Oo(d(a)) = |a]'*y,(a)xaq(a)-

If Ay and Ay are unramified, so that A is trivial and p is unramified,
P
@ W W77®Xt @ Xt

for any t € ¥. By a familiar computation (see [27]), Cy(s) = 1.



ARITHMETIC PROPERTIES OF THE SHIMURA-SHINTANI-WALDSPURGER CORRESPONDENCE 37

Subcase (ii): K is inert at ¢. Then K, = Qu(v), where v> = u is a non-square unit
in Zg. Set v = Zg + Zguv. We may pick §, € GLy(Zy) such that if(v) = ( 2 (1) ) Let

. 0 —1
]q:(u 0 )-Then%:vﬂq:c@ﬁ,wherw:ﬂto,19:11%-
)

Since any unit in Kél is of the form /R for some unit x, we see that 7, (v Is trivial,
q

whence 7 factors as A o Nm and ,uq(—l) = 1. Again, ©,), ©, and O are right invariant by
n(z),n(y), =,y € Zq and

% < g (1) ) - %(1+”K,q(“))|a’1/2)\(Voua)qu(a);

0u(d(a) = pyo(@)xag(@lal?Iz, (@),  Oo(d(a)) = la|' /gy (@)xaq(a),

where h is any element of K, with Nm(h) = voua. If A is chosen to be unramified (so that
ftq is also unramified,)

for any ¢t € . Again, Cy(s) = 1.

Subcase (iii): K is ramified at ¢. Then K, = Q,(v), where v?> = 7 is a uniformizer at
q. (Without loss, we may take v = vg.) Set v = Z; + Zsv. We may pick 6, € GLa(Z)
such that ig(v) = < 2 (1) > Let j, = < (1) _01 . Then pg = ¢4 = Zf;& G ® ¥4, where
G = ]I(L-Jqu)v and ¥; = 1 Set Jij = J(s,0;). For y € Qg denote by n,
the element ( (1) % > € GL2(Qq). Since hy(oni) = hy(0), Ty, (n1)si = 1o(i%/7)s; and
Ty (n1)0; = 1bo(—j%/m)Y;, we see that J;; = 0 if 2 # j2 For a € {1,...,q — 1} let
a O .

dg = < 0 a1 > € GLa(Zgq). Since hy(ody) = hy(0), Ty (da)si = Sai and 7y, (da)Vj = Vg
we get Jij = J(4i)(aj), hence Y Ji; = Joo + (¢ — 1)J11. Finally, let 8 = (4;) € Qf be the
element given by 3, = —1, 5, = 1 if | # ¢. Making the change of variables h — hf in (5.3),
one gets Jij = pig(—1)J_p);-

We now make the following observation. A unit z = x +yv € v,2,y € Zy,y # 0 with
norm 1 such that vg(x + 1) < vy4(y) is always of the form x/k for some unit £ € t. In
particular, for such units z,

(Zq+(%+zq)v)jq ’

Nq(2) = ng(k/R) = n/(“)Xun,q(Nm(li)) =1

If x # —1 mod g and y # 0, this shows that 7,(z) = 1 and by continuity the same is true
without the assumption y # 0. If ¢ > 3 (as we may always arrange to be the case by picking
K appropriately), this forces n4(z) = 1 even if z = —1 mod ¢. Thus 7, and p, must be
unramified, hence piq(—1) = n4(—=1) = 1. Let ¢' = >, ¢ = [y, and w = < O1 (1) ) <
: _
GLa(Z,). Since hy(ow) = hy (o), F(s') = ¢"/%¢ and F(9;) = q_1/2¢0(<—%v, N

E ]
2 Wq

S i = J9) = I, T0) = 3 vil(~ Lo, L) T 60, 90) = oo
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Since Ji; = J(_;);, we have 2J;; = Joo for i # 0. Thus J = J00+(q—1)(%<]00) = %(qul)Joo =
$(qg+1)J(s,0) for ¢ = g, = Jp. Suppose 7, = Ao Nm with A unramified, so that
my =~ m(nr A, A). Then one checks that ©,,0,,0¢ are all invariant by n(z),n(y),ve(x) >
0,v¢(y) > 1 and

Oy(d(a)) = la|"nxq(~1r0a)A(~1oa)lz, (a);
Ou(d(a) = la|"pyy(@)xaq(@lz, (@),  Oo(d(a)) = |a|' gy (@)xdq(a)-
so that ©,, = nK7q(—y0)W,;b = ﬁK,q(*VO)W#)@Xt@Xt for any t € ¥. Also, A4(s) = (1—¢7°)~
1

By(s) = (1= q7°)7, (i, (5) = (1= ¢ )" and (gg(2s) = (1 —¢~)~". Thus Cy(s)
(14+q¢ %)L Set ¢, = (g +1).

.-

5.2.2. Case B: q | v, (¢,2N) = 1. Subcase (i): K is split at ¢. Then K, ~ Q; x Qq,

B, ~ M(Qg). It could happen that ¢ = p, in which case we pick the first factor to

correspond to the completion at p and the second to p where p is the prime induced by

A on K. Suppose 1y = (A1,A2). Set v = Z; x Z;. We may pick §;, € GL2(Z,) such
. a 0 . 0 -1

that zg(a,b) =l s Let j, = ( 10 ) and v = (1,-1) € Q; x Q. Also for

i, 5,k € {0,1,...,q¢ = 1}, set G = Liyz, viyo, Uik = Lqzy+5.qze+k)j,- One checks easily that

q—1 q—1 q—1
Pa=¢q=» oio®jo+ Y ek)o@do+ Y,  oli)s®
j=1 k=1 ijk=1

i?=jk mod q

and further, we may replace o(j) in the last term by o(k). Set Jijr = J (s, ¥;1). Note that
Jiji = 0 if i # jk mod ¢ (since making the change of variables o + on; in the integral
defining J;;;, multiplies the integral by Yo(i2 — jk), which is not 1 unless 2 = jk& mod q.)
Let ¢ = (—1,1) € Q4 x Q4. Then

ng(=1) = 14(c/c”) = 1g(¢) - XqXwq(Nm(€)) = Xu,g(—1);
pe(—1) = n7'(=1) - xgXuq(—1) = 1.

Hence Jiji = pg(—1)J(—i)jx = J(—i)ji- Alsoset ¢ =3, ¢ = L. Now, since hy (ow) = hy(0),
F(s) = ¢"%0, F(01)((a, ¢)iig) = ¢~ "o(—ci)vo(—ak)Le(a, c),

Do i = I 05) = ey (FQ) F(Wh1) = 025 v 1 (0, F (D)

= P vy D o=k ) bo(—ki') T (o, )
jl,k/
= q P oo + D wol=ki") Jogo + Y (=5K) Joow].
]/#0 k/7£0
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Thus
q—1 q—1
Z o(j)ijr = 0(5)Jiji
i,j,k=1 i,j,k=1
i?=jk mod ¢
q—1
= P D el + Y to(=ki) oy + D w(=ik) oo
k=1 J'#0 K0
= 50— De(-1)G(e. %) Y ek Joow

k' #£0

= (¢— 1)) o(k)Jook,
k720

and by symmetry, this last term also equals (¢ — 1) Z#O 0(7)Jojo. Thus J = (¢+1)J (s, )
where ¥((a, b)j,) = 0(a)lyz, (a)]IZ; (b) = xvq(a)lyz, (a)]IZ; (b). One may check that ©,,0,,0q
are invariant by n(z), n(y),ve(z) > 0,v4(y) > 1 and

O,(d(a)) = Xa(wa)lwal*Tz,(a);

O.(d(a)) = la|'?puyo(a)xaq(@)lyz,(a), O0(d(a)) = [al'?juyy (@) xa,q(a).

Note that for z € Z,
AN (@) = (1 2)Xg g (2) = Xug(®) = o(@);
pe() = 0 @)X (@) = MA2)TH (@) X ()

Choosing A2 to be ramified and A; unramified, we see that A\2x, 4 and i, are unramified,
and

Oy = >\2(V0)|V0|1/2Wf;b = X2 (10) |02 (W, ® xt)

nxt
for any ¢t € . In this case, Ay(s) = (1 — ¢ *)7L, By(s) = 1, (kq(s) = (1 — ¢ )72,
(0.q(28) = (1 —¢72)71. Thus Cy(s) = (1 + _s)_l. Since 7 has weight (—k/2,k/2),

vp(A2(0)) = vp(A2(w0)) = k/2. Set ¢y = (¢ +1)g =

Subcase (ii): K is inert at ¢q. Then K, = Qq(v), where v? = u is a non-square unit
in Z,. Set v = Zq + Zquv. We may pick 6, € GLy(Z,) such that ig(v) = < 2 (1) ) Let
. -1 0 .

Jg = 0o 1/ For i,j,k € {Oa L...,q— 1}7 set ¢ = H(qu+i)v719jk = H(qu+j+(qu+k)v)jq

Then one checks that

Pe = > o205 @00+ 0Qiu)g @0y + Y. o(—(i+k))s @D

i#0 i#0 ivj ki Lk
72=k2—i%)u
= D 0w @Pn+ Y. o(—(i+k))g @,
i#0 g ksiE—k

j2=(k?—i%)u



40 KARTIK PRASANNA

As usual, set J;j; = J(s,Y;k). Now note that
ng(=1) = ng(v/v’) = W;(U)qumq(*u) = —Xvq(—1);
pg(=1) = n;l(—l)XqXV,q(_l) = —L

so that Jijk = :U’q(_l)J(fi)jk = —J(,i)jk. Let gk = Z#ik Q( (z + k:)) Since 9(9)( ) _
g~ /4o (2izu)lz, (x), one has

F( M) @) = ¢ V2 o(—(i+ k)o(2izu)lz, ()
i#—k
= ¢ o(2kau) Y o(—i)o(2wiu)lz, ()
i#0

= ¢ o (2kzu)o(2zu)o(—1)G 0, Yo)lz, (7).

Further,
FW)((y+20)dg) = ¢ "o(—2yj + 2zuk)lz, (y)lz,(2).
Thus
> o=+ k) Tge = T 95k) = 951 T (F (), F W)
iE—k
= q_3/27§,07%—1 o(—=1)G(o, o) Z 0(2zu)po(2kzu — 2yj + 2zku) } Jpy-,
T, Y,z
and
o(=(i+ k)i = Z o(—(i + k) Jijk
1,7, k;i1£—k ik
i2=(k*—i%)u ik

= 1/27¢07¢ o(-1)G (Qﬂ/’o)z 0(2iu) Jio(—s)
= qz 22” i0(— :_qz 21 i0(—

Since Jioi = pg(—=1)J(—ioi = —J(—i)0i» one has J = (q + 1)o(—2) >_; 0(i)J (G, Voi). Set
S =2 iz0Mq()sis ¥ =2, 0 Mq()00;. Noting that pgng(i) = XgXu,q(i) = 0(i), we see that

Z NQ(Z)nq ZO] Z{,uq T’q ’LO’L + ,u/q( )nq O’L = 2 Z ’LOZ

1#£0 1#0 1#£0
%0

Thus J = (g + 1)o(—2)J(s,¥). Now note that for 2 any unit in t,

1g(2/2) = 14 (2)XgXw.g(Nm(2)) = X ,g(Nm(2)).

Since the norm map is surjective onto the units of Z, n,(ng)~ Lis not the trivial character.

Thus 7, does not factor through the norm, whence 7, , must be supercuspidal.
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Set ©4(9) = Oy(g4). O4(0) = ©u(gwn), B(0) = Oulgwy), where wy = (" 0,

Then ©;, 0,0 are invariant by n(z), n(y), for vy () > 0,v,(y) > 2 and

@%(8 (f) = 50— ol@)nlav ™) a);
O (d(@)w;") = o] 2pp(@)xagg(@)lze (a),  Op(d(a)wy ") =0.

Choose 7 such that , has conductor q?. Then for any t € ¥ with ¢ | ¢, They. has conductor
q? as well and for any t1,ts € ¥ with q{t1,q | o,

947 = ”(Ufl){wép@xn ® Xt1 — WT?@XQ ® Xtz }-
Also, Ag(s) =1, By(s) = 1, Crq(s) = Cgq(2s) = (1 — ¢ %)~ Hence Cy(s) = 1. Set
cg=q+1

Subcase (iii): K is ramified at g. Then K, = Q4(v), where v? = 7 is a uniformizer at q. Set
t = Zg+Zqv. We may pick 6, € GLa(Zg) such that ig(v) = ( 2 (1) > Let jq = ( (1) _01 )
For r,i,75,k,0 € {0,1,...,q — 1}, set Srj = H(%—&—j—i—qu)m Wi = Then

one checks that

o(—1)@g = Y o(=2i)si; @ Fijo + Y _ 0 — k)so; @Yok + >, (i — k)sij © i
i,j ],k i:jak:l
i£0 j#k 1#£0,12=2i(k—3j)

H(l+qu+(%+k+qu)v)jq'

(5.4)
Set Jrjirt = J(Grj, Virt). As usual, we have J,jin = ,uq(—l)J(_T)(_j)ikl. It is easy to see that
if Jrjiky # O then either r = i and I? = 2i(k — j) or r = —i and I? = 2i(k + j). Now fix
i # 0,1 # 0 for the moment. Let ¢ be such that 2 = 2it. Then
o= Ty =o(=t) > Jgwm= >, oli—k) i
j7k J7k j?k
12=2i(k—j) 12=2i(k—7)

Set ¢, = H(£+Zq)v, Y = H(l+qu+(%+Zq)v)jq and J.; = J(,Y;). Thus the contribution of
the last term in (5.4) to the integral o(—1).J is

Y oG-k gk =Y o(=2i)Ji.

i gkl i£0,1£0

1#0,12=2i(k—j)

Set ¥; = ]I(Zﬁ(i-Jqu)v)jq and J; = J(q, ;). Note that if i # 0, J;jiro = 0 for j # k. Hence
the contribution of the first term of (5.4) to o(—1)J equals

Z o(—21) Z Jijiko = Z o(—2i) Jiio,

i#0 Jik i#0
whence the first and last terms of (5.4) together contribute >, .o 0(—21)Jiio + 3_; 4 0(—27)
D120 Jiit = Diz0 0(—21)Ji; to the integral o(—1)J.
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The contribution of the middle term of (5.4) is somewhat tricky to compute. First we
begin by computing the Fourier transforms of ¢p; and Ygro. One checks that

F(soj) = 121/10 2ir)sr  FWoro) = > vho(—2ik)v;.

Thus

> oG — k) (s05, Poro) = Z'Yio%gl 0(j — k)J(F(c05), F(Joko))
J#k J#k
= a1 D D 0l — k)o(2ir)do(—2ik)J (<, 0;)

j#Ek ri
= Py D 3 e(s)bo(2(k + s)r)o(—2ik)J (s, 0:)
s#0 i,k
~ q 3/2%071# ZZ s)o(2si)J (si, 94)
s#0 @
= 011 Glowe) Y o2 i = g7 e(=20) i
i#0

Thus o(—1)J = (1 + %) > iz0 0(—2i) ;. Now setting ¢ = 37, o p(i)si, 9 = 32,40 m(i)Vi, one
sees that J = $20(2)J(s,0). Set O](g) = Oy,(gwq), ©),(9) = Ou(gw)), Of(g) = Oolgwy),

7'('_2 0 b0 A A . . _
where w, = 0 1 , Wy = L Then ©;,©,,, 0 are invariant by n(z), n(y),
for vy(z) > 0,v4(y) > 2 and
a 0 1 _
o, (6 1) = gml-rar )£ ool P o)

O,(d(@) = py(@)xdqmq(a)lal*Lyx (@),  Of(d(a)) =0.

where the + sign holds according as (vy, —7) = £1. Arguing exactly as in the case ¢ | d,d { v,
we see that 1 must be unramified and factor as n = A o Nm for some unramified character
A. Thus m, ~ m(AnK 4, A) has conductor q.

v -1 2 ~ -1
LetW#’(g)szf(g(qo ?)),W#:W,;ﬁ(g(q ?)).Notethat

0
( = Na)la|'?Iz,(a) WY < g (1) ) = 1K q(@)M(a)]a| Iz, (a);
i
(

S

=
_o kRO = O

) = Mag Hlag Lz, (ag™") = (M) g"?)A(@) a]L,z, (a):

Se
o oo oo

= nrqlag A ag ") ag M1z, (ag™t)

= (ka(@)d"*M@) k. q(a)X(a)]alY L4z, (a).

Now setting

Wit (g) = Wilg) —a ' (Nikg)(a)
Wi (g) = Wl9) —a A@W ().

(9);
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we see that
1 _ 1
Oy = (v {W"™ £ WP} = Sng(—vov){W,
for any t € 3. Also, Ay(s) = (1 —¢ )71, By(s) = (1 —q %)L, Ckq(s) = (1 —¢*)~! and
C0.q(28) = (1 —¢72%)71. Thus Cy(s) = (1+¢*)71. Set ¢, =g+ 1.

P, +
77®Xt + Wﬂ@Xt}

5.2.3. ¢ | N*. In this case, K is split, so we fix an isomorphism K ® Q, ~ Q, x Q,. Set
t=Zg X Ly.

Subcase (i): ¢ { v, x is unramified at q. We may pick §, € Nar,(q,)(0Ox,) such that
ig(a,b) = ( g (z ) Let jq, = ( (1) _01 > and v = (1,-1) € Q; x Q. Then g = ® Y

where ¢ = Lo and ¥ = I(z,xqz,)5,- Set ©;(g9) = ©),(gw,), Where w, = ( g (1) > Set

A = A1/Ag, where 7y = (A1, A2). Then X is unramified, py(—1) =1, @;7, ©,, O are invariant
by n(z),n(y),z,y € Z,, and

, ( a O B 1/2 A Mag) — 1 .
@77< 01 ) = Jaq|”*A1(voaq) i) =1 Iz, (a);
Ou(d(a) = lal'?uyy(a)xaq(a)lz,(a), O0(d(a)) = |al'? s, (@) xaq(a).
If we pick A1 and Ao to be unramified,
0 A1(ag) — Aa(ag)
@/ < a > — 1/2A a 1/2 ,
n 01 |Q| I(Q)| ’ )\1(Q)_)\2(Q)

so that ©; = ]q|1/2)\1(q)Wf]z’. One checks easily that Cy(s) = 1.

Subcase (ii): ¢ { v, x is ramified at g. We may pick J§, € O5 , such that either ig(a, b) =
0 . b 0 . 0 -

<g b) orzg(a,b) = (0 a)' Let j, = (q_l 0q> and v = (1,-1) € Q4 x Q.

Then @, = ¢ ® ¥ where ¢ = Lo and ¥((a,b)j,) = Xq(a)]lqu (a)lyz,(c) or ¥((a,b)jy) =
Xq(c)JIZ; (c)lgz,(a). We assume we are in the former case, since the latter case is exactly

similar. Set ©;(g9) = ©y(gw,), where w, = g (1) Note that 7/ (a,b) = x;2(b)
if a,b are units, 7,(—1) = 7(—=1, 1)XgXvq(—1) = xq(—1) and py(—1) = 1. Now one
checks that ©,,0q are invariant by n(z),n(y),ve(z) > 0,v4(y) > 0, O} is invariant by

1(2), 0(y), v4(2) > 0, 4(y) > 1 and
0 _
@;] < g 1 > = gq 1/2|a]1/2)\1(yoaq)ﬂzq(a);

Ou(d(a)) = lal'Zpugo(a)xaq(@)lyz,(a), Oo(d(a)) = la'/?pyq(a)xaq(a).

For any a € Z, M Ha) = nyla,a™t) = 1,(a, 1)xgXv,q(a) = xq(a). Thus we may pick 7
such that Ay is unramified and A; is ramified with conductor ¢. Then m, ; >~ 7(A1, A2) has
conductor g and ©;, = Al(uoq)W#). (If on the other hand, ¥((a,b)j,) = X_l(c)]lqu (e)yz,(a),
one gets ©; = )\Q(Voq)ﬁ/,;/’.) In this case, A,(s) = (1 — ¢ %)L, By(s) = 1, (rq(s) =
(1—q%)7% Co(2s) = (1 — ¢ )7L and Cy(s) = (1 +¢ ).
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Subcase (iii): ¢ | v. In this case, y has been chosen to be unramified at q. We may

pick d;, € 05, such that either ig(a, b) = ( 3 2 > or ig(a, b) = < 8 2 > Let j, =
0 -1
1 0
¥((a,b)jq) = XV’q(a)]Iqu (a)lyz,(c) or ¥((a,b)jy) = X,,,q(c)]lqu (c)lyz,(a). Without loss we

may assume we are in the former case. In this case, 7, is unramified, 74(—1) = xu,¢(—1)

and v = (1,-1) € Q; x Q;. Then B; = p; = ¢ ® ¥ where ¢ = I, 0 and

and p,(—1) = 1. Arguing as in the previous case, M\, ' (a) = x,4(a) = o(a) for a € Zy,
so we may assume that g is unramified and A; is ramified, but A1x, 4 is unramified. One
may check that ©,,0,,0q are invariant by n(x), n(y), ve(z) > 0,v4(y) > 1, and

Oy(d(a) = ¢ "*wal’* N (wa)lz, (a);
Ou(d(a)) = a1y, (a)Xaq(a)lyz,(a), Oo(d(a)) = |al'? iy, (a)xa,q(a).

We see that ©,) = )\1(1/0)]1/0\1/215/#. Ay(s)=(1—- g %), By(s) =1, Crq(s) = (1 — q *%)72,
Co(2s) = (1—¢ ) L and Cy(s) = (1 +q %)L

5.2.4. q| N™. In this case, K is inert at ¢; we use the notation of Sec. 3.2 in what follows.
We pick an isomorphism K, ~ L, and identify K, and L, via this isomorphism. Set
t = Zg + Lgw.

Subcase (i): ¢t v, x is unramified at g. We may pick , € B such that ig (a) = a. Clearly,
cpg = (g, since By has a unique maximal order. Also, p; = ¢ ® 1, where ¢ = Io and ¥ = I,

and we may set j, = u. In this case, 77, and p, are unramified, hence 7, = A o Nm for an

Nm(w) 0 > Then ©/,,0,,, 0

unramified character A. Let ©;(g) = ©,(gw,) with w, = ( 0 1

are invariant by n(z),n(y),z,y € Z, and

0u (1§ 1) = 500+ meaboalal X000z, (@ = 51+ micola))al A, (0
Ould(@) = [a] 2y (@)vag(@lzy(a).  Oo(d(a)) = o211y, (0)xago)

Hence ©;, = W# Also, Cy(s) = 1.

Subcase (ii): ¢ {v, x is ramified at ¢. We may pick J, € B; such that ig(a) = a. It is easy
to check that (pg = @q. Also, Py = ¢ ® ¥, where ¢(av) = Xq(a)ﬂzg (a) and ¥ = I,. Then
n(a) = x; ' (Nm(a)) for a any unit in ¢, ny| ) is trivial and pg(—1) = x4(—1). Thus 7, =
Ao Nm for some unramified character A. Set ©;(g) = O, <g ( Nn(l)(w) (1] >> Then ©;,
is invariant by n(z),n(y),ve(x) > 0,v4(y) > 0, O, Og are invariant by n(z),n(y), ve(xr) >
0,v¢(y) > 2 and

o (6 1) = 30+ mala)lal o)
Ould(@) = lal" g0 xag(@lyy (@), Oo(d(@) =0,

As in the previous case, @;7 = W#’ Again, Cy(s) = 1.
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Subcase (iii): ¢ | v. In this case, x has been chosen to be ramified at ¢, indeed x4(—1) =
—1. We may pick ¢, € By such that ig(a) = a. It is easy to check that gog = ¢, and
n(a) = x;'(Nm(a)) for a € v*. Also, p; = ¢ @ ¥, where ¢ = I 0 and ¥ is given by the
following formula: ¥(bu) = 0 unless N(b) € (Z;)* In that case, write b = c¢ for some
c€Z;,ecr*. Then ¥(b) = Xuq¢Xq(c) - Xv,q(N(e)). Note that for z € v*,

ng(z/x’) = W;(x)XqXV,q(Nm ) = Xu,g(Nmz).

In particular, 1 does not factor through the norm, hence 7, is supercuspidal. Setting x = v,
one gets 7g(—1) = xpo(Nmw) = —xupq(—1) = XgXv,q(—1). Hence we may assume that
g = 77q_1|@; * XgXv,q is unramified. One checks that ©,, is invariant by n(x),n(y), ve(z) >
0,v4(y) > 2, and

0, (5 1) =l vatea) [, oealh )
q

for any h € K¢ with Nm(h) = ea. Now ¥(eah 'h~') = 0 unless ea € (Zy)?. Suppose
ea = b%. Pick h = b, so that eah~'h~! = bh~!. Let us write h = x/xP for some x € t*.
Then

Na(hh) = 1) = XgXna(b) - Xy (Nm(a)),

Peah™H) = DR = 007) = xgxa(B) v (Nm(2)).

whence from (5.5) above, we see that
a O 1
@"7 < 0 1 > = §‘a|1/2XV’qu(6a)(1 —|— Q(Ea))HZ; (a)

Thus for t1,t2 € ¥, with ¢ {t1,q | t2, O = %Xy,qxq( W, 77®Xt ® xt, £ Wn®><t ® Xt, } where

the £ sign appears according as p(¢) = +1. Also O, ©¢ are invariant by n(z), n(y), ve(x) >
0,v¢(y) > 1 and

O,(d(a) = la|'? gy (a)xaq(@)lgz, (@), Oo(d(a)) = la|' gy (a)xdq(a)-
In this case, Ay(s) =1, By(s) = (1 — ¢7%)7}, (kq(s) = (p(2s) and Cy(s) = (1 — ¢~%).

5.2.5. ¢ = 2. We assume that K is split at 2; the other cases can be handled similarly.
Pick (5q,ig,jq as in Case (A), subcase (i). Then ¢, = ¢ ® 9, where ¢ = Lo, ¥ = Iay,.
Since 7/, XQ and Xv,2 are unramified, we may pick n and p to be unramified. Let @;](g) =

. One checks that ©] = (A\1)2)(2) - W#} Further, ©,, ©¢ are invariant

0
w>, 20}, e >>0v2< ) > 2 and
0,(d(a)) = lal' gy (a)xaz2(@)z, (@), Bo(d(a)) = lal' 1y, (a)xaz(a).
5.2.6. ¢ = 00. Let joo = < (1) _01 ) Then My(R) = C 4 Cjs and ¢ = (=2i)F[v|~1/2.

Pl 0o ® ¥ o Where ¢  (7) = e 2mlel*/Iv], 0 oo (YJoo) = yke=2mw*/IV Here we think of

C — GLy(R) via z = a + bi — <a

b _ab > Suppose o Yja = ypjoo for yp € C. Then
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(oM@ + i)a) = (—20)*P1.00(2) 200 (47) Where Q1o0() = e /M and ¢y 00(f) =
\u\*1/2y0_kyke*2ﬂy|2/|”|. One checks easily that

a 0 _ koo k1l
0,(§ 1) = wtiital T e e )

Ou(d(@) = lal'puyo(a)e™>™ /M, Og(d(a)) = lal/* 11y ().

Set coo = |v[F/2. Also notice that 75 = —3(2)J (5, 2)j(a, 1) (see the discussion on p. 940 of
[22]). Hence

(=70) I (G, 2)3(2) Yi(a, i) = 1.

5.3. Statement of the main theorem and proof of rationality. We begin by summa-
rizing the calculations of the previous section in more classical language. For each prime ¢
define integers Iy, 74, Mg, ng, Sq as below.

(i) If ¢t 2Nvd, lg =14 =mg =ng = 54 = 0.
(ii) f ¢ 12N, q | d,q t v,

lg=0,17g =1,mg =ny=1,5,=0.

lg=0,ry =1,mg =ng =1,5, =0, if K is split at g,
lg =1,y =0,myg =ng = 2,5, =0, if K is inert at ¢,
lg=2,7g =0,myg =ng = 2,5, =0, if K is ramified at gq.

(iv) If g | NT,
ly=rq=0,mg=1,n,=0,5, =1, if ¢t v and xg 4 is unramified,
ly=rq=0,mg=2,n,=1,5, =1, if ¢fv and o4 is ramified,
lg=0,rg=1,mg=mny=1,5,=0,if ¢ | v.

(v)Ifq|N~,
ly=rq=0,mg=1,n,=0,5,=0, if ¢t v and xp 4 is unramified,
ly=rq=0,mg=2,n,=0,5, =0, if ¢ { v and o is ramified,
lg=0,rg=1,my=mny=2,5,=0,if ¢ | v.

Set | = qulq,r = qurq,m = qumQ, n= qu"CI, 5= quSQ. Let x be the Grossen-
character of weight (k,0) defined by £ = 7 and set r¢ = 1 - (x4 o Nm) for t € 3. It is easy
to check that ¢., = ¢ = ¢ for all t € ¥ where ¢, (resp. ¢j;) denotes the conductor of &
(resp. of 77.) Let

‘9#(2): Z M(j)e%rij?z’ O,,(z) = Z I{t(a)e%riN(a)z
JEZ20 ac0g
(a,c0)=1

and denote by ém the modular form obtained by dropping the Euler factor at ¢ for ¢ € ¥’ in
the Euler product expansion of 6,,. When ¢t = ~1, we simply write 6, or 0. Let s’ = quz, q.
Note that 0, € Sg+1(To(n/s’), 77|@i771<) while 0y, € Skyr1(To(n), 77|@i771<) Let V; denote the
Atkin-Lehner operator usually denoted by the symbol W2, and for t' € ¥/, set Vi =[] alv Va-
Then the computations of the previous section express L,/ explicitly as a linear combination
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of the Petersson inner products (h, (12)0,(rz), Vi, (52)) for t € ¥ and ' € ¥'. For a vector
b=[l,r,s], set
I (s 7) = (Vi {hn(12)0(r2)}, O, (52)),
where 7 is the algebraic Hecke character corresponding to ﬁ We have then more precisely,
(20" {7 S(2) T (G, 2) Y Ly = @mi) b 0SS S8 () I (e, 71+ xi 0 N,
tes ey
(5.5)

with explicit coefficients % i x (u, 1) € K(f,x,n) that are p-adic integers and satisfy

b,, ~ g b77 o
(5.6) (M2t () ) = il 25 (77

for any o € Aut(C/Q). Recall now that Q is the CM period associated to K, that is well
defined up to a p-adic unit, and Q(7) is the CM period associated to the pair (K, 7)), that
is well defined up to an element of Q(7)*. Also Q(%) = (2m)%*p(7, 1) where p(,1) is the
period that occurs in [10].

Theorem 5.2. (a) For all 0 € Aut(C/K),
( TR LR —d - g(xx) - fx(:“ﬂ?))U = g(x X)) - 1 (0707

Q(n) Q(n)
(b) Suppose that p is split in K, pt hg, p> 2k+ 1 and p{]\? Then, for all t,t’', the ratio
TG (i) - TP (ixes @ - X 0 Nm)
Q2k

18 a A-adic integer.

Proof: The p-integrality of part (b) may be proved along the lines of Thm. 4.15 of [22],
using Rubin’s theorem on the main conjecture of Iwasawa theory for imaginary quadratic
fields with some modifications to account for the more complicated situation of the present
article. We defer the details to the next section.

The reciprocity law of part (a) may be obtained as follows. By [27] Lemmas 3, 4 (and
their proofs), for all o € Aut(C/K),

l,s ~ g l,s o =0
If7x(ILL7 T’) _ Ifo',xo'(l'l’ 7/'7 )
<9m 95> <9H‘73 ‘9&"> '

Also, by equation (2.5) of [27], Vdr*t2(0,.,60,)/L(1,k 'x?) € Q*. But L(1,x 'kP) =

L(k+ 1,k 'wPNF) = L(k + 1,9 - (xx») ©c Nm) where /) = (#°)~! . By [27], Thm. 1,
(G(XXV)L(k +1,7- (o) o Nm))" _ (G(X”xu)L(k +1,77 - (X7xw) © Nm))
L+ 1,7) L+ 1,7°) |
Finally, by the main theorem of Blasius’s article on Deligne’s conjecture for Hecke L-
functions of K ([2]) reinterpreted as in [12], Appendix (see also the correction in [11],

p.82)

< (k+1 )U: (k +1,7°)
(2mi)k+tp(n, 1) (2mi)*kHp(n7,1)’

from which the required reciprocity law follows. B
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Corollary 5.3. (a) #**"g(x)8 € Q(f.X)- (b) va(8) > 0.

Proof: Part (a) follows from part (a) of the theorem, the rationality criterion in Prop. 5.1
(a) and equations (5.5) and (5.6), using that g(xx.)/8(x)8(x») € Q(x) and g(x,)|v|~ /%" €
Q*. Part (b) follows from part (b) of the theorem and the integrality criterion Prop. 5.1
(b), since there exist infinitely many Heegner points with p split in K and p t hr. ([22],
Lemma 5.1.) W

Let us then set B8 = i**7g(x)3. The following reciprocity law for 3 is now immediate:
Corollary 5.4. For any o € Aut(C/Q),

(5.7) (B(g,x))” = B9, Xx7)-

5.4. Integrality of the Shimura lift. We indicate in this section the modifications to
the arguments in [22] needed to prove part (b) of Thm. 5.2. Since b is fixed and the p-adic
valuation of cj’c’;’t/ (11,m) is independent of ¢ and #’, in what follows we omit the superscripts
b,t,¢" and simply write cg (11, 7). Also, since the pair (ux,n - x o Nm) is again of the form
(1, m), we may assume without loss that t = 1. Let S = Sk+1(m,77|@im(). By Thm. A.1
of the Appendix, V;{h,(lz)0,(rz)} is a p-integral modular form in S. It suffices then to
prove the following theorem.

Theorem 5.5. Suppose that p is split in K, p{ hg, p > 2k+1 and p ¢ N. Let g be any
p-integral form in S. Then

72k +1(g(2), 0, (sz
oy PO )

s a p-adic integer.

Let Ty be the set of primes ¢ (dividing 2N ") such that n, = 0 but s, > 0 and let T be
the set of primes ¢ in Tp such that a,(6,)? = ¢*"1(¢ + 1)? mod p. For g € T, let ay, 3,
be the parameters associated to 6, at ¢, ordered such that o,/8; = ¢ mod p. Denote by
T the subalgebra of Endc(S) generated by the Hecke operators T, q for ¢t m and the U, for
primes ¢ € T. If V C S denotes the oldspace corresponding to 6., then V is T-invariant
and the action of T on V is diagonalizable. Let P denote the set of eigencharacters of T
that appear in its action on V. For every i € P, the corresponding eigenspace V; C V is one
dimensional. Let T; C T be such that the action of U, on V; is by ay for ¢ € T; and by g,
(or 0,if 2 € T and ¢ = 2) for ¢ € T'\ T;. For g any p-integral form in S, we may expand g
as

g= Z 6igi+4
epP
where each g; € V; is a p-unit and ¢’ is orthogonal to the oldspace of 0,.

Let F’ be a number field that contains all the Hecke eigenvalues of all eigenforms in S, O
the ring of integers of F’ and 7 any prime of F’ over p. We shall prove in fact the following
theorem from which Thm. 5.5 follows immediately.

Theorem 5.6. Suppose p satisfies the assumptions of the previous theorem. Then, for all
1€ P,

o 2kt gi(z ,9} sz
0 - ¢ x (1) - < 5(22;1 )

1 a p-adic integer.
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Let us now take and fix an i € P. The following lemma is the analog of Lemma 4.2 of
[22].

Lemma 5.7.

72kt g (2 71 hg - L(1, k1K
V7 <Cf»X <g§(22)k ) Z fq + Z Uz < - Q> +v ( KQZkz( )>

qlv,¢tN q€T;

where fy = (k+ 3)vz(q) (resp. f; =vz(q+1), resp. fq =vz(q—1)) if q is split (resp. inert,
resp. ramified) in K.

Remark 5.8. The assumption that p t hx made earlier in the article will be essential later
in this section. However some of the initial propositions do not require this, hence we do
not make this assumption in the beginning but introduce it later when needed. Also we
write ¢y, instead of cs . (1, 7) for simplicity of notation.

Proof: Let P be defined by

P = H mq g H qmq ”Q.Hq

q|2N+7q¢T q|N ,(I'i'l/ qEQ’

Let 6; € V; be the T-eigenform normalized to have its first Fourier coefficient equal to 1 and
let uq denote the eigenvalue of U, acting on 6; i.e. the L-series associated to 0; is obtained by
obtained by dropping the factors (1—aqq™*) (resp. (1—08,q¢7%), resp. (1—aqq™%)(1—05,q47%))
for ¢ € T; (resp. for ¢ € T'\ Tj, uq = oy, resp. q € T'\ T}, ug = 0) from the L-series for 6.
Then the collection {0;(d'z);d' | P} is a basis for V; over C and one checks easily that g;
is a p-integral linear combination of the elements of this basis. For d’ | P, one finds using
Lemma 3 of [27] (and its proof) that

(5.8) 0:(d'z), 0 HR (0,,0,)

where R, = 1 except in the cases listed below:
() Ifq|NTqfr.qggT,

aq(e ) fq*dl Rq — q—(k‘-i-].)7 lfq ’ d,.

aburETE
(i) Tt g | N*,q € T,
_ qﬁq—aq . - qaq_ﬁq .
Rq—m, 1fq€TZ-, Rq—m, lfQET\E

(iii) If ¢ | N7, q 1 v, Xxo0,q unramified,
R,=1,ifqtd, R,=0ifq|d.
(iv)If ¢ | N7, q 1 v, xo0, ramified,
R,=1,ifqtd, R,=0ifv,(d)=1, Ry=q *Difu,(d)=
(v)Ifge Y,

1
Rq:qT, ifgtd, R,=0,ifq|d.
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(vi)Ifqg=2¢T,
ag(0) — €0, (q)g""

,if gt d
¢*=1(q+1) f
R, = aq(0x) . /

— 7 if d)=1

P g+1) va(d)

g if vy (d) = 2.
where €, is the central character of §,. On the other hand, if g =2 € T,

Be(aBq — g) .
— o i g €T}
g1 Y
Ry =1 aqlqog —By) . .
a W, lquT\Tianduq:qu,
0, if ge T\ T; and ug = 0.
Further
(4)k+1 L(1, k7 kP)L(1,ng)
79,“«9 = Ress—gr1 D(s,0r,0%) Cy( .
(5.9)

Recall that we have defined for each ¢ (including ¢ = oo) an algebraic integer ¢, such
that > vz(cq) = vz(cyy). Since pfg(g+1) for ¢ [ N, p{dand L(1,nk) = 2hy JwV/d,
combining (5.8) and (5.9), we get

7T2k+1 ,2’9
vﬁ(q»{ <g}<223€ > 3 vn(cgCy(1) + va(ene) + Y wrlg — 1) +

q<o0 qeX’
(g (e
— —q V5 .
o ﬂq QQk

One checks immediately that for finite ¢, vz(cq,Cy(1)) = 0 unless ¢ | v,¢ f N and q is

k‘glvﬁ(q) or vi(q + 1) according as ¢ is split or

unramified in K, in which case it equals

inert in K. On the other hand, vz (cs0) = %’Uﬁ-(l/), whence we get the equality of the lemma,
noting that if ¢ | ¥ and ¢ = p, ¢ must be split in K. B

Note that in the case vz(d;) > 0, Thm. 5.6 follows immediately from the above lemma
since all the terms on the right in the statement of the lemma are nonnegative. Therefore
we may assume that vz(d;) = —e; with e; > 0. Now write

S=Vioo;xuV;oW
with W the orthogonal complement to @;V; (the oldspace of 6,). Further suppose W =
Wi @& Wy where W7 is the subspace of W spanned by all the oldspaces corresponding
to newforms in S that are theta functions associated to Grossencharacters of K and are

congruent to 6, modulo \. Thus ¢’ = ¢} + ¢4 for a uniquely determined ¢} € W1y, g5 € Wa.
We will now need to study in more detail the space W;. We have the following proposition.

Proposition 5.9. Let k' be a Grossencharacter of K of type (k,0) such that 6, € S and
0, is congruent modulo A to 0. Then ' = k- ¢ for a finite order character € of K[ that
satisfies
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(i) 5|Q§ =1, and
(i) € is unramified outside the set of primes Q' := {q | v,qt N, (g) =—1}.

Proof: We begin with a modification of the argument in the proof of Prop. 2.2 of [14].
Let x’ be a Grossencharacter of K of type (k,0) such that 6,/ is congruent modulo A to
0. Thus the mod A representations of Gal(Q/Q) associated to 6,y and 6, must be equal.
Restricting to Gal(Q/K) one must have &y @ & = &} @ /{N’/\p.

We claim that, with our assumptions, &) # /;’)\p. Indeed, if p 1 v, both k and &’ are

unramified at p, and the same argument as in [14] shows that k) # /i//\p provided p > k + 1.
If on the other hand p | v, x? is unramified at p, whence &’ % must also be unramified at p.
Since 2 has weight (2k,0), the argument cited above then shows that (y)? # (/<a~’>\p)2 (and
hence k) # /@’)\p) provided p > 2k + 1.

Thus we must have &) = /-;’)\. Let ¢ = rk'"! so that ey = /i;l/@’)\ and €, = 1. Since
0., € S, it must have the same central character as 6. Thus ¢ is a finite order character
with 5|Q1§ = 1.

We now show that ¢ must be unramified outside the set of primes of K that lie over

{q | v, <§> = —1}. To start with, it is clear that ¢ must be unramified outside the primes
above m. If ¢ | N, ¢ = qq in K, the condition 5|Q,§ = 1 forces f. q = f.,5. Since vy(m;) < 2,
one sees that e is at worst tamely ramified at q and §. But £, = 1 and p t ¢ — 1 by
assumption, hence € must in fact be unramified at q and g. Similarly, if ¢ | N~, so that ¢ is
inert in K, ¢ must be at worst tamely ramified and hence unramified at ¢ since p { ¢* — 1.
If ¢ | d and ¢ t v, vg(m;) < 1, hence k; and € must be unramified at such ¢. If ¢ | v and
q = qq is split in K, identifying K, >~ Q; x Qg one has k; = (kq,1, kq,2) Where kg 1Xy,q and
Kq2 are unramified. As before, the condition 5\Qx = 1 forces fo q = fog- Since vy(m;) < 1,
if ¢ were ramified at q and q, 4x,,q and egx,,q would both have to be unramified. However
the condition €y = 1 now forces € to be unramified at q and q since p # 2 and Xu,q\qu
is a nontrivial quadratic character. Finally, if ¢ | (v,d), vq(m;) < 2, hence ¢ is at worst
tamely ramified at ¢. However the condition d@g = 1 forces € to be unramified at ¢. This
completes the proof of the proposition. l

Recall from the statement of the proposition that €’ has been defined to be the set of
primes qN\ v,q ¥ N such that ¢ is inert in K. Let £ and ¢ be as in the proposition and
let ¢ € Q. Since vy(m;) < 2, € must be a tamely ramified or unramified character with
5q,z;=1' Let U, = le(q. Then ¢,|y, factors through the quotient U,/U, where U, is the
subgroup Zg (1 + qOk,) of index ¢ + 1. Set U’ = [[ g0 Ug x [],cqn Ug so that e factors
through the abelian extension K’ of K corresponding the open subgroup K*U'KX of K.
We may thus think of ¢ as being a character of G’ where G’ is the p-part of the Galois
group Gal(K'/K) ~ K /K*U'KZ (thought of as a quotient of Gal(K'/K)). In this way
one obtains a bijection between the set of ' with 6, congruent to #, modulo A and the
nontrivial characters € of the group G'. Notice that vz (|G’|) = va(hk) + > cqn va(g + 1).
Also note that for any such character ¢, E‘Qg = 1 (thinking of € as a character of K ). In
particular for any prime g = qq split in K at which ¢ is unramified, e(q)e(q) = 1.



52 KARTIK PRASANNA

Suppose that G' =2 Cy x Cy X ... C, with C; being the cyclic factors of G’ and |C;| = p™
Forl=1,...,v, let & be a generator of C; and €; be a generator of the character group of
C). Also, we now pick for each [, [ = 1,...,v, a prime ¢; such that

(i) ¢ is split in K, ¢; = q;q; and q;, q; are unramified in K.

(ii) Frobg, corresponds to the element (1,...,&,...,1) i.e. the element of G’ that projects
to 1 on the factor C; for j # [ and that projects to §l on the factor Cj.

(iii) ¢ t pN and (7 - xo o N)?(q;) Z1 mod 7.

Since (1’ - xo o N)? is a Hecke character of type (—2k,2k) with conductor only divisible
by the primes above N (recall p > 2k + 1), and since € has conductor divisible only by the
primes in ©”, a simple application of Chebotcharev’s theorem allows us to pick primes g
satisfying the properties above. Now define a Hecke operator A by

v pP—1

A=TT I] el (a) — w(@e] @)).

=1 j=1
Since
9="0igi+ > _08;g;+ 9\ +0h
J#i
we see that g; = H mod 7¢ where H is given by
H=—57"(>_ 08,95+ 91 + gb)-
J#i
Notice that H is in fact p-integral since H = g; — 0, lg and that H € @ V; ®W. Applying
the integral Hecke operator A to the equation g; = H mod 7%, we see that
Ag; =AH mod 7.
We now state and prove two lemmas about Ag; and AH.
Lemma 5.10. AH € W := ®j£iV; & Wa.
Lemma 5.11. Ag; = ag; with & € F' satisfying vz (&) = vz (|G']).
We first prove Lemma 5.10. It suffices to show that A annihilates any newform 6, which

is congruent to 6, mod X\. Write &' = & - ¢ and suppose that e = [[,_, 6?1 for 0 < b < q;.
Since ¢ is not the trivial character we may pick j such that b; # 0. The Hecke operator

Ty, — ﬁ(qj)&??j(qj) - n(ﬁj)agj (4;) occurs as a factor of A. On the other hand this Hecke
operator acts on 0,/ with eigenvalue

k(q;) He?%qj) + k(T;) He?l (@) — rlay)er (a7) — m(@)e (@)

b
= ]J q; {HEI d;) _1}“‘”% 51 qg {H5 qg —1}
I#j I#j
= 0

since €;(q;) = &i(q;) = 1 for [ # j. Thus A = 0 as well, as was required to be shown.
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Now we prove Lemma 5.11. Clearly Ag; = ég;, where

v pi—1

a=I] II @)+ s@) — s(a)el (@) — s@e] @))-

=1 j=1

Here £;(q;) = (;, with (; a primitive p“th root of unity. Let 8 = x(q;) + £ (q;) — /f(ql)z—:{(ql) —
£(@)e (@)- Then

vr(8) = vz (k(@)(1 = )+ r@)1 = ¢7)) = va (1 = ¢) + vz () = (@)

We claim that vz ((ljfe(ql) - m(ﬁl)> = 0. Suppose to the contrary that Cljm(ql) —k(q) =0

mod 7. Then k(q;) = Qjm(ql) = k(q;) mod 7. Since x(k”)~t = 7(7°)~L =1 (xox» o N),
we get 17+ (xox» ©N)(q;) = 1 mod 7, hence (- xo oN)z(ql) = 1 mod 7. However we
have chosen ¢; to expressly avoid this congruence, hence the claim above is verified. Thus
v pil—1
@ =3 % (1 - Q) Zuﬂ ") = ux(1G)),
=1 j=1
which proves Lemma 5.11.

Now consider the congruence &g; = AH mod 7. If vz(&) > vz(e;), Thm. 5.6
follows again from Lemma 5.7 since vz(a) = vz(|G'|) = va(hk) + > cqnva(g +1) =
va(hK) + X eqn fo- Thus we may assume that vz (&) < vz(e;). In this case, g; = a'AH
mod 7%~ *(@ and & 'AH is a p-integral form in W. Set e = e; — vz(&). Let T’ be
the subalgebra of Endc(W) generated by the image of T and let T = T' ® O. Define
I = Annyp(a 'AH mod 7¢). Then T/I ~ O/#° and the elements 7" — X, (T") € I for all
T eT.

Let [W] be a set of representatives for the eigenspaces of T contained in W arzd F be the
ring [ [ e £ (Where by 2’ € [W] we mean A’ is any normalized eigenform of T contained

in W, i.e. with first Fourier coefficient equal to 1.) Then T is naturally a subring of F' via
the embedding given by the various characters of TV and T®gy F' = F. Let V = F @& F
and L = Hh’e[W 02 C V. Then L is a sublattice of V that is stable under the action
of T. Below we write K}, for the appropriate copy of the field F' in F' (and O}, for the
appropriate copy of O) so that F' =[], i) K.

Let 3 be the maximal ideal of T containing I and let Lg denote the completion of L at
B. The natural map L — Lg factors through Hh/e[VV}( 2,»\)2. As in [22], Lemma 4.5 and
Lemma 4.6 (note our slightly different notation), one has

Lemma 5.12. (i) If (0}, ,)? is not in the kernel of the map L — Lg, then b’ is congruent

to 0; mod X i.e. the characters of'ﬁ‘ corresponding to h' and 0; are congruent mod .

(it) If I is an eigenform in Wo corresponding to a theta lift from K, then (O;L,A)Q is in
the kernel of this map

(iii) The terms (O ) Jj # i are in the kernel of this map.

Lemma 5.13. Let [W] denote the set of forms h in [W] such that one of the eigenforms

I of T corresponding to h is congruent to 6; mod \. Then, for each such h exactly one of
the eigenforms corresponding to h can be congruent to 8; mod A. Denoting this eigenform

by ', one has Lg > ([[epw) O%’,A)Q and Tg @0 F' = [[j,epw) Ky -
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Since Vs = Lg®o F' =~ ([Thepw) Kiv2)? = Tnepwy (Kjy 2)?, and Kj  is contained in K7,
V3, is naturally a representation space for Gal(Q/Q), the action on the component Vir =
(Kj, \)? being via pp . The Galois action preserves Lg and thus Lg is a T[Gal(Q/Q)]
module with commuting actions of the Galois group and the Hecke algebra. We shall only
be concerned with its structure as a Tg[Gal(Q/K)] module.

Let k) and K,i denote the A-adic characters associated to x and k? respectively, and
denote by s, and f@’))\ their reductions mod A. An application of the Brauer-Nesbitt theorem
gives
Lemma 5.14. Let L be a compact sub-bimodule of V3. Suppose that U is an irreducible
subquotient (as Tg[Gal(Q/K)] module) of L/n"L for some r. Then U has one of the
following two types.

(i) U ~Tg/BTs ~ Ox /7O, with Gal(Q/K) acting via k.
(i) U =~ Tg/BTg ~ Or /70~ with Gal(Q/K) acting via &Y.

We say that U is of type x or x” respectively in these two cases. Note that these types
are distinct since Ky # F@’i. Indeed since p > 2k + 1, k) is ramified at p and unramified at p
while &% is unramified at p and ramified at p.

By the method of [22] (p. 947-950) one constructs a compact sub-bimodule £ of Vj such
that L/1L sits in an exact sequence of bimodules

(5.10) 0-C—L/IL—-M—0

such that M is a free module of rank one over Tg/I, C ~ L0/ILY for a faithful T module
LY and the action of Gal(Q/K) on C (resp. M) is given by &) (resp. #4). Let g be the
conductor of i’ - x o N, Ky denote the ray class field of K modulo g and set Ko = Kq4(\/v).
Let K be the unique ZZ extension of K abelian over K (so that s, factors through
Gal(K«/K)) and L’ the splitting field over K, of the representation £/IL. Denote by G’
the Galois group Gal(L'/K). We define a pairing

(5.11) G' xM — C, (o,m) — om — kx(g)m,

where m is any lift of m to £/IL. The following lemma may be proved in exactly the same
way as Lemma 4.12 of [22].

Lemma 5.15. The extension L'/Ky is unramified outside the primes lying above Z U p
where = is the following set of primes in K.

E={2U{gq|vIU{g ¢€Ti}U{q,q q| NT,ng >0} U{g; q| N~,ng > 0}.

We view the pairing (5.11) as one of Gal(Q/K) modules where Gal(Q/K) acts on G’ in
the usual way (via conjugation). Then we obtain a Galois equivariant injection

(5.12) G' — Hompg (M, C).

Let R, be the ring generated over Z, by the values of k) = x\ (X’))\)_l. The image of G’
under (5.12) is easily seen to be stable under R,;, and this gives G’ the structure of an R,
module. We thus get a map ¢ : G’ ®g, Or — Homg_(M,C) = C.

Lemma 5.16. The map ¢ is surjective. Also Fitte_(G' ®g, Ox) C 7°.
Proof: See [22], Lemma 4.13. B

We now assume that p f hx. Thus p 1 [Kp : K] as well. An application of the main
conjecture as in [22], Sec. 4.3 yields
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Proposition 5.17. Let € = x(x”) !N, and let v be given by

e(p) T Lg L =(1, k7 RP)

v = G(e) < — p> (1—€'() 5{% : ’

where G(e€) is the modified Gauss sum defined in [6] Thm 4.14. Then

Fittg, (G') 2 (7).

One can check easily that 1— (p) and 1—e~1(p) are A-units and vz(G(€)) = (k+3)vz(|v]).
(For the computation of vz (G(€)) the reader may also refer to II Sec. 6.3 of [6] or the remarks
in Sec. 7.6 of [7].) Further one checks immediately that for q € gUZ, the Euler factor at g
of €71 evaluated at 0 is a p-unit except possibly when ¢ = (q),q | (v,d) or q € T;. In these
case, the inverse of the Euler factors evaluated at 0 have p-adic valuation equal to that of
g—1and g—z — g respectively. Since f, = (k+ 3)vz(q) for q | v, (%) =1, fy=vz(qg—1) for

q| (v,d), and (y) C (7°) from the previous proposition and lemma, we get

k—1 . -1
RS fq—l—ZUﬂ<—q>+v,~r<w Lé;;m ,@p))

avatN,(2)#-1 9T

Since e = e; — vz (&) where vi(a) = > cqn fg + va(hk), we get finally

Theorem 5.18. Assume pt hyx. Then

k— _
e; < Z qurZ”W(—q)—kv;r(Tr 1.hK§'2§;€(1,/§ 1/@/)))‘

qlv,¢IN q€eT;

Combining the theorem above with Lemma 5.7 completes the proofs of Thms. 5.6 and
5.5.

Remark 5.19. We have assumed that p {1 hx since we need p 1 [Ky : K] in order to apply
Rubin’s theorem [25]. However we have stated the above theorem including the term hg
since the statement above is presumably true even without the assumption p { hx.

6. APPLICATIONS

6.1. A plethora of formulae. Recall the following notation and results from the previous
chapters:
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f € Sau(To(N)),g € Sa(I), g := JL(f)

v an odd fundamental quadratic discriminant, x, = (Z> = 1/)1/ V]

X a finite order character, N’ := ¢y, | 4N, M := ged(4, N'N)

Fy = anumber field over which B splits.
Fy = Qifk=1Fy=F,ifk>2.
F = anumber field containing Fjy and all the eigenvalues of f.
F(x) = the field generated over F' by the values of .
Q(f,x) = the field generated over Q by the eigenvalues of f and the values of .
sg. = amnewform in 7’ ® y, well defined up to a A-unit in Q(f, x).

hy € Sk+%(M,X,fX),t = tp, € flk+%(M, X0 fx), both well defined up to
a A-unit in Q(f, x).
s = ng®X71XVon€7r’®XV.
ZBS V(A)¢t/ = t(¢lawvs)a5, = T(Wa%t)-
We have shown that

' = dup(gy )t =auc(g)t, ie. t' = tau, (g,
/

s’ = ps, with a:= a/g(x) € F(x),vr(a),vx(x)
B:=i""Tg(x)8 € Qf, x),vA(8) >

We now write down several formulae that explain the relations between the objects and
quantities mentioned above. All the constants below are completely explicit, but for ease
of notation we suppress their exact values.

1. See-Saw duality

=0,
0.

{t,ty = (¢, s).
(6.1) :>O_zue(g)<hx,hx> = 5<nggx>-

2. The formula from Prop. 4.1 for the Fourier coefficients of ¢': for £ satisfying the conditions
a) I g | N, qtv, (£) # —wy;

(
(D) I q| N g|v, (2) =-w,;
(

¢) & =0,1 mod 4;

fac(a)ac(hn) = O(foxr)x LG 7 0 ) Ly @ ) - (24

(6.2)

for an explicit nonzero constant C(f, x,v) € Q*.

3. A formula of Baruch and Mao [1] for the Fourier coefficients of h,: for the & satisfying
conditions (a),(b),(c) above,
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ho)l2 —k kflL ;’
(63) |CL£( X)| :C/(f,X)Tr |€| 2 (2 7T®X§0)
(hos ) (f. )
for an explicit nonzero constant C(f, x) € Q*.
4. Taking the ratio of (6.2) to (6.3), we get
C(f?Xay) —ky, jk—1 1 <f7 f>
6.4 ate(g) P (hy, hy) = =222 xR P L2 1 @ v —~2E gy, Gy )
(6.4)  [aue(g)l" (hy, hy) ) | (5 )<f><afx> (9> 9x)
Set C"(f,x,v) := %(,J(c;(;)) : <;£§i> Now substituting (6.1) in (6.4) yields the fundamental
formula
Theorem 6.1.
1
(6.5) afuc(g) = C"(f.x.v) - w LG, 7@ ).

5. As a bonus, multiplying both sides of (6.1) by 3 gives

BBgx:9x) = aBuc(g){hy, ) = aBue(g)(hy, hy)-
66) e (5= (Bg.00) = C'(fxw) m LG T @ ) (o ).
This is nothing but the explicit version of the Rallis inner product formula.

6.2. Period ratios of modular forms. Proofs of Thms. 1.1 and 1.2:
We begin by making use of the main formula (6.5). In the notation of the introduction,
we have

C"(f, x; V) A(f, v)ue(f)

1/2.

aBuc(g)

since a = a/g(x), B = **Tg(x)B and g(x,) = i"|v| Under the assumption p { N,
one checks easily that C”(f,x,v) is a p-unit in Q. Since a € F(x),8 € Q(f,x) and
A(f,v) € Q(f), we have uc(f)/uc(g) € F(x). Setting x = 1 (and making an appropriate
compatible choice of v), we obtain the reciprocity law of Thm. 1.1 by combining (4.5),
(5.7) and Thm 1, (iii) of [31]. Further, we have shown that vy(a) > 0,v(3) > 0. Thus, if
A(f,v) is a p-unit, we get vy(uc(f)/uc(g)) > 0. This completes the proof of Thm. 1.2 of

the introduction. W

6.3. Isogenies between new-quotients of Jacobians of Shimura curves. We show
now, if N is odd and square-free, that Jo(N)"*V and Jac(X )" are isogenous /Q without
using Faltings’ isogeny theorem. Indeed it suffices to prove the following

Theorem 6.2. Let Ay and A, denote the abelian variety quotients of Jo(N) and Jac(X)
corresponding to newforms f and g that are Jacquet-Langlands transfers of each other. Then
Ay and Ay are isogenous over Q.

Proof: Let Vy = @Cf7 C Sa(L'o(N))"V, V, = ®Cy¢? C S2(I")"*Y, where o runs over
the embeddings of Q(f) in C. Then we have canonical identifications of Vj,V; with the
cotangent space at the identity of Ay, A, respectively. Further, if f, g are chosen to be Q(f)-

rational, then the Q-subspaces Vi :={>__,a’f7 :a € Q(f)}, Vgo :={>_,0797 : b€ Q(f)}
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are identified with the natural Q-structures on V},V, respectively coming from the Q-
structures of Ap, Ag. Let § : V' — Ay, & 1 V)Y — Ay denote the canonical exponential
uniformizations and Ly, L, the kernels of £f, §, respectively.

Define a C-linear isomorphism ¢ : V;, — V; by ¢(¢9°) = f?. Clearly ¢ restricts to
a Q-linear isomorphism of Vg onto Vyo. Now consider the dual map ¢¥ : VY — V.
We claim that ¢ maps Ly ® Q isomorphically onto L, ® Q. To prove this note first
that H'(Xo(N),C) ~ H)(I'o(N),C) is spanned by the classes x(f') (for varying f' €
So(T'o(N)). (Here we use the notation of Sec. 4.3, except we write &+ for {4(f, Kyr)).
Since Jo(N) - Ay, HY(Af,C) C HY(X((N),C). Further the Q-subspace H!(4,Q) is given
by

H' (A, Q) = {D (a6 (f7) + 176 (f7)  a,b € K(f)}:
Likewise H'(X,C) ~ H}(T',C) is spanned by the classes £+(g’) for varying ¢’ and
H' (49, Q) = {D_(a"€+(97) + 17-(97)) s a,b € K(f)}-

Now Ly ® Q ~ H1(Af,Q), Ly ® Q ~ Hi(Ay,Q). Let {£1(f7)} (resp. {£4(g7)}) denote the
basis of Hi(Af, Q) (resp. of Hi(Ay,Q)) that is dual to the basis {{+(f7)} (resp. {£+(97)}).
It is easy to see that

V(¢ [ pO u:l:(fo) * [ O
@’ (EL(f7)) = ui(gg)@(g )-

The rationality result Thm. 1.1 implies then that ¢Y carries Ly ® Q isomorphically
onto Ly, ® Q and hence Ly into a lattice commensurable with L,. Thus ne" for n a
sufficiently large integer, induces an isogeny from Ay to Ay, that must be defined over some
number field. Since ¢ restricts to a Q-linear isomorphism of Vyo = H O(Af@,Ql) onto
Vg0 = HO(AQ,Q, 1), this isogeny must in fact be defined over Q. W

APPENDIX A. AN INTEGRALITY PROPERTY FOR THE ATKIN-LEHNER OPERATOR
BY BRIAN CONRAD

Let @ and Q' be relatively prime positive integers and let N = QQ'. For k > 1 let wq
denote the usual Atkin-Lehner involution on the space My (I'o(N)) of weight-k classical
modular forms on I'g(N), defined by

a b

for any a, b, ¢, d € Z such that N|c, Qla, Q|d, and ad—bc = Q. For f € My (I'g(NN)) such that
the g-expansion fo(q) € C[g] at the cusp co has all coefficients in a number field K C C,
it is an easy consequence of the algebraic theory of modular forms (as in [16, §1]) that
the g-expansion (wg k(f))s(q) also has all coefficients in K. We aim to prove a stronger
integrality property:

Theorem A.l. Fizx a prime p 1 Q and a prime p of K over p. If f € M(I'o(N)) satisfies
foo(@) € Ok plq] then likewise wq i (f) has p-integral g-expansion coefficients at oo. More
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generally, if R C C is any Z[1/Q)]-subalgebra and if f has all g-expansion coefficients at oo
lying in R then the same holds for wg i (f).

To prove this theorem we wish to use an integral model for a modular curve by interpreting
f as a section of a line bundle and identifying wq  as the pullback operation on its global
sections induced by line bundle map covering a self-map of such an integral model. The most
natural way to do this is to work with the moduli stack 2((/N) over SpecZ that classifies
generalized elliptic curves equipped with a T'o(N)-structure (i.e., ample finite locally free
subgroups of the smooth locus that have order N and are cyclic in the sense of Drinfeld);
working over Spec Z ) for a prime p 1 @ is all that we really require. This stack is generally
only an Artin stack (especially when working over Z,, with p?|N, which is certainly a case
of much interest). In [4] the basic theory of such stacks was systematically developed by
building on the work [5] of Deligne and Rapoport over Z[1/N] and the work [17] of Katz and
Mazur over Z away from the cusps, and for example it is shown there (see [4, Thm. 1.2.1])
that Zp(N) is a normal (even regular) Artin stack that is proper and flat over Z with
geometrically connected fibers of pure dimension 1.

Remark A.2. For the purposes of proving Theorem A.1 it will turn out to only be necessary
to work with certain open substacks of Zy(N) that are Deligne-Mumford stacks. In fact,
by working systematically with enough auxiliary prime-to-p level structure to force stacks
to be schemes it is possible to prove Theorem A.1 for normal R without leaving the category
of schemes. (The role of normality is to make it harmless to check the result after adjoining
roots of unity to R so that the Tate curve over R[¢] admits enough auxiliary level structure.)
However, it is certainly more natural to work directly with stacks, and to avoid unnecessary
normality hypotheses on R it seems to be unavoidable to use stacks. For these reasons, we
have decided to work directly on Zy(N) rather than try to avoid it.

Since R is a flat Z[1/Q]-algebra we have R = Ny R, with the intersection taken inside
of Rp = R®Q. It therefore suffices to prove Theorem A.1 for each Ry, so from now on we
may and do assume that R C C is a Zy)-subalgebra for a fixed choice of prime p { Q. We
let Z C Zo(N)z,,, be the open substack that has full generic fiber and (irreducible) closed
fiber classifying level-structures with multiplicative p-part. The idea for proving Theorem
A.1 is rather simple: identify the space of classical modular forms having p-adically integral
g-expansion at oo with the space of % -sections of the line bundle of weight-k modular forms
over Zo(N), and then invoke the fact that for any line bundle on a Z,)-flat normal Artin
stack (such as %) any section over the generic fiber extends (uniquely) to a global section
if it extends over some open locus meeting every irreducible component of the closed fiber
(as then it is “defined in codimension 1”). To make this idea work we use a geometric
Atkin-Lehner self-map wg of both % and the universal generalized elliptic curve over %,
and the construction of this map rests on the fact that p { Q and %, classifies precisely
the level structures in characteristic p with multiplicative p-part. The relevant technical
problems were either solved in [4] or will be settled by adapting arguments given there.

As a first step, we shall translate our given setup into purely algebro-geometric language.
The underlying set of the classical analytic modular curve Xy(N) is identified with the
set of isomorphism classes of objects in the category Zy(N)(C), and in this way the cusp
oo arises from the object in Zy(N)(SpecZ) given by the standard Néron 1-gon C; over
SpecZ equipped with the cyclic subgroup puy C G, = C7™. This object over SpecZ
canonically lifts to a morphism Spec Z[q] — Zo(N) given by the Tate curve Tate equipped
with To(N)-structure uy C Tate™[N]. We refer the reader to [4, §2.5] for a review of
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the basic facts from the algebraic and formal theories of the Tate curve, including the
existence and uniqueness of an isomorphism of formal Z[q]-group schemes Tate) ~ Gnm
(formal completion along the identity) lifting the evident isomorphism modulo ¢. Since
global sections of the relative dualizing sheaf of a generalized elliptic curve are canonically
identified (via restriction) with invariant relative 1-forms over the smooth locus (as each of
these spaces of sections is compatibly identified with the space of sections of the cotangent
space along the identity section), the relative dualizing sheaf of Tate — Z[q] admits a
unique trivializing section whose pullback to Tate() goes over to the invariant 1-form dt/t
on the formal multiplicative group; this trivializing section is also denoted dt/t. Let us
now briefly recall how the Tate curve underlies the algebraic theory of g-expansions, and
the relation of this algebraic theory with the analytic theory of g-expansions. If £ — S
is a generalized elliptic curve then we write wg/s to denote the pushforward of its relative
dualizing sheaf; this is a line bundle on .S whose formation commutes with any base change
on S [5, II, 1.6], so we get an invertible sheaf w = wg/9;(n) on Zo(N). For any ring A
we write wa to denote wg, 2;(n), (With &4 — Zo(IV)a denoting the scalar extension of
& — Zy(N) by Z — A), so there is a canonical A-linear map
HO(25(N)a,wi*) — H(Spec Alq]. o, . jarg) = Aldl

using the basis (dt/t)®* (with Tate 4 denoting the scalar extension on Tate by Z[q] — A[q]).
This map is called the algebraic g-expansion at oo over A. In the special case A = C, descent
theory and GAGA provide a canonical C-linear isomorphism

HY(20(N)c,wg*) = Mg(To(N))

that identifies the analytic g-expansion at oo and the algebraic g-expansion at co over C; this
is proved as in [5, IV, §4] (which treats I'(N)). Since the natural map M ®p B[q] — M[q]
is injective for any module M over any noetherian ring B (such as B = Z), the image of
the g-expansion map over a ring A lies in A ®z Z[q].

By descent theory, the g-expansion principle as in [16, 1.6.2] ensures that for any Z[1/N]-
algebra A C C the A-submodule of classical modular forms in M (I'g(N)) with g-expansion
in A[q] coincides with

HO(20(N).4,w5%) € H(Zp(N)e, wE").

However, this fails for more general subrings of C in which N is not necessarily a unit
because fibers of Zp(/N) in characteristic dividing N are reducible. This is why we will
need to make fuller use of the structure of Zy(N) near oo in characteristic p in order to
prove Theorem A.1.

We now construct the analytic operator wq  algebraically over Z,) for an arbitrary
prime p (allowing p|@). Using primary decomposition for cyclic subgroups in the sense of
Drinfeld, for any scheme S the objects in the category 2o (V) (.S) may be described as triples
(E;Cq,Cg ) where E — S is a generalized elliptic curve, Cg and C¢ are finite locally free
cyclic subgroups of the smooth locus E5™ whose respective orders are Q and ', and the
relative effective Cartier divisor Cg + C¢r on E is S-ample. Letting % (N) C Zo(N) be
the open substack classifying such triples (E; Cq, C¢) for which E is an elliptic curve, we
can define a morphism w% : % (N) — %(N) by the functorial recipe

(E;Cq,Cqr) ~ (E/Cq; E[Q]/Cq, (Cq + Cq)/Cq).
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This is an involution in the sense that there is a canonical isomorphism of 1-morphisms
w% o w% =~ idg, () via the canonical isomorphism E/FE[Q] ~ E induced by multiplication
by @ on E. The quotient process defining w% makes no sense over Zy(NN) because for
generalized elliptic curves there is no reasonable general theory of quotients for the action
by a finite locally free subgroup scheme of the smooth locus when there are non-smooth
fibers, but there is a unique way (up to unique isomorphism) to extend this construction
over the open substack ¥ C 2p(N )Z(p) complementary to the closed substack of cusps in
characteristic p whose level structure has p-part that is neither étale nor multiplicative. (If
ordy(N) < 1 then ¥ = Zy(N)z,,,.) The following lemma makes this precise.

Lemma A.3. Let (8%, €q) — Zo(N) be the universal object, and let (8% €y, €Y/) —
% (N) denote its restriction away from the closed substack of cusps. The open substack
Vv C %(N)Z(p) defined as above is Deligne—Mumford and up to unique isomorphism there
is a unique generalized elliptic curve &' over ¥ equipped with a To(N)-structure restricting
to

(6°/€0:6°[Q)) €4, (€ +C4)] €0)

over %(N)z,, -

Proof: By [4, Thm. 3.2.7], ¥ lies in an open substack of Zo(IN)z,, that is Deligne-
Mumford. Thus, ¥ is Deligne-Mumford. Since #(N)z, C ¥ is the complement of a
relative effective Cartier divisor (as this even holds for #((N) viewed inside of Zy(N),
by [4, Thm. 4.1.1(1)]), the uniqueness up to unique isomorphism follows by descent after
applying the uniqueness criterion for extending generalized elliptic curves equipped with
ample Drinfeld level structures in [4, Cor. 3.2.3] (applied over a smooth scheme covering
7). For existence, one argues exactly as in the deformation-theoretic arguments in [4, §4.4]
where it is proved that the pth Hecke correspondence 7}, on moduli stacks is defined over Z
(including the cusps). The main points in adapting this argument to work for our problem
over the Deligne-Mumford stack ¥ are that (i) the property of p-torsion at cusps that
makes the analysis of T}, work in [4, §4.4] is that such torsion is either multiplicative or étale
on fibers (this is the main reason that we work over ¥ rather than 2o(N)z, ) and (ii) if
G is a multiplicative or étale cyclic subgroup of order p™ (n > 1) in an elliptic curve E over
an Fp-scheme then E[p"]/G is étale or multiplicative respectively. B

Since the Deligne-Mumford stack ¥ is normal, by [4, Lemma 4.4.5] the morphism wOQ JZ)

has at most one extension (up to unique isomorphism) to a morphism wg : * — ¥,
and moreover such a morphism does exist via the generalized elliptic curve with I'o(NV)-
structure over ¥ provided by Lemma A.3 (the key point is that it suffices to solve the
extension problem on deformation rings at geometric points, again by [4, Lemma 4.4.5]).
The resulting isomorphism w¢) (&) =~ & respecting I'o(V)-structures over ¥ defines (by
pullback) a map of line bundles wg/y — wer/y. Fix a Zg,-algebra A, so passing to kth
tensor powers for any k > 1 and using extension of scalars thereby defines an A-linear map
(A.1) HO(a,with) — OV, 05 ).
We want to compose this with another map to obtain an endomorphism of HY(#, wffk ), at
least if Z,) — A is flat.

Consider the canonical isogeny of elliptic curves ¢y : &% — &° /‘58 over %,(N). Since
Zo(N)q is a regular 1-dimensional Deligne-Mumford stack we can use descent theory and
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Néron models over étale scheme covers of this stack to uniquely extend the isogeny ¢y /g over
% (N)g to a homomorphism ¢x over Z(IN)g = #p from the relative identity component
of (6p)™™ to the relative identity component of (67)*". But global sections of the relative
dualizing sheaf of a generalized elliptic curve are canonically identified with global sections
of the relative cotangent space along the identity section, so we can use the cotangent space
map induced by ¢x to define a (necessarily unique) map of line bundles Wy 4 — WQ Over
Z0(N)g. This can be glued to the canonical pullback map over %(N )Z(p> induced by ¢y
to define a map of line bundles from wgr /4 to wz,,, over the open substack ¥’ C %(N)Z(p)
complementary to the cusps in characteristic p. (This open complement is contained in ¥".)
Passing to kth tensor powers and composing with (A.1) after extending scalars to A and
forming global sections defines an A-linear map

HO(%Av w%k) - Ho(ﬂj/f/l’ wi?k)

If Z,y — A is flat then I claim that the target of this map coincides with the module of
¥V a-sections of w%k. By the compatibility of cohomology and flat base change it suffices to
treat the case A = Z,. Since ¥ is a Z,)-flat normal Deligne-Mumford stack and the open
substack ¥’ contains the entire generic fiber and is dense in the closed fiber, we get the
desired equality of modules of sections.

To summarize, for any prime p and any flat Z,-algebra A we have defined an A-linear
endomorphism of HO(”I/A,w%k ). Moreover, if p 1 @ then since Q-isogenies of elliptic curves
induce isomorphisms on p-power torsion, the exact same method works with ¥ replaced by
the open substack % whose closed fiber consists of the geometric points of Z(N)r, whose
level structure has p-part that is multiplicative. In particular, for p t @ we have constructed
an A-linear endomorphism

worsa s BO(%a,wF) — H(%a, w§").

(Obviously via restriction this is compatible with the endomorphism that we have just con-
structed on sections over #4.) Note that as a special case of working over either % or ¥,
by setting A = C we have constructed a C-linear endomorphism of H°(.24(N )C,wgk). It
is a straightforward matrix calculation with the standard I'o(/N)-structure on the universal
Weierstrass family over C — R to verify that the algebraically-defined operator wg /¢ coin-
cides with the analytic Atkin-Lehner involution on M (Ig(V)), as follows. For 7 € C—R and
(E;Cq,Cq) = (C/Lr,(1/Q),(1/Q')) with L, = Z & Zr, if we pick v = <CCL Z) € SLa(Z)
such that @'|c and Q|d then multiplication by 1/(¢7 + d) induces an isomorphism of triples
(E/Cq; ElQ]/Cq.(Cq + Cq)/Cq) = (C/Lgr, (1), (1/Q") = (C/Lygn), (1/Q), (1/Q")).

Hence, wg 1,/c acting on HO(%(N)C,wgk’) ~ Mg (To(NN)) is the operator

a@ b
f = f|k <CQ d) )
and since N = QQ’ divides c@ this is indeed the analytic Atkin-Lehner involution wg .
Thus, to conclude the proof of Theorem A.1 it remains to prove:

Lemma A.4. Ifpt1Q and R C C is any Z,)-subalgebra then the subset HO(%R,w%k) -
My (To(N)) is precisely the subset of modular forms whose g-expansion at co lies in R[q].
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Proof: One containment is obvious by the compatibility of the algebraic and analytic
theories of g-expansion at co. For the reverse inclusion, suppose a modular form f €
My (To(N)) satisfies foo(q) € R[q] C Clg], so at least by the g-expansion principle over
Rg = R[1/p] we may identify f with a section of w%g over 20(N)ry = g /p)- We need
to show that this section extends (necessarily uniquely) to a section of w%k over r. By
chasing p-powers in the denominator, it is equivalent to show that if a section o of w%k
over g has all g-expansion coefficients in pR then o/p is also a section of w%k over Ug.
A standard argument due to Katz reduces this to the case R = Z,), as follows. Since the

g-expansion lies in the subset R ®z Z[q] € R[g] and this inclusion induces an injection
modulo p, it is equivalent to prove exactness of the complex

HO(%7w§(i) ®2z,,, R) > HO(%,w%’(’;) ®z,, R) = (R/pR) @z Z[q].

By Z,)-flatness of R and the compatibility of quasi-coherent cohomology with flat base
change, this complex is the scalar extension by Z,) — R of the analogous such complex for
the coeflicient ring Z,), so indeed it suffices to treat the case R = Z,).

Consider the map SpecZ,)[q] — Zo(IN)z,,, associated to (Tate, un). This lands inside
of the open substack % and sends the closed point to oo in characteristic p. I claim
that the resulting morphism SpecZ)[q] — % is flat. To prove this, it suffices to check

flatness of the composition of ¢ with the faithfully flat map Spec W (F,)[q] — SpecZ,)[q].
Since % is Deligne-Mumford there is a well-defined complete local ring at each of its
geometric points (namely, the universal deformation ring of the structure corresponding
to the geometric point), and (Tate, uy) over W (F,)[q] is the unique algebraization of the
universal deformation of (C1, un) /F» (proof: it is harmless to drop the multiplicative py
in this deformation-theoretic claim since Ci™ = Gy, and on underlying generalized elliptic
curves the claim is part of [4, Lemma 3.3.5]). Thus, Spec W (F,)[¢] — % is flat, so the
morphism ¢ : Spec Z [q] — % is indeed flat.

To exploit this flatness, we need one further property: the image of ¢ hits each irreducible
component of %,. In fact, %, is irreducible. Let us briefly recall the proof. Since the
cuspidal substack in 2y (V) is a relative effective Cartier divisor over Z, the cuspidal sub-
stack in %, is a Cartier divisor. Hence, it suffices to prove irreducibility of the complement
of the cusps in %%,. This complement is the open substack of %(/N)r, whose geometric
points have level structure with multiplicative p-part, and to prove that this is irreducible
it suffices to check the irreducibility of the corresponding open set in the coarse moduli
space. The case p{ N follows from the fact [4, Thms. 3.2.7, 4.2.1(1)] that the proper map
Z0(N)zp1/n) — Spec Z[1/N] is smooth with fibers that are geometrically connected (and so
geometrically irreducible), and if p| N then the irreducible components of the coarse moduli
space of #%,(N)r, are worked out in [17, Ch. 13] where it is proved that one of these com-
ponents contains the locus with multiplicative p-part in the level structure as a dense open
subset. This furnishes the desired irreducibility.

It now remains to prove a general result on extending sections of line bundles over normal
Artin stacks by working generically on the closed fiber. To be precise, let . be a normal
locally noetherian Artin stack that is flat over a discrete valuation ring R with fraction
field K, and let p : S — % be a flat map from an algebraic space .S whose image hits each
irreducible component of the closed fiber of . — Spec R. If % is an € »-flat quasi-coherent
sheaf and 0, € .Fg (LK) is a section such that the pullback section ¢} (0y) € (¢} FKk)(TK)
lies in the subset (¢*.#)(#) then I claim that o, lies in the subset .7 (/) C Zk (.#k). Using
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a smooth covering of . by an algebraic space, descent theory reduces us to the case when .
is an algebraic space, and we then similarly reduce to the case when . and S are schemes.
Working Zariski-locally then permits us to assume .¥ = Spec A and S = Spec A’ are affine.

Letting M be the flat A-module associated to .7, we seek to prove that if m,, € My has
image in Mg ®a, A = (M @4 A')k lying in M ®4 A’ then m, € M C Mg. By Lazard’s
theorem we can express M as a direct limit of finite free A-modules, so we reduce to the
case M = A. Hence, if 7 is a uniformizer of R then denominator-chasing on m,, reduces us
to checking that A/mA — A’/w A’ is injective. Since Spec A" — Spec A is flat and hits every
irreducible component of the special fiber of Spec A over Spec R, for each generic point p of
this special fiber there is a point p’ of Spec A’ over p. The local map A, — A;, is flat, so
it is faithfully flat. Hence, if a € A becomes divisible by 7 in A’ then a is divisible by 7 in
Ay. By R-flatness of A we conclude that the rational function a/7 on Spec A is defined in
codimension < 1, so by normality of A we get a/7 € A as desired. B

Remark A.5. The reason we had to work with % rather than 7 in the above analysis is that
we only imposed an integrality condition at one cusp, namely oo (and %%, is the irreducible
and connected component of #%, passing through oo). The need to work with % rather
than 7 is the reason we had to require p t @ in Theorem A.1.
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