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1. Introduction

Let k be a global field, with Galois group Gk and Weil group Wk relative to a choice
of separable closure ks/k. Let Γ be either Gk or Wk, and H a linear algebraic group over
F = C or Qp with p 6= char(k). Let ρ : Γ→ H(F ) be a (continuous) representation, always
understood to be ramified at only finitely many places (as is automatic for commutative
H, but not for H = GL2 with k = Q and F = Qp, even assuming semistability at p; see
[KR, Thm. 25(b)].) Let f : H ′ → H be a quotient map between linear algebraic F -groups,
with Z := ker f central of multiplicative type; e.g., an isogeny between connected H and H ′.
Consider the problem of lifting a given ρ to a representation ρ′ : Γ→ H ′(F ).

In the absence of local lifting obstructions, the global obstruction lies in a Tate–Shafarevich
group that can be analyzed via Tate duality. But we want more, namely to preserve local
properties of ρ at finitely many places and construct “optimal” (and explicit) counterex-
amples. For F = Qp and char(k) = 0, by [W2] the local lifting obstruction at v|p when
requiring semistability at v is that ρ|Iv admits a Hodge–Tate lift; for finite Z this amounts
to lifting 1-parameter subgroups (see Theorem 6.2 and Corollary 6.7).

The study of finite Z rests on killing obstructions using central pushouts along an inclusion
of Z into a torus, so the special case H = H ′ = Gm (forcing f(t) = tn for some nonzero
n ∈ Z) controls the general case. Class field theory suggests that this local-global problem for
characters (i.e., if χ : Wk → F× is an nth power on Wkv for all v then is χ an nth power?) is
“dual” to the classical Grunwald–Wang problem: are the nth powers in k× characterized by
local conditions away from a fixed finite set S of places of k? The Grunwald–Wang theorem
(see Appendix A) characterizes the triples (k, S, n) for which there are counterexamples to
the classical problem, and describes the counterexamples explicitly.

There is a “universal formula” for counterexamples to the classical Grunwald–Wang prob-
lem, but apparently no “universal formula” for counterexamples to the local-global problem
for characters, nor any direct link between counterexamples to the two problems; see Remark
2.2. However, the two problems have finite obstruction spaces that are dual to each other
(thereby identifying the pairs (k, n) to consider for counterexamples to the latter problem):

Remark 1.1. For any finite set Σ of places of k and finite Gk-module M , let Xi
Σ(k,M)

denote the kernel ker(Hi(k,M)→
∏

v 6∈Σ Hi(kv,M)). (We also use this for finite commutative

k-group schemes M via fppf cohomology.) By Tate’s result that H2(k,Q/Z) = 0 (see [S3,
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§6.5] for a proof when k is a number field; it adapts to function fields), the connecting map
δ : H1(k,Q/Z) → H2(k,Z/nZ) is surjective. Thus, the cokernel of multiplication by n on
the space H1(k,Q/Z) of finite-order characters is H2(k,Z/nZ). Hence, X2

∅(k,Z/nZ) is the
space of obstructions to the local-global problem for nth roots of finite-order characters.

When char(k) - n, X2
∅(k,Z/nZ) is dual to X1

∅(k, µn) (see [NSW, Thm. 8.6.8], with S
there taken to be the set of all places of k). The structure of X1

∅(k, µn) for any n > 0 is
the content of the Grunwald–Wang theorem. In particular, X1

∅(k, µn) has order 1 or 2, so
when char(k) - n a finite-order counterexample to the local-global principle for nth roots of
characters is unique up to nth powers if it exists and such a counterexample exists if and
only if the classical Grunwald–Wang problem for the triple (k, ∅, n) has a negative answer.

It is well-known that the element 16 in Q(
√

7) is a counterexample to the classical
Grunwald–Wang problem for 8th powers. Thus, by Remark 1.1, there must be a finite-
order character on GQ(

√
7) that is locally an 8th power but not globally so. There is no

apparent way to exploit 16 to find such a character, but here is an example.

Example 1.2. Let k = Q(
√
α) with α2 = 7. The prime p = 113 splits as (15 + 4α)(15− 4α).

The character χ : Gk � 〈−1〉 associated to the totally real quadratic extension k(
√

15 + 4α)
of k is unramified at all places away from p = (15 + 4α). The restriction of χ to every
decomposition group Gkv is an 8th power of a character Gkv → µ16 (this is obvious except
at p), but χ is not the 8th power of a character on Gk. (See Example 2.1.)

Here is an example in which local properties cannot be preserved under the lifting process.

Example 1.3. Let K be a quadratic field ramified at 2, with v its unique 2-adic place.
Assume Kv is Q2(

√
3) or Q2(

√
±6) (i.e., −1 and ±2 are not squares in Kv), so (K, {v}, 8)

is a counterexample to the classical Grunwald–Wang problem. There exists a character
ψ : GK → µ2 split at v (i.e., ψ(GKv) = 1) such that ψ is the 8th power of a character
GK → µ16 but every 8th root of ψ (as a character) is ramified at v. (See Example 3.6.)

Two experts independently asked me about the special case H = H ′ = Gm, so it seems
worthwhile to address the problem in general and to understand counterexamples.

Theorem 1.4. Let F = C or Qp for a prime p 6= char(k), and let 1→ Z → H ′
f→ H → 1

be a central extension of linear algebraic F -groups, with Z of multiplicative type. Let n ≥ 1
be the exponent of Z/Z0. For Γ = Gk or Wk, let ρ : Γ → H(F ) be a representation,
and for every place v of k that is archimedean or ramified in ρ, assume that ρ|Γv lifts to a
representation Γv → H ′(F ).

(1) If (k, ∅, n) is not in the special case (see Definition A.1) then there exists a represen-
tation ρ′ : Γ→ H ′(F ) lifting ρ.

(2) Let S and T be finite disjoint sets of places of k with no archimedean places in T ,
and assume that ρ is unramified at S and tame at T . Assume (k, S ∪ T, n) is not in
the special case. Then ρ′ in (1) can be chosen to be unramified at S and tame at T .

(3) Assume char(k) = 0, F = Qp, and Z is finite. Let Σ be a finite set of places v|p of k
disjoint from S ∪ T , and for each v ∈ Σ let Pv denote one of the conditions: Hodge–
Tate, deRham, semistable, or crystalline ([F2], [F3]). Assume that (k, S ∪ T ∪ Σ, n)
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is not in the special case and that ρ|Iv satisfies Pv and admits a Hodge–Tate lift to
H ′ for all v ∈ Σ. Then ρ′ in (1) can be chosen to be unramified at S, tame at T , and
to satisfy Pv at each v ∈ Σ.

The main content in part (1) is the case Z = Gm with F = Qp, for which the Grunwald–
Wang theorem intervenes in the proof, but in an entirely different way than for finite Z.

Example 1.5. Let k be a number field unramified over 2. The special case in part (1) cannot
occur, and likewise for part (2) if also some 2-adic place of k is not in S∪T . For such (k, S, T )
there is also no global obstruction in part (3) when p 6= 2. More generally, in part (3) if
(k, ∅, n) is not in the special case then the necessary conditions for there to be a nontrivial
global obstruction can be made more restrictive; see Proposition 6.9.

Remark 1.6. It is not clear in what generality there should be a version of Theorem 1.4(3) for
dimZ > 0, avoiding counterexamples as in Example 6.8, even if H ′ is connected reductive,
ρ(Γ) is Zariski-dense, and Pv is “crystalline” for all v|p.

For H = H ′ = Gm we can go beyond Theorem 1.4(1) to characterize exactly when an nth
root exists. (A refinement of Theorem 1.4(2) is given in Proposition 3.5(2) for H = H ′ = Gm,
with f(t) = tn, where we provide necessary and sufficient conditions for the existence of an
nth root satisfying the desired local conditions when (k, S ∪ T, n) is in the special case and
some nth root exists.) The characterization requires some notation, as follows.

For a number field k, Appendix A defines an integer sk ≥ 2, a (possibly empty) set Sk of
2-adic places of k, and an element ηsk = ζ2sk +ζ−1

2sk ∈ k. (For example, sQ(
√

7) = 2, SQ(
√

7) = ∅,
and η2 = 0.) Note that ordv(2) ≥ 2sk−2 for all places v|2 of k. Let ak,n = (2 + ηsk)

n/2; this

admits an nth root a
1/n
k,n,v ∈ k×v for all v 6∈ Sk (described in Remark A.2). The choices of

ηsk ∈ k and a
1/n
k,n,v will not matter in what follows.

For a global field k, the classical Grunwald–Wang problem for (k, ∅, n) has a negative
answer if and only if (k, ∅, n) is in the special case (see Definition A.1). In this case we have:

Theorem 1.7. Choose n ≥ 1 and assume (k, ∅, n) is in the special case. Let F = C or Qp.

Consider a character χ : A×k /k
× → F× that is everywhere locally an nth power.

(1) The product Pχ,n :=
∏

v χv(a
1/n
k,n,v) is equal to 1 if and only if χ admits an nth root,

and otherwise Pχ,n = −1.
(2) There exists a quadratic choice for χ that satisfies Pχ,n = −1, and it can be chosen

to be split at any desired finite set of places v of k.

Remark 1.8. In Corollary 3.4 we characterize the quadratic extensions k′/k such that Gk �
Gal(k′/k) = 〈−1〉 is a counterexample to the local-global problem for nth roots of characters.

Here is an outline of the contents. In §2 we discuss explicit quadratic counterexamples to
the local-global problem for characters, and we prove Theorem 1.7 in §3. In §4 we treat p-adic
Hodge theory properties for characters. The proof of Theorem 1.4 is given in §5–§6; this uses
Theorem 1.7 along with a result of Wintenberger (see Theorem 6.2) and some geometric local
class field theory. In Appendix A we discuss the Grunwald–Wang theorem. In Appendix B
we prove two results on abelian semi-simple crystalline representations, extending theorems
of Tate; one of them is used in §4.
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2. Explicit quadratic counterexamples

Here is an explicit quadratic character that is locally an 8th power but not globally so.

Example 2.1. Let k = Q(α) with α2 = 7, and let n = 8 (so ak,n = 16). The quadratic
character of Gk associated to k(

√
15 + 4α)/k will be our example. The field k has class

number 1 and a totally positive fundamental unit u0 = 8 + 3α, so

A×k /k
× = (R×>0 ×R× ×

∏
v-∞

O×v )/uZ0 .

Let p be a rational prime such that p ≡ 1 mod 8 and p ≡ 1, 2, 4 mod 7 (e.g., p = 113, 137,
177, 193, . . . ), so (2

p
) = 1 and (7

p
) = 1. Clearly p is split in k. Let v be one of the places

of k over p, pv the corresponding prime ideal of Ok, and r := ord2(p − 1) ≥ 3. Assume
that u0 mod pv has multiplicative order divisible by 8. This says exactly that u0 is not a
2r−2th-power in the residue field κ(v) = Fp at v.

Since (3 +α)2 = 2u0, and 2 mod p is a square, the residue class u0 mod pv is a square. Its
order is assumed to be divisible by 8, so p ≡ 1 mod 16 (ruling out the possibility p = 137).
It also follows that there exists a (unique) quadratic character χ of Gk ramified exactly at v
(and nowhere else, not even the infinite places). Clearly χ is locally an 8th power away from
v, and at v it is an 8th power if and only if χ kills the cyclic subgroup µ8(κ(v)) ⊆ κ(v)× of
order 8. This is in the subgroup generated by the square u0 mod pv, which in turn is killed
by the quadratic χv, so χ kills µ8(κ(v)) and hence is locally an 8th power at all places.

The identity (3 +α)2 = 2u0 implies (3 +α)8 = 16u4
0, so u4

0 is locally an 8th power in k but
not globally an 8th power. Writing u4

0 = x8
w in each completion kw, χw(xw) is independent

of the choice of xw since the local 8th power χw must be trivial on 8th roots of unity in k×w .
Hence, the product

∏
w χw(xw) is well-defined (with all but finitely many factors equal to

1). If χ = ψ8 for an idele class character ψ of k then
∏

w χw(xw) = ψ((x8
w)) = ψ(u4

0) = 1.
But by construction we have

∏
w χw(xw) = χv(xv), so this forces xv to be a square in κ(v),

and hence u4
0 to be a 16th power in κ(v) = Fp. Thus, χ is not globally an 8th power if u0 is

not a 4th power in κ(v), since p ≡ 1 mod 16. (Note that if p ≡ 1 mod 16 and u0 is not a 4th
power in κ(v) then necessarily u0 mod pv has multiplicative order divisible by 8. Among all
p < 400, 000 with p ≡ 17 mod 32, approximately half of them have u0 not a 4th power at
one of the two places of k over p.)

The first such p is 113. Indeed, take v corresponding to the ideal (15 + 4α) with norm
113. Since 113 − 1 = 4 · 28 and u28

0 ≡ −1 mod pv, u0 is not a 4th power in κ(v) and its
multiplicative order is divisible by 8. The character χ corresponds to a quadratic extension
k(
√
θ)/k with a totally positive θ that is a unit multiple of the totally positive 15+4α. Thus,

we must be able to take θ to be exactly one of 15 + 4α or (15 + 4α)/u0, and the one that

works is the unique one for which k(
√
θ)/k is unramified at the unique 2-adic place w0 of k.

It therefore suffices to show that 15 + 4α is a square multiple of 5 in kw0 ' Q2(
√
−1), since

the extension Q2(
√

5) = Q2(
√
−3) of Q2 is unramified.

It is easy to check that in R := Z2[α] = Z2[
√
−1] we have (15+4α)/(1−4α) ≡ −1 mod 16,

so it is the same to say that 5(1− 4α) is a square in R. But π := 1−α is a uniformizer of R
since its norm into Z2 is 6, and 5(1− 4α) = −25 + 20π ≡ −25 mod 4π. Thus, we just need
to observe that all elements of 1 + 4(π) are squares in R (since (1 + 2πx)2 ≡ 1 + 4πx mod 8).
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Remark 2.2. Assume (k, ∅, n) is in the special case (in the sense of Definition A.1). There
is a “universal formula” for a counterexample to the classical Grunwald–Wang problem for
(k, n), namely ak,n = (2 + ηsk)

n/2. Thus, it is natural to wonder if a “universal formula”
exists for a quadratic counterexample to the local-global problem for nth roots of characters.

More specifically, for a choice of ηsk ∈ k, consider the quadratic character χ of Gk asso-

ciated to one of the quadratic extensions K = k(
√
±(2 + ηsk)) of k (ramified only at 2-adic

places). Is χ everywhere locally an nth power but not globally so, at least for the mini-
mal choice n = 2sk+1? Note that, in contrast with K/k, the quadratic counterexample in
Example 2.1 for k = Q(

√
7) is ramified away from 2 and is unramified at all 2-adic places.

We now show that this attempted “universal quadratic counterexample” works for k =
Q(
√

7) with n = 8 but fails in general with n = 2sk+1. This explains why it is nontrivial to
construct quadratic counterexamples to the local-global problem for nth roots of characters
when (k, ∅, n) is in the special case (as will be done in Proposition 3.3 in general).

Let k = L(
√

7) for a number field L totally split over 2 with Q(i) 6⊂ L. The number of 2-
adic places v of k is [L : Q], and all satisfy kv = Q2(

√
−1) 6= Q2(

√
±2). Thus, Q(

√
±2) 6⊂ k,

so sk = 2, ηsk = 0, and (k, ∅, 8) is in the special case. For each v|2, K/k induces the extension
Q2(ζ8)/Q2(i) whose associated norm group contains µ8(Q2(i)) = 〈i〉, so K/k is ramified at
v and χ is an 8th power at v. Hence, χ is everywhere locally an 8th power.

By the criterion in Corollary 3.4 (whose first three parts encode the condition of being
everywhere locally an 8th power), χ is not an 8th power if and only if the number of v|2
such that NKv/kv(K

×
v ) contains 1 + i = a

1/8
k,8 ∈ kv is odd. But kv = Q2(i) and Kv = Q2(ζ8)

for all v|2, and 1 + ζ8 has norm 1 − ζ2
8 = 1 ± i, so χ is not an 8th power if and only if the

number [L : Q] of 2-adic places of k is odd (e.g., L = Q). Thus, if L is real quadratic and 2
splits in L then χ is an 8th power on GL(

√
7).

3. Duality and ramification arguments

Let k be a global field, and let F denote C or Qp with p 6= char(k). Consider the local-
global problem for nth roots of F×-valued characters of Wk. For finite-order characters it is
clearly immaterial whether we use C or Qp, and in Remark 1.1 we saw that when char(k) - n
a finite-order counterexample exists if and only if (k, ∅, n) is in the special case. Our first
goal in this section is to remove the finite-order restriction and the hypothesis on char(k),
as in Theorem 1.4(1) for H = H ′ = Gm. By the following standard lemma, for this purpose
as well as to prove Theorem 1.7 it suffices to treat the case of C×-valued characters of Wk

(so we now may and do focus on that case).

Lemma 3.1. Every character χ from Gk or Wk to Q
×
p is a finite-order twist of an nth power.

The same obviously holds for C×-valued characters when char(k) > 0.

Proof. It suffices to the analogous assertion for χ on any commutative profinite group C
(since Gk is the quotient of Wk by its identity component when k is a number field). The
image of χ lies in K× for a finite extension K/Qp by a Baire category argument. Some open
subgroup U of C is carried onto a finite free Zp-submodule of (1 + mK)n, so χ|U admits a
continuous nth root valued in K×. It is elementary to extend this nth root to a character
C → O×K′ for some finite extension K ′/K. �
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Every C×-valued character of Wk naturally decomposes as a unitary character times a
character valued in R×>0, so we lose nothing by restricting attention to unitary characters.
Writing X(G) to denote the Pontryagin dual of a locally compact Hausdorff abelian group
G (this is the group of unitary characters), and letting Ck := A×k /k

× ' W ab
k , we want to

determine whether or not triviality in X(Ck)/nX(Ck) can be detected by local conditions.
Since the nth power map Ck → Ck is proper, it factors through a topological quo-

tient map onto the closed subgroup of nth powers in Ck. Hence, by Pontryagin duality,
X(Ck)/nX(Ck) = X(Ck[n]). That is, a character of Ck is an nth power if and only if it
is trivial on Ck[n]. A local version of this argument, using properness of the nth-power
map on k×v , shows that an element of X(k×v ) is an nth power if and only if it is trivial on
k×v [n] = µn(kv).

The local-global problem for nth roots of C×-valued characters of Wk concerns the trivi-
ality or not of the kernel of the composite map

(3.1) X(Ck)/nX(Ck)→ X(A×k )/nX(A×k ) ↪→
∏
v

X(k×v )/nX(k×v ).

We will call this kernel the obstruction group to the local-global problem for such characters.
The composite map (3.1) is the same as the map

X(Ck[n])→
∏
v

X(µn(kv)) = X(
∏
v

µn(kv)) = X(A×k [n])

that is Pontryagin dual to the natural continuous map

φk,n : A×k [n] =
∏
v

µn(kv)→ Ck[n]

between compact groups. Hence, the obstruction group is Pontryagin dual to cokerφk,n.
But [AT, Ch. X, Thm. 2] describes cokerφk,n explicitly. Indeed, by applying the snake

lemma to the nth-power endomorphism of the canonical exact sequence

1→ k× → A×k → Ck → 1,

the cokernel of A×k [n]→ Ck[n] is identified with the kernel of k×/(k×)n → A×k /(A
×
k )n. This

kernel is identified with the group X1
∅(k, µn) that we know is trivial except when (k, ∅, n) is

in the special case, and in the special case it is explicitly described of order 2. Concretely,
A×k [n] → Ck[n] is surjective except when (k, ∅, n) is in the special case, in which case a
collection of local nth roots of ak,n represents the nontrivial class in the order-2 cokernel.

We have just proved by non-cohomological means that the obstruction group to the local-
global problem for nth roots of C×-valued characters of Wk is dual to the group X1

∅(k, µn)
that is trivial except when (k, ∅, n) is in the special case (thereby proving Theorem 1.4(1)
for H = H ′ = Gm), and that in the special case the obstruction group has order 2 and its
elements are characterized by the product criterion in Theorem 1.7(1).

Remark 3.2. The product criterion in Theorem 1.7(1) is exactly what arose in Example 2.1
(with n = 8), except that we replaced ak,n with (3+

√
7)8/ak,n = u4

0, a harmless modification.
In Proposition 3.5 we will address the issue of controlling local properties of nth roots of
characters when such an nth root exists.
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Let’s make more explicit how the preceding proof of Theorem 1.7 yields a counterexample
to the local-global problem for nth roots of C×-valued characters of Wk whenever (k, ∅, n)
is in the special case. Consider the unique nontrivial quadratic character ψ0 of Ck[n] that
kills the (open) index-2 image of A×k [n]. Since Ck[n] is closed in Ck, by Pontryagin duality
ψ0 extends to a unitary character ψ of Ck, and this ψ is well-defined up to multiplication by
nth powers of unitary characters of Ck.

By construction such a character ψ has pullback to A×k that is trivial on A×k [n], so on
A×k this character is an nth power. This says exactly that ψ viewed as a character of Wk is
everywhere locally an nth power, but it cannot be so globally since as a character on Ck it is
not trivial on Ck[n]. Such ψ are precisely all of the counterexamples to the Grunwald-Wang
problem for nth roots of unitary characters of Wk when (k, ∅, n) is in the special case.

A finer result along these lines (suggested by Tate) gives an optimal result on the exis-
tence and properties of exceptional finite-order counterexamples, in the spirit of the classical
Grunwald–Wang theorem, thereby completing the proof of Theorem 1.7:

Proposition 3.3. Assume (k, ∅, n) is in the special case (in the sense of Definition A.1),
so k is a number field, Sk = ∅, and 2sk+1|n with sk ≥ 2. There exists a quadratic character
ψ on Gk that is locally an nth power but not globally an nth power, and it is unique modulo
nth powers of characters Gk → µ2n.

Moreover, given any finite set S of places of k, there exists such a ψ that is split at all
v ∈ S (i.e., ψ|Gkv = 1 for all v ∈ S).

For χ as in Theorem 1.7 and any ψ as above, exactly one of χ or its quadratic twist ψχ
is an nth power on Wk; e.g., apply the product criterion in Theorem 1.4(1).

Proof. The preceding Pontryagin duality calculations show that the existence problem is
exactly to extend the nontrivial quadratic character ψ0 on Ck[n] to a quadratic character on
Ck. The following construction of such an extension is due to Tate. Since the norm-1 idele
class group is compact, Ck[n] is compact and the mth-power map on Ck is proper for all
m ≥ 1. In particular, C2

k is closed in Ck. It suffices to prove that

C2
k ∩ Ck[n] ⊆ kerψ0 = k×A×k [n]/k×

inside Ck. Indeed, granting this we have that ψ0 factors through Ck[n]/(C2
k ∩Ck[n]), yet the

natural continuous bijective homomorphism

Ck[n]/(C2
k ∩ Ck[n])→ C2

kCk[n]/C2
k

is a topological isomorphism due to the compactness of Ck[n] and closedness of C2
k in Ck.

Hence, the nontrivial ψ0 can be uniquely viewed as a character of the closed subgroup
C2
kCk[n]/C2

k of Ck/C
2
k , so it extends to a character of Ck/C

2
k , which in turn is exactly a

quadratic character of Ck of the desired type.
Since C2

k ∩ Ck[n] = Ck[2n]2 (as for any abelian group in place of Ck), we have to prove
that for any c ∈ Ck[2n], the idele class c2 is represented by an element of A×k [n]. Pick any
idele a ∈ A×k representing c, so a2n = α for some α ∈ k×. In other words, α is everywhere
locally a 2nth power in k. Since (k, ∅, n) is in the special case by hypothesis, so is (k, ∅, dn)
for any integer d ≥ 1. Taking d = 2, the Grunwald–Wang theorem for (k, ∅, 2n) implies that
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either α is a 2nth-power in k or α is a k×
2n

-multiple of ak,2n = (2 + ηsk)
n ∈ k×n, so either

way α = βn for some β ∈ k×. This gives

βn = α = a2n = (a2)n,

so a2/β is a representative of c2 that lies in A×k [n].
Now consider the task of constructing ψ that is split at a specified finite set S of places of

k. Since (k, ∅, n) is in the special case, Sk is empty. Fix a quadratic character θ : Gk → µ2

that is locally an nth power but not globally an nth power. We seek a character ξ : Gk → µ2n

such that the quadratic character θξ−n is trivial on the decomposition group at each v ∈ S.
By hypothesis each θ|Gkv admits an nth root ξv valued in µ2n. By Proposition A.3, there is
a global character ξ : Gk → µ2n extending the ξv since Sk is empty. �

What are the exceptional quadratic characters in Proposition 3.3? Given one such ψ, the
set of all such characters is {ψχn} for characters χ : Gk → µ2n. These correspond to certain
quadratic extensions of k (one example of which was computed explicitly for k = Q(

√
7)

and n = 8 in Example 2.1). Here is a characterization of such extensions in terms of local
behavior at real and ramified places, together with a global parity condition on the set of
ramified non-archimedean places.

Corollary 3.4. Assume (k, ∅, n) is in the special case (so k is a number field), and let
t = ord2(n) > sk (so t ≥ 3). Fix a choice of ηsk ∈ k and let ak,n = (2 + ηsk)

n/2. For any

place v -∞ of k, let qv denote the size of the residue field κ(v) at v and let a
1/n
k,n,v denote an

nth root of ak,n in kv.
A quadratic character ψ : Gk � Gal(k′/k) = µ2 is locally an nth power but not globally

an nth power if and only if the following conditions all hold:

(1) k′/k is split at all real places of k;
(2) for all places v - 2∞ of k such that k′/k is ramified at v, qv ≡ 1 mod 2t+1;
(3) for all places v|2 of k such that k′/k is ramified at v and kv does not contain a 2t+1th

root of unity, the 2-power roots of unity in kv are norms from k′v;

(4) the parity of the number of ramified places v - 2∞ of k for which a
(qv−1)/2t+1

k,n mod v

has even order in κ(v)× is opposite to the parity of the number of ramified places v|2
of k for which the element a

1/n
k,n,v ∈ kv is a norm from k′v.

Before proving the corollary, we make some observations. Conditions (1), (2), and (3)
amount to local constraints on the structure of k′/k at all ramified places, whereas (4) is
a “global” constraint. Remark A.2 describes an explicit nth root of ak,n in each kv (since
(k, ∅, n) is in the special case), and the proof below shows that in (4) the choice among nth
roots of ak,n in kv for v|2 does not matter (given that (3) holds). An example of this corollary
is provided by Example 2.1 with n = 8 and t = 3, for which there is no 2-adic ramification
and exactly one non-archimedean ramified place v of k = Q(

√
7), with #κ(v) − 1 = p − 1

divisible by 16 = 2t+1.

Proof. The quadratic character ψ is an nth power if and only if it is a 2tth power, so we may
assume n = 2t. Since n is even, (1) says exactly that ψ is an nth power at the archimedean
places. Now consider the local nth power condition at a non-archimedean place v, so we may
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assume v is ramified in k′/k. Suppose v - 2. Then ψ|Iv factors through the unique surjective
character ξv : κ(v)× � µ2, so ψ is a 2tth power locally at v precisely when there exists a
surjective character κ(v)× � µ2t+1 . This is condition (2), which implies that ζ2sk+2 ∈ k×v
(since t ≥ sk + 1) and hence a

1/n
k,n,v can be chosen to be either square root of 2 + ηsk . Note

also that the property of
√

2 + ηsk being a square in κ(v) is independent of the choice of
square root since −1 is a square in κ(v), and this property is equivalent to the element

a
(qv−1)/2t+1

k,n ∈ κ(v)× having even order since a
(qv−1)/2t+1

k,n is an odd power of (
√

2 + ηsk)
(qv−1)/2.

Now suppose v|2. If kv contains µ2t+1 then µ2t consists of squares in kv and hence is killed
by ψ|Iv , so condition (3) is exactly the local nth power condition on ψ at the ramified 2-adic
places. Thus, the combined conditions (1), (2), and (3) say exactly that ψ is everywhere
locally an nth power. In view of our preceding considerations with (2), if the conditions (1),
(2), and (3) all hold then (4) is exactly the product criterion in Theorem 1.7(1) (since ak,n is
totally positive at real places and is a local unit at all non-archimedean places away 2). �

We can control ramification of nth roots when they exist:

Proposition 3.5. Let k be a global field, n ≥ 1 an integer, and F = C or Qp with p 6=
char(k). Let χ : Wk → F× be a character that admits an nth root, and let S, Σ, and T
be disjoint finite sets of places of k such that at each v ∈ S the character χ is split (i.e.,
χ(Gkv) = 1) and T consists of non-archimedean places at which χ is at worst tamely ramified.

(1) There is a (possibly trivial) character ψ : Gk → µ2 and an nth root χ′ of ψχ such
that ψ is split at each v ∈ Σ, ψ and χ′ are split at each v ∈ S, ψ and χ′ are tame at
each v ∈ T , and ψ and χ′ are unramified at each v ∈ T where χ is unramified.

(2) The character ψ = 1 does not work in (1) precisely when the following all hold:
(k, S∪T, n) is in the special case (so k is a number field and Sk ⊂ S∪T ), Sk∩T 6= ∅,
2sk−1|ordv(2) for all v ∈ Sk ∩ T , and

(3.2)
∏
v 6∈Sk

χv(a
1/n
k,n,v) ·

∏
v∈Sk∩T

χv(xv) 6= 1,

where x2
v = (2 + ηsk) mod (1 + mv) for v ∈ Sk ∩ T and a

1/n
k,n,v ∈ k×v is an nth root of

ak,n for v 6∈ Sk. In such exceptional cases, (3.2) equals −1.

The product in (3.2) makes sense because (i) χv(µn(kv)) = 1 for all v and (ii) if v ∈
Sk ∩ T then the existence and uniqueness of xv modulo 1-units follows from the evenness
of ordv(2 + ηsk) = ordv(2)/2sk−2 (since v|2). Note also that the obstruction to using ψ = 1
requires the presence of at least one “bad” 2-adic place in T (i.e. Sk

⋂
T 6= ∅).

Proof. Fix an initial choice of nth root χ′ : Wk → F× of χ. For each v ∈ S the restriction
χ′|Wkv

is valued in µn. Likewise, if v ∈ T then χ′ is µn-valued on the wild inertia subgroup
Pv in Wkv , and χ′ is µn-valued on the inertia subgroup Iv when χ is unramified at v.

Since k×v = Z × κ(v)× × (1 + mv), we may define a character ξv : Wkv → µn as follows.
If v ∈ S then ξv = χ′|Wkv

. If v ∈ Σ then ξv = 1. If v ∈ T and χ is unramified at v then
choose ξv corresponding to a character k×v → µn whose restriction to O×kv corresponds to
χ′|Iv . Finally, if v ∈ T and χ(Iv) 6= 1 then choose ξv corresponding to a character k×v → µn
whose restriction to the group 1 + mv of 1-units corresponds to χ′|Pv .
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First assume (k, S ∪ Σ ∪ T, n) is not in the special case. By Proposition A.3 there is a
character ξ : Wk → µn whose Wkv -restriction is ξv for each v ∈ S ∪ Σ ∪ T , so χ′ξ−1 is an
nth root of χ. By construction, χ′ξ−1 is split at every v ∈ S. Likewise, for each v ∈ T the
character χ′ξ−1 is tame at v, and even unramified when χ is. We have succeeded with ψ = 1.

Now suppose instead that (k, S ∪ Σ ∪ T, n) is in the special case, so k is a number field
and S ∪ Σ ∪ T contains Sk. By Proposition A.3 we can construct ξ as above if and only if∏

v∈Sk ξv(ak,n) = 1. Suppose otherwise, so Sk is non-empty and
∏

v∈Sk ξv(ak,n) = −1. In this
case there exists ξ valued in µ2n (and not µn), so ψ := ξn is a quadratic character such that
χ′ξ−1 is an nth root of χψ. Moreover, by construction ψ is split at every v ∈ Σ, and the
characters ψ and χ′ξ−1 are split at every v ∈ S, tame at every v ∈ T , and unramified at
those v ∈ T where χ is unramified. This completes the proof of (1).

To succeed with ψ = 1, we may take Σ = ∅ without loss of generality and may suppose
(k, S ∪T, n) is in the special case. It is necessary and sufficient to find characters θv : Gkv →
µn for v ∈ S ∪ T such that:

∏
v∈Sk θv(ak,n) = −1, θv = 1 for all v ∈ S, θv is tame for all

v ∈ T , and θv is unramified at all v ∈ T where χ is unramified. Indeed, this is exactly the
same as saying that replacing ξv with θvξv fixes the problem.

By definition ak,n = (2 + ηsk)
n/2, so θv(ak,n) = θ

n/2
v (2 + ηsk) = ±1. Since any v ∈ Sk is

2-adic, for such v a tamely ramified quadratic character on Gkv must be unramified. Thus,
failure to succeed with ψ = 1 means exactly that for some v ∈ Sk ∩ T the unramified
quadratic character of Gkv is nontrivial on 2 + ηsk . This says that there exists v ∈ Sk ∩ T
such that ordv(2 + ηsk) is odd. The extension Q(ηsk)/Q of degree 2sk−2 is totally ramified
at 2 with uniformizer 2 + ηsk . Thus, for each v ∈ Sk the subfield Q2(ηsk) ⊆ kv is totally
ramified over Q2 with degree 2sk−2 and uniformizer 2 + ηsk , so if e(v) := ordv(2) then
ordv(2 + ηsk) = e(v)/2sk−2. This is even precisely when 2sk−1|e(v). In such cases, we express
the product

∏
v∈Sk ξv(ak,n) more directly in terms of χ, as follows.

Consider v ∈ Sk ∩ T , so ξv = χ′vηv where ηv is tame and ξv is valued in µn. Since
2 + ηsk = x2

vuv for some uv ∈ 1 + mv (due to v being 2-adic and ordv(2 + ηsk) being even),
ξv(ak,n) = χ′v(ak,n)ηv(ak,n) with ηv(ak,n) = ηv(2 + ηsk)

n/2 = ηv(xv)
n = χv(xv)

−1. Thus,∏
v∈Sk

ξv(ak,n) =
∏
v∈Sk

χ′v(ak,n) ·
∏

v∈Sk∩T

χv(xv)
−1 =

∏
v 6∈Sk

χ′v(ak,n)−1 ·
∏

v∈Sk∩T

χv(xv)
−1

since χ′ is an idele class character. But for v 6∈ Sk there is an nth root a
1/n
k,n,v ∈ k×v , so

χ′v(ak,n) = χv(a
1/n
k,n,v) for such v. �

Example 3.6. Let k be a quadratic field ramified at 2, and v its unique 2-adic place. Assume
that −1 and ±2 are not squares in kv, so Sk = {v}. (Explicitly, kv is either Q2(

√
3), Q2(

√
6),

or Q2(
√
−6).) We claim that there exists a character χ : Gk → µ2 that is an 8th power and

split at v yet for which every 8th root of χ is ramified at v.
We have sk = 2, so ηsk = 0. Let n = 8, so (k, Sk, n) = (k, {v}, n) is in the special case.

Consider characters χ′ : Gk → µ16 carrying Iv into µ8, so the 8th power χ := χ′8 is quadratic
and unramified at v. (The quadratic twist of any such χ by itself is trivial, so Proposition
3.5(1) obviously holds for such χ.) We will prove the existence of such χ′ for which every
quadratic lift φ : k×v → µ2 of χ′4 : Iv → µ2 is non-trivial at the element 2 ∈ k×v with even
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order, so then Proposition 3.5(2) with S = Σ = ∅ and T = {v} implies that such χ := χ′8

admits no 8th root on Gk that is unramified at v. We will arrange χ′ to carry k×v into µ8, so
χ is even split at v.

By Proposition A.3, any character χ′v : k×v → µ8 extends to a character Gk → µ16. Since
k×v = πZ

v × O×kv for a uniformizer πv at v (e.g., πv may be taken to be
√
±6 or 1 +

√
3

when kv = Q2(
√
±6) or kv = Q2(

√
3) respectively), it suffices to construct a character

χ′v : k×v → µ8 such that every φ : k×v → µ2 extending χ′v
4 : O×kv → µ2 is nontrivial at 2.

Writing 2 = π2
vuv for uv ∈ O×kv , we must have φ(2) = φ(πv)

2φ(uv) = χ′v
4(uv), so we just have

to construct a character O×kv → µ8 that is nontrivial at u4
v. This amounts to the condition

that u4
v has nontrivial image in O×kv/(O

×
kv

)8. Since −1 is not a square in kv by hypothesis,
it is equivalent to prove that ±uv are non-squares in kv, or in other words that ±2 are
non-squares in kv. This was one of our hypotheses on kv.

4. The p-adic case for number fields

For a finite-dimensional continuous Qp-linear representation V of the Galois group of a
p-adic local field, a basic p-adic Hodge theory property for V means any of the conditions:
Hodge–Tate, deRham, semistable, or crystalline. This makes sense for representations on
finite-dimensional Qp-vector spaces by descent to a field of definition K of finite degree over
Qp and consideration of the resulting underlying finite-dimensional Qp-linear representation
space. (The choices of K and descent to a K-linear representation do not matter).

Let k be a number field and F = Qp. Choose a character χ : Gk → F× and a set Σ0 of
p-adic places of k. Assume that for each v ∈ Σ0, the restriction χv of χ at v satisfies a basic
p-adic Hodge theory property Pv, and assume that χ is an nth power. Can we find an nth
root of χ as in Proposition 3.5 that also satisfies Pv at each v ∈ Σ0? The main properties of
interest are the Hodge–Tate and crystalline properties, due to the well-known:

Lemma 4.1. Let L be a finite extension of Qp. An abelian semi-simple linear representation
ρ : GL → GL(V ) on a finite-dimensional Qp-vector space is Hodge–Tate if and only if it is
deRham, and is semistable if and only if it is crystalline.

See [W2, Prop. 1.5.2] for the equivalence of the semistable and crystalline conditions in
the abelian case without a semisimplicity hypothesis.

Proof. The problem is to prove that if χ is Hodge–Tate (resp. semistable) then it is deRham
(resp. crystalline). Since ρ is semisimple as a Qp-linear representation space, we may assume
it is irreducible over Qp. Thus, the image of Qp[G

ab
L ] in GL(V ) is a commutative field K of

finite degree over Qp, so V is equipped with a structure of K-vector space (over its Qp-linear
structure) such that ρ acts through a continuous character χ : GL → K×. By irreducibility,
dimK V = 1. Thus, we can suppose V = K and GL acts K-linearly. By a theorem of Tate
(see [S6, III, A.7]), χ is Hodge–Tate if and only if it is locally algebraic (in the sense of
Definition B.1).

Let rL : L× → Gab
L denote the local Artin map (under either choice of normalization),

and for a finite extension E of Qp let E× denote the Weil restriction torus RE/Qp(Gm). A
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refinement of the theory of local algebraicity (Proposition B.4) gives that the composite map

O×L
rL→ Gab

L

χ→ O×K

is induced by the map on Qp-points arising from a homomorphism of Qp-tori L× → K× if
and only if χ is crystalline.

This shows that if χ is Hodge–Tate then it is potentially crystalline, and hence deRham.
Likewise, if χ is semistable (hence Hodge–Tate) then the preceding shows that it is potentially
crystalline and hence has vanishing monodromy operator, so it is crystalline. �

For the existence of an nth root that is Hodge–Tate, clearly it is necessary that the given
character be Hodge–Tate with all weights divisible by n (when using a descent to a character
valued in a finite extension K/Qp; the choice of K does not matter). This is also sufficient:

Proposition 4.2. Consider the setup in Proposition 3.5 with k a number field and F = Qp.
Let ΣHT ⊆ Σ be a set of p-adic places in Σ at which χ is Hodge–Tate with weights divisible
by n, and let Σcr ⊆ ΣHT be a subset of places at which χ is crystalline. Drop the requirement
in part (1) that ψ is split at v ∈ Σcr.

Any χ′ as in part (1) is Hodge–Tate at every v ∈ ΣHT, and it can be arranged in part (1)
that χ′ is crystalline at every v ∈ Σcr. Likewise, part (2) carries over with the additional
requirement for χ′ to be crystalline at the places v ∈ Σcr, except that in the characterization
of the exceptional cases the conditions are that (k, S ∪ T ∪ Σcr, n) is in the special case,
2sk−1|ordv(2) for v ∈ Sk ∩ (T ∪ Σcr), and

(4.1)
∏
v 6∈Sk

χv(a
1/n
k,n,v) ·

∏
v∈Sk∩T

χv(xv) ·
∏

v∈Sk∩Σcr

ηv(ak,n) 6= 1

for a crystalline nth root ηv of χv for v ∈ Sk ∩ Σcr. In such cases, (4.1) equals −1.

We will see below that the crystalline nth root ηv exists for v ∈ Sk ∩ Σcr, and that the
choice of such nth root does not matter. Note that Sk ∩ Σcr = ∅ when p 6= 2.

Proof. The Hodge–Tate aspect is a special case of the following general local assertion. Let L
and K be finite extensions of Qp, d = [K : Qp], and ξ : GL → K× a character such that the
d-dimensional Qp-linear representation space underlying ξn is Hodge–Tate with all Hodge–
Tate weights {w1, . . . , wd} divisible by n. Then the underlying Qp-linear representation
space of ξ is Hodge–Tate with weights {wj/n}. Indeed, the Sen operator for ξ is semisimple
(using the canonical decomposition of K ⊗Qp CL into CL-lines), and the Tate–Sen weights
are {wj/n}, which lie in Z.

We next check that after increasing K to contain a primitive nth root of unity, if ξn is
also crystalline then it admits a crystalline nth root valued in K×. In other words, we seek
θ : GL → µn such that θξ is crystalline. Note that if such a θ exists, it is unique up to an
unramified twist since any two choices have ratio that is crystalline of finite order and hence
unramified. Pick a finite extension L′/L such that ξ|GL′ is crystalline. By Proposition B.4,

there is a (unique) map of Qp-tori ξ′ : L′× → K× such that the resulting map L′× → K×

on Qp-points has restriction to O×L′ that agrees with ξ|GL′ under local class field theory. Our
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task is to construct a (necessarily unique) factorization of ξ′ as a map of Qp-tori

L′
× NL′/L

� L×
h→ K×

and a character θ : Gab
L → µn such that the composite map

O×L
rL→ Gab

L

θξ→ K×

coincides with h on Qp-points (restricted to O×L ⊂ L×).
The crystalline hypothesis on ξn implies (by Proposition B.4) that ξ′n factors through the

map NL′/L of Qp-tori via a map which recovers ξn|IL . Hence, ξ′ carries the Qp-group ker NL′/L

into the finite n-torsion Qp-subgroup of K×. But ker NL′/L is a torus, hence connected, so
ξ′ kills it. In other words, we do get a factorization ξ′ = h ◦NL′/L as maps of Qp-tori. But it
is obvious that (ξ ◦ rL)−1 · h : O×L → K× is killed by the nth power (since ξn ◦NL′/L = ξ′n as
algebraic maps, and ξ′n = hn ◦ NL′/L as algebraic maps), so this is valued in µn. Extending
it to a µn-valued character of L× provides an associated homomorphism θ : GL → µn that
does the job.

Returning to the global setting, we modify the proof of Proposition 3.5 as follows. For
each v ∈ Σcr, we only require that ξv : Gkv → µn makes the nth root χ′vξ

−1
v of χv a crystalline

character (rather than that ξv = 1). This makes such ξv unique up to an unramified µn-valued
twist. The proof of (1) now carries over without requiring ψ to split at Σcr.

Let e(v) = ordv(2) for v|2. If v ∈ Sk ∩ Σcr, the value ξ
n/2
v (2 + ηsk) must be 1 when

ordv(2 + ηsk) is even (equivalently, when 2sk−1|e(v)) and otherwise it can be arranged to be
−1 by applying a degree-n unramified twist to ξv. Thus, if 2sk−1 - e(v0) for some v0 ∈ Sk∩Σcr

then we can change the sign of ξv0(ak,n) if necessary to kill the global obstruction to taking
ψ = 1. Hence, in the revised version of part (2) incorporating conditions at Σcr, for the
characterization of the exceptional cases we also require that 2sk−1|e(v) for all v ∈ Sk ∩ Σcr

and only demand that (k, S ∪ T ∪ Σcr, n) (rather than (k, S ∪ T, n)) is in the special case.
The modified requirement on θv for v ∈ Σcr is that θv : Gkv → µn is unramified, yet

the additional condition that 2sk−1|e(v) for such v forces θv(ak,n) = θ
n/2
v (2 + ηsk) = 1.

When expressing
∏

v∈Sk ξv(ak,n) in terms of χ, we replace Sk ∩ T with Sk(T ∪ Σcr), and for
v ∈ Sk ∩ Σcr we have ξv = χ′vηv for a crystalline nth root ηv of χv (which presently depends
on the choice of global nth root χ′ of χ). This leads to the extra factor

∏
v∈Sk∩Σcr

ηv(ak,n) for
the crystalline nth root ηv of χv. But for such v, ηv is unique up to an unramified µn-twist,

and ηv(ak,n) = η
n/2
v (2+ηsk) with ordv(2+ηsk) ∈ 2Z, so ηv(ak,n) is independent of the choice of

crystalline nth root ηv of χv. Hence, this choice can be made locally at v, without reference
to the abstract global χ′, so (4.1) is obtained. �

5. Representations into linear algebraic groups

Let f : H ′ → H be a surjective homomorphism between linear algebraic F -groups and
assume that ker f is central in H ′ (e.g., an isogeny between connected reductive groups).
For a representation ρ : Gk → H(F ), does ρ factor through f via a representation ρ′ : Gk →
H ′(F ) in the absence of local obstructions? If ρ′ exists, can we control its local properties at
finitely many places in terms of the local properties of ρ? These questions also make sense
using Wk rather than Gk. For H ′ = H = Gm this is the local-global problem for F×-valued
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characters, together with its local refinements. The case of central isogenies with F = Qp

and k a number field was considered in [W1] in a slightly different setting (with compatible
families).

In this section we take up these matters except for the p-adic Hodge theory aspects when
k is a number field and F = Qp, which we address in §6. For ease of reference later, we
begin by recording some standard lemmas.

Lemma 5.1. Let K0 ⊂ Qp a subfield of finite degree over Qp, and H0 a K0-group of finite

type. Any continuous homomorphism ρ0 : Wk → H0(Qp) factors through a continuous

homomorphism Wk → H0(K) for a subfield K ⊂ Qp of finite degree over K0, and if k is a
number field then this factors through the maximal profinite quotient Gk of Wk.

Proof. The target is totally disconnected, so in the number field case ρ factors through Gk

since Wk → Gk is a topological quotient map whose kernel is the identity component [T,
1.4.4]. If k is a function field then Wk = W 1

k o Z for a profinite group W 1
k . Thus, a Baire

category argument applied to compact subgroups of H0(Qp) = lim−→H0(K) does the job. �

Lemma 5.2. Let F = C or Qp with p 6= char(k), let f : H ′ → H be a central quotient of an
F -group of finite type, and let ρ′ : Wk → H ′(F ) be a continuous homomorphism. If F = C
then ρ′ is unramified at all but finitely many places of k, and if F = Qp and ρ := f ◦ ρ′ is
unramified at all but finitely many places of k then the same is true for ρ′.

When F = Qp, the condition involving the central quotient ρ of ρ′ cannot be removed; an
interesting counterexample with k = Q, H ′ = GL2, and H = 1 is given in [KR, Thm. 25(b)].

Proof. First assume F = C and char(k) > 0. We have Wk = W 1
k o Z with W 1

k a profinite
group containing all inertia subgroups. The profinite image ρ′(W 1

k ) in the Lie group H ′(C)
must be finite, but a cofinal system of finite-index closed subgroups of W 1

k is given by the
subgroups Wk′ ∩W 1

k = W 1
k′ for finite Galois extensions k′/k, so there exists such a k′/k so

that ρ′ is unramified at all places of k that are unramified in k′.
Next consider F = C and char(k) = 0. We may replace H ′ with the Zariski closure

of ρ′(Wk) so that ρ′ has Zariski-dense image. The preimage ρ′−1(H ′0) is an open normal
subgroup of Wk with finite index, so by replacing k with the corresponding finite Galois
extension we may arrange that H ′ is connected. We have Wk = W 1

k oR for a compact group
W 1
k that is an extension of Gk by a commutative connected compact group ∆k centralized by

the action of R onW 1
k [T, 1.4.4]. The imageK = ρ′(∆k) is a compact connected commutative

subgroup of the Lie group H ′(C), so it is a compact torus and is normalized by ρ′(Wk). The
complexification KC has image in H ′(C) equal to T ′(C) for a torus T ′ ⊆ H ′, and ρ′(Wk)
normalizes T ′. But ρ′(Wk) is Zariski-dense in the connected H ′, so T ′ is centralized by H ′.
The composite map Wk → (H ′/T ′)(C) factors through the quotient Wk/∆k = Gk o R that
is a direct product. The image of Gk in (H ′/T ′)(C) must be finite, so the image of W 1

k in
H ′(C) has finite image in (H ′/T ′)(C). Once again replacing k with a finite Galois extension
brings us to the case that W 1

k lands in T ′(C). But every C×-valued character of Wk is finitely
ramified, so this case is settled.
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Now suppose F = Qp (and let char(k) 6= p be arbitrary). We may and do choose a subfield
K0 of F of finite degree over Qp such that there is a central extension

1→ Z0 → H ′0 → H0 → 1

of finite type K0-groups descending the given central extension over F . Lemma 5.1 provides
a finite extension K/K0 inside F such that ρ′ factors through H ′0(K). Since H ′0(K) is locally
profinite, the compact subgroup ρ′(W 1

k ) is profinite. Hence, by replacing k with a sufficiently
large finite extension we may arrange that ρ′(W 1

k ) is contained in any desired open subgroup
of H ′0(K) around the identity. In particular, it is torsion-free and pro-p.

Let v be a non-archimedean place of k that is unramified in ρ and does not divide p; this
accounts for all but finitely many places of k. Since the inertia group Iv has trivial image
in H0(K), ρ′(Iv) lies in Z0(K). The centrality of Z0 in H ′0 implies that ρ′(Wkv) is abelian.
But Iv ⊂ W 1

k , so ρ′(Iv) is torsion-free and pro-p. By local class field theory, the inertia
subgroup of W ab

kv
is the product of a finite group and a pro-pv group, where pv is the residue

characteristic at v. We have arranged that pv 6= p, so ρ′(Iv) = 1. �

Proposition 5.3. Consider a central extension 1→ Z → H ′ → H → 1 of finite type affine
F -groups, with Z an F -torus. Let Γ = Gk or Wk, and ρ : Γ → H(F ) a representation.
There exists a representation ρ′ : Γ→ H ′(F ) lifting ρ.

The affineness hypothesis can be removed, at the cost of some technical complications
when F = Qp. We only require the affine case in what follows.

Proof. Since we require representations to be unramified at all but finitely many places, by
Lemma 5.2 it suffices to lift ρ merely as a continuous homomorphism. By induction on
dimZ, we may and do assume Z = Gm. Also, note that H ′ may be disconnected.

Step 1. We first review how to build an isogeny-complement H̃ to Z in H ′ (i.e., a closed

subgroup H̃ ⊂ H ′ such that H̃ → H is surjective with finite kernel). If N ′ is a connected
normal subgroup of H ′ that has finite intersection with Z and is carried isogenously onto
its image in H, it suffices to find an isogeny-complement in H ′/N ′ for the isogenous image
of Z (since the preimage under H ′ → H ′/N ′ of such an isogeny-complement is an isogeny-
complement to Z in H ′). By taking N ′ to be the unipotent radical of H ′0, we may assume
H ′0 is reductive. Then by taking N ′ = D(H ′0) we may assume T ′ := H ′0 is a torus.

The finite group π0(H ′) = H ′(F )/T ′(F ) acts on T ′ and thereby acts on the cocharac-
ter group X ′ = X∗(T

′). The line X∗(Z)Q ⊂ X ′Q has trivial π0(H ′)-action, and complete
reducibility provides a π0(H ′)-equivariant retraction X ′Q → X∗(Z)Q. Multiplying by a suf-
ficiently divisible nonzero integer provides a homomorphism H ′ → Z whose kernel is the
desired isogeny-complement to Z.

Step 2. Returning to the original H ′, let H̃ ⊂ H ′ be an isogeny-complement to Z, so

H̃ → H is a surjection with finite kernel H̃
⋂
Z = Z[n0] = µn0 ⊂ Gm = Z for some n0 > 0.

For positive integral multiples n of n0, let H ′n = H̃ · Z[n], so the natural map fn : H ′n → H
is a surjection with kernel Z[n]. We will show that for sufficiently divisible n, ρ admits a
continuous lift through fn except possibly when F = C and Γ = Wk with char(k) = 0.

Consider the case Γ = Gk. For any n ∈ n0 · Z+, the induced map H ′n(F ) → H(F ) is a
local homeomorphism. Thus, by the total disconnectedness of Γ, the obstruction to lifting
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through the central isogeny fn is a continuous cohomology class cn ∈ H2(Γ, µn(F )) (where the
discrete coefficients have trivial Γ-action). Moreover, if n′ is a multiple of n then the natural
map H2(Γ, µn(F )) → H2(Γ, µn′(F )) carries cn to cn′ . But lim−→H2(Gk, µn(F )) = H2(k,Q/Z),
and this vanishes by a result of Tate (as we noted in Remark 1.1).

Step 3. Suppose instead that Γ = Wk. First we treat the case char(k) > 0 (so Wk is totally

disconnected). Let Ik := ker(Gk � Ẑ). A choice of arithmetic Frobenius element φ ∈ Wk

provides compatible identifications Gk = Ik o Ẑ and Wk = Ik o Z. Let c̃n : Wk ×Wk →
µn0(F ) be a continuous 2-cocycle (relative to the natural topology of Wk) representing the
obstruction to the existence of a (continuous) homomorphism ρ′ : Wk → H ′n0

(F ) lifting ρ,
so for n ∈ n0 · Z+ the cocycle c̃n defined via µn0(F ) ↪→ µn(F ) represents the obstruction to
lifting to H ′n(F ). We claim that c̃n0 is continuous for the profinite topology on Wk (even
though ρ may not be). To check this, we may replace k with a finite Galois extension.

If F = C then ρ(Ik) is finite, so we may pass to the trivial case when ρ(Ik) = 1. If
F = Qp then we may increase k so that ρ(Ik) lies in an open subgroup Ω of H(F ) over
which H ′n0

(F ) → H(F ) admits a topological group splitting. That is, the preimage Ω′n0
of

Ω in H ′n0
(F ) is identified with Ω× µn0(F ) as topological groups, so we can uniquely lift ρ|Ik

to ρ′n0
: Ik → Ω ⊂ Ω × µn0(F ) = Ω′n0

and the obstruction to lifting ρ is controlled by the
µn0(F )-factor of the conjugation action on ρ′n0

by a chosen lift h′n0
∈ H ′n0

(F ) of ρ(φ) ∈ H(F ).
By replacing the constant field with a degree-d extension we may replace h′n0

with its dth
power, so by choosing d = n0 we can kill the µn0(F )-component of its conjugation action
on ρ′n0

. This completes the proof that each c̃n is continuous for the profinite topology on
Wk in general (using our original k). The resulting system of classes cn ∈ H2(k, µn(F ))
for n varying through multiples of n0 is compatible with change in n, so the vanishing of
H2(k,Q/Z) again provides the desired lift.

Step 4. Suppose Γ = Wk and char(k) = 0. The case F = Qp immediately reduces to
the settled Gk-case by the final part of Lemma 5.1. Finally, suppose F = C, so neither
H(F ) nor Wk is totally disconnected. We cannot build continuous obstruction cocycles as
easily as in the other cases, and we cannot expect to lift ρ through any fn (since ρ(Wk)
may contain circles, and S1 has nontrivial central extensions by µn; fortunately, S1 has no
nontrivial central extensions by C×).

Let W 1
k and ∆k be as in the proof of Lemma 5.2, so ∆k is normal in Wk ' W 1

k o R with
Wk/∆k = Gk ×R. More specifically, Wk has identity component of the form W 0

k ' ∆k o R
and the method of proof of Lemma 5.2 (using that a continuous homomorphism from a
profinite group into a Lie group has finite image) shows that ρ(Wk) contains the compact
connected normal subgroup ρ(W 0

k ) with finite index. Grant for a moment that the subgroup
ρ(W 0

k ) lifts isomorphically through the quotient map H ′(C) → H(C), so a choice of such
lifting defines a lift ρ̃ of the restriction of ρ to the finite-index closed (hence open) normal
subgroup ρ−1(ρ(W 0

k )) ⊂ Wk. Such a normal subgroup has the form Wk′ for a finite Galois
extension k′/k, and the obstruction to extending ρ̃ to a lift of ρ on the entirety of Wk is given
by a class in H2(Wk/Wk′ ,C

×) = H2(k′/k,C×), where we may equip C× with the discrete
topology. Increasing k′ to some k′′ has the effect of computing the obstruction to finding
a lift of ρ that extends ρ̃|Wk′′

. Passing to the limit over such k′′ yields an obstruction in
lim−→H2(k′′/k,C×) = H2(k,C×) = 1, so the desired lift ρ′ of ρ exists.



LIFTING GLOBAL REPRESENTATIONS WITH LOCAL PROPERTIES 17

It remains to show that ρ(W 0
k ) lifts isomorphically into H ′(C), or more intrinsically that

any topological central extension of ρ(W 0
k ) by C× splits. The image ρ(∆k) ⊆ H(C) is a

compact connected commutative subgroup, so it is a compact torus. Hence, ρ(W 0
k ) is either

a compact torus or an extension of R by such a torus. But every topological central extension
of a compact torus or R by C× is split, so we are done. �

Corollary 5.4. In the setting of Proposition 5.3, let S and T be finite disjoint sets of places
of k with no archimedean places in T , and assume ρ is unramified at S and tame at T . The
lift ρ′ of ρ can be chosen to be unramified at S and tame at T .

Proof. Choose some ρ′ lifting ρ. We may and do assume Z = Gm and that S contains no
complex places, and we seek χ : Γab → F× = Z(F ) such that χ−1ρ′ is unramified at S
and tame at T . For non-archimedean or real v, let Jv ⊂ k×v denote the maximal compact
subgroup. If v ∈ S then ρ′(Wkv) is abelian, due to the unramifiedness of ρ at v and the
centrality of Z, so ρ′ induces a homomorphism k×v → F× whose restriction Jv → F× is
trivial if and only if ρ′ is unramified at v.

Fix v ∈ T . Although ρ(Iv) is abelian, due to tameness, ρ(Γv) may not be abelian for such
v. Nonetheless, we claim that ρ|Γv admits a tame lifting ρ′v : Γv → H ′(F ). To prove this,
let pv be the residue characteristic and qv the size of the residue field at v. Let τv denote a
topological generator of the tame inertia group at v, and σv an arithmetic Frobenius element
at v, so σv conjugates τv via the qvth power map. For any φ ∈ H ′(F ) lifting ρ(σv) and any
h′ ∈ H ′(F ) lifting ρ(τv), we have φh′φ−1 ∈ h′qvc for some c ∈ Z(F ) = F×. Writing c = bqv−1

for some b ∈ F×, if we replace h′ with bh′, we get φh′φ−1 = h′qv ; note that this is unaffected
by changing the choice of φ.

First consider that case that ρ(τv) has finite order (as is automatic except for possibly
when F = Qp and pv 6= p). By tameness its order m = mv is not divisible by pv. Thus,
a := h′m ∈ F× in H ′(F ) and aqv = (h′qv)m = φh′mφ−1 = a, so aqv−1 = 1. Hence, in
such cases h′ has order not divisible by pv, so ρ′v(τv) := h′ and ρ′v(σv) := φ defines a tame
homomorphism ρ′v : Wkv → H ′(F ) lifting ρ|Wkv

. If ρ(σv) also has finite order then we can
modify the choice of φ so that φ has finite order.

Thus, when F = C we can always find a tame lifting ρ′v : Γv → H ′(F ) of ρ|Γv , and likewise
for F = Qp and the Wk-cases except possibly when ρ(Iv) is infinite (forcing pv 6= p). In such

exceptional Wk-cases (with F = Qp) we can find a tame local lift as follows. The image ρ(Iv)
is the product of Zp and a finite cyclic group of order not divisible by p or by pv, so by a
variant of the preceding considerations (now using that p-adic Lie groups are pro-p near the
identity) we can lift ρ(Iv) to a pro-cyclic group C ′ in H ′(F ) that is pro-p near the identity
and has “order” not divisible by pv. For h′ ∈ C ′ lifting ρ(τv) and any φ ∈ H ′(F ) lifting
ρ(σv), φh

′φ−1 = h′qvc in H ′(F ) for some c ∈ C ′
⋂
F×. We may choose m > 0 so that cm is

a 1-unit that is trivial or multiplicatively generates a Zp. Any (qv − 1)th root b of c in F×

satisfies the same property (with m replaced by m(qv − 1)), so as above we can replace h′

with bh′ to get to the case c = 1. We have constructed a tame local lift when F = Qp in all
Wk-cases.

In the Gk-cases with F = Qp, we may use the preceding constructions on tame inertia
and just have to arrange that a pro-cyclic subgroup of H(F ) (such as the one generated by
the image of a Frobenius element of Gkv) always lifts to a pro-cyclic subgroup of the central
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cover H ′(F ). Such a pro-cyclic lifting is built by an easier version of the construction of a
tame inertia lift when the inertial image under ρ is infinite (the present situation is easier
since we don’t need to keep track of divisibility by pv).

To summarize (allowing Γ = Gk or Wk, and any F ), for each v ∈ S
⋃
T there exists a

continuous lifting ρ′v : Γv → H ′(F ) of ρ|Γv that is tame at v ∈ T and unramified at v ∈ S.
Since ρ′|Γv is another lift of ρ|Γv valued in H ′(F ), we have ρ′|Γv = χvρ

′
v for a character

χv : Γab
v → F×. It suffices to construct a character χ : Γab → F× agreeing with χv on the

maximal compact subgroup Jv of Γab
v for all v ∈ S

⋃
T (as then χ−1ρ′ is a lift of ρ with the

desired local properties at S ∪ T ).
If F = C or if F = Qp and char(k) > 0 then all χv(Jv) are finite, so we can construct a

finite-order χ via Proposition A.3. Now suppose F = Qp and k is a number field. Since the

Q
×
p -valued character group of Wk coincides with that of Gk, we can assume Γ = Wk. If v - p

then χv(Jv) is again finite (since Jv has finite pro-p part), so by finite-order twisting we may
assume χv = 1 for all v ∈ S ∪ T that are not p-adic. Let S ′p denote the set of p-adic places

in S ∪ T . Choose a subfield K0 ⊂ Qp of finite degree over Qp and a central extension

1→ Gm → H ′0 → H0 → 1

of affine K0-groups of finite type such that scalar extension to F recovers the given central
extension over F and ρ′(Wk) ⊂ H ′0(K0) and χv(W

ab
k ) ⊂ K×0 for all v ∈ S ′p (see Lemma 5.1).

The unipotent radical U ′ of H ′0 maps isomorphically onto the unipotent radical U of H0,
and the natural map H ′0 → (H ′0/U

′)×H0/U H0 is an isomorphism, so we may pass to the case
when H ′0 and H0 are reductive (but possibly disconnected). The identity component H ′0 is an
almost direct product of its maximal central torus Z ′0 and its derived group G′0. By replacing
K0 with a finite extension, we may assume that Z ′0 is K0-split. The finite component group
π0 of H ′0 naturally acts on Z ′0, with trivial action on the central Gm, so the semisimplicity
of the π0-action on X∗(Z

′
0)Q provides a K0-torus S ′0 in Z0 complementary to the central Gm

and normal in H ′0. Thus, T ′0 := H ′0/(S
′
0 · G′0) is a quotient of H ′0 with identity component

Gm onto which the central Gm in H ′0 maps via an isogeny.
By increasing K0, we may assume that the component group ∆0 of T ′0 is constant. The

extension structure on T ′0(F ) is classified by an element of H2(∆0, F
×). This cohomology

group is killed by the order N of ∆0, so using a central pushout of T ′0 along the Nth-power
endomorphism of Gm provides an isogeny θ : T ′0 → Gm. Replacing θ with θm for a sufficiently
divisible m > 0 ensures that the compact image of the character

(5.1) ρ′ : Wk
ρ′→ H ′0(K0)→ T ′0(K0)

θ→ K×0

has torsion-free pro-p image. Thus, it may be identified with a character ξ : Ck = A×k /k
× →

K×0 that factors through the maximal pro-p torsion-free quotient and hence is unramified
outside p. Composing θ with the natural map to T ′0 from the central Gm in H ′0 defines an
isogeny Gm → Gm given by x 7→ xd for some nonzero d ∈ Z.

Since the image of ξ is torsion-free and pro-p, it consists of 1-units in K0 and is multi-
plicatively finite free over Zp. By choosing a Zp-basis and extracting dth roots as 1-units,
we get a continuous dth root ξ′ of ξ valued in a torsion-free group of 1-units in K× for a
finite extension K of K0. Clearly ξ′ is also unramified away from p, and by viewing it with
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values in the central Gm ⊆ H ′0 we can replace ρ′ with ξ′−1ρ′ without affecting the inertial
restriction at places away from p. We rename K as K0 and replace χv with χvξ

′|Γv to arrive
at the case that ξ = 1. The map q0 : H ′0 → H0 ×Gm whose components are f0 : H ′0 → H0

and H ′0 → T ′0
θ→ Gm is an isogeny between identity components, and q0 ◦ ρ′ = (1, ρ). Thus,

for p-adic places v ∈ S ∪ T we see that ρ′(Iv) is finite. But χ−1
v ρ′|Γv is unramified for v ∈ S

and is tame for v ∈ T . Hence, for a p-adic place v ∈ S the image χv(Iv) is finite and for a
p-adic place v ∈ T the image of χv on wild inertia is finite. In the latter case, χv(Iv) must
be finite since the inertial part O×kv of Γab

v has finite tame part.
For all p-adic places v ∈ S ∪ T , we have arranged that χv(Iv) is finite. By Proposition

A.3 we can construct a finite-order character χ : Gk → F× whose inertial restriction at each
p-adic place of S ∪ T agrees with χv and that is split at all other places of S ∪ T . The twist
χ−1ρ′ is a lift of ρ to H ′ that satisfies the desired local properties. �

Next, we generalize Proposition 5.3 by considering Z that is of multiplicative type but
possibly disconnected; this includes all central isogenies H ′ → H between linear algebraic
F -groups. Via the factorization H ′ → H ′/Z0 → H and the settled case of connected Z,
the lifting problem (without consideration of local conditions) can be understood via the
Grunwald–Wang theorem by using an elementary cohomological argument (as in Remark
1.1) provided that #(Z/Z0) is not divisible by char(k). However, to control local properties
of the lift (and to avoid restrictions on char(k)) we need to use the connected case in another
way to relate the problem to our earlier results on the local-global problem for characters
(and its local refinements). Here is the general result, which establishes Theorem 1.4(1)
beyond the case H = H ′ = Gm, as well as Theorem 1.4(2).

Theorem 5.5. Let 1 → Z → H ′ → H → 1 be a central extension of linear algebraic
F -groups with Z of multiplicative type, and let Γ = Gk or Wk. Let ρ : Γ → H(F ) be a
representation, and for each place v of k that is archimedean or ramified for ρ, assume that
ρ|Γv lifts to a representation Γv → H ′(F ). Let n ≥ 1 denote the exponent of Z/Z0.

(1) There exists a representation ρ′ : Γ → H ′(F ) lifting ρ except possibly when k is a
number field and (k, ∅, n) is in the special case.

(2) Assume that a lift ρ′ of ρ exists. Let S and T be finite disjoint sets of places of k with
no archimedean places in T , and assume that ρ is unramified at S and tame at T .
Then ρ′ can be chosen to be unramified at S and tame at T except for possibly when
k is a number field, (k, S ∪ T, n) is in the special case, Sk 6= ∅, and 2sk−1|ordv(2) for
all v ∈ Sk.

For a number field k, the set Sk of “bad” 2-adic places of k and the integer sk ≥ 2 are
defined in Appendix A. Also, when F = Qp and v is a p-adic place of k such that ρ|Γv is
semistable, a sufficient criterion for ρ|Γv to admit a lift (even a semistable lift) is that ρ|Iv
admits a Hodge–Tate lift Iv → H ′(F ); see Corollary 6.7.

Proof. By applying Proposition 5.3 to the central quotient map H ′ → H ′/Z0, we may and
do assume that Z is finite.

Here is a short proof of (1) when Γ = Gk with char(k) - #Z(F ). In such cases, the
obstruction to the existence of ρ′ lies in H2(k, Z(F )), where the discrete finite coefficient group
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Z(F ) has trivialGk-action. Since we assume the absence of local obstructions to the existence
of ρ′, the global obstruction lies in the subgroup X2

∅(k, Z(F )) whose vanishing is well-
understood via Tate global duality and the Grunwald–Wang theorem since char(k) - #Z(F ).

To handle part (2), and to give a uniform proof of part (1) in all cases (e.g., F = C with
Γ = Wk for a number field k, or the case char(k)|#Z(F ) that often occurs when char(k) = 2
and H ′ is a connected semisimple group), we will analyze the global obstruction in another
way. A central pushout along an inclusion of Z into a torus will reduce the assertions to the
understood local-global problem for F×-valued characters (and its local refinements).

The finite commutative Z admits an inclusion into an F -torus T . Choose such an inclusion
and form a central pushout diagram

(5.2) 1 // Z

��

// H ′
f //

��

H // 1

1 // T // H ′ // H // 1

for a finite type F -group H ′ generated by H ′ and T as subgroups, with T central in H ′.
By Proposition 5.3, there exists a representation ρ̃ : Γ → H ′(F ) = T (F )H ′(F ) lifting ρ,
and (by Corollary 5.4) it can be chosen to be unramified at S and tame at T .

The possibilities for ρ′ : Γ → H ′(F ) are precisely the representations χρ̃ taking values in
the subgroup H ′(F ) ⊆ H ′(F ), or equivalently having trivial image in (H ′/H ′)(F ). But
H ′/H ′ = T /Z, so the condition on χ is exactly that it lifts the composite representation

(5.3) ψ : Γ
ρ̃→H ′(F )→ (T /Z)(F ).

We conclude that ρ′ exists if and only if the character ψ admits a continuous lift through
the isogeny of tori T → T /Z, and if ρ̃ is chosen to be unramified at S and tame at T then
ψ satisfies these local properties and for part (2) we seek to preserve these properties when
lifting ψ to T .

Relative to suitable bases of the character groups of T and T /Z, the isogeny between
these tori takes the form

(5.4) (c1, . . . , cr) 7→ (cn1
1 , . . . , c

nr
r )

where n1| . . . |nr are the invariant factors of Z(F ) (so n = nr). Hence, if we write ψ : Γ →
(T /Z)(F ) = (F×)r in the form (ψ1, . . . , ψr) then the task is to construct an nith root of
ψi for every 1 ≤ i ≤ r, moreover preserving the desired local conditions at S and T when
they are satisfied by ψ. The absence of local obstructions to the existence of ρ′ says exactly
that ψi is locally an nith power for all i. Thus, we deduce part (1) in general by applying
Theorem 1.4(1) in the settled case H = H ′ = Gm, and we deduce part (2) by applying
Proposition 3.5 (with S and Σ there taken to be empty, and T there taken to be S ∪ T in
our present circumstances). �

Remark 5.6. Let f : H ′ → H be an isogeny between connected semisimple F -groups, and
suppose k is a number field. The only Killing-Cartan type having fundamental group with
order divisible by 8 is type Ar with r ≡ −1 mod 8. Thus, since 8|2sk+1, if H has no simple
factors of type Ar with r ≡ −1 mod 2sk+1 then the obstructions in both parts of Theorem
5.5 for this f are necessarily trivial.
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Corollary 5.7. Let H be a connected reductive F -group, H ′ its semisimple derived group,
and n the exponent of the center ZH′ of H ′. Let ρ be a representation of Gk or Wk valued
in H(F ), and at the archimedean and ramified places for ρ assume there is no obstruction
to the existence of a central twist valued in H ′(F ).

(1) There exists a global central twist ρ′ of ρ valued in H ′ except possibly when k is a
number field and (k, ∅, n) is in the special case.

(2) Assume ρ′ exists, and let S and T be sets of places of k as in Theorem 5.5(2). Then ρ′

can be chosen to be unramified at S and tame at T except possibly when (k, S ∪ T, n)
is in the special case, Sk 6= ∅, and 2sk−1|ordv(2) for all v ∈ Sk.

If (k, ∅, n) is in the special case then H ′ has a simple factor of type Ar with r ≡ −1 mod
2sk+1 (as in Remark 5.6).

Proof. Let ρ = ρ mod ZH(F ) be the quotient of ρ valued in the adjoint semisimple group
H/ZH . Since H ′/ZH′ = H/ZH , the central twist in part (1) is precisely a lift of ρ through the
central isogeny H ′ → H ′/ZH′ . Thus, the assertion in part (1) is a special case of Theorem
5.5(1). Similarly, part (2) is a special case of Theorem 5.5(2). �

Example 5.8. Consider Corollary 5.7 with H = GSp2g. The problem is to find an F×-valued
character χ such that χρ is valued in Sp2g. This amounts to constructing a square root of
the homothety character of ρ.

Example 5.9. Suppose H = GOr, and let θ : Gk → F× be the homothety character of ρ,
so qr ◦ ρ(g) = θ(q)qr for the standard rank-r split quadratic form qr on F r. A necessary
and sufficient condition for ρ to admit a central twist valued in SOr is the existence of
χ : Gk → F× such that χ2 = θ and χr = det ρ (so χ−1ρ is valued in Or with trivial
determinant). For odd r it suffices to find a square root of θ since Or = µ2× SOr for such r.
For even r it is necessary and sufficient to find a square root of θ and to verify the equality
θr/2 = det ρ (which obviously can be checked locally).

6. Lifting p-adic Hodge theory properties

Let L be a finite extension of Qp, and let Γ denote GL, WL, or IL. Consider a linear
algebraic group H over Qp, a continuous representation σ : Γ→ H(Qp), and a basic p-adic
Hodge theory property P (crystalline, semi-stable, deRham, or Hodge–Tate). For any linear
representation ξ : H → GL(V ) over Qp, we get a linear action of Γ on V via ξ ◦ σ. Exactly

as in §4, we can ask if this action satisfies P (using a descent to a subfield of Qp of finite
degree over Qp, the choice of which does not matter).

Definition 6.1. The representation σ satisfies P if ξ ◦ σ satisfies P for all ξ.

By standard Tannakian arguments, it suffices to consider a single faithful ξ. The condition
that σ satisfies P is preserved under composition with homomorphisms of linear algebraic
groups, so a semistable representation IL → H(Qp) always lands in H0(Qp) since projection

to (H/H0)(Qp) is a finite-image representation that is semistable and hence unramified.
We seek to generalize Theorem 5.5(2) and Corollary 5.7 by incorporating basic p-adic

Hodge theory properties at p-adic places of k away from S ∪ T when F = Qp. To do this,
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we first recall a useful construction attached to any linear algebraic group H0 over Qp and
representation σ0 : IL → H0(Qp). By a variant of the Tannakian formalism, there is a unique
element Θσ0 ∈ (h0)CL such that for every linear representation ξ0 : H0 → GL(V0) over Qp,
the Sen operator of the semilinear IL-representation (ξ0)CL ◦ σ0 on (V0)CL is Lie(ξ0)(Θσ0).

The representation σ0 is Hodge–Tate if and only if Θσ0 is semisimple (relative to the
identification of h0 as the Lie algebra of H0) and has eigenvalues in Z under all linear rep-
resentations ξ0 of H0 over Qp, in which case Θσ0 = Lie(λ0)(t∂t) for a unique 1-parameter
subgroup λ : Gm → (H0)CL over CL. Equivalently, (ξ0)CL ◦ λ defines the Hodge–Tate de-
composition of (V0)CL for all ξ0 over Qp. These 1-parameter subgroups provide a convenient
lifting criterion for representations of IL:

Theorem 6.2 (Wintenberger). Let f0 : H ′0 → H0 be a homomorphism between linear al-
gebraic groups over Qp such that Lie(f0) is an isomorphism. Let σ0 : IL → H0(Qp) be a
Hodge–Tate representation, and λ : Gm → (H0)CL the 1-parameter CL-subgroup classifying
the Hodge–Tate structure on σ0.

(1) If a continuous lift σ′0 : IL → H ′0(Qp) of σ0 exists then σ′0 is Hodge–Tate if and only
if λ lifts to a 1-parameter subgroup λ′ of (H ′0)CL. In such cases, σ′0 is deRham if and
only if σ0 is deRham.

(2) Assume σ0 is semistable. There is a semistable representation σ′0 : IL → H ′0(Qp)
lifting σ0 if and only if λ lifts to a 1-parameter subgroup λ′ of (H ′0)CL. In such cases
σ′0 is unique if it exists, and if it exists then it is crystalline if and only if σ0 is
crystalline.

Proof. For the Hodge–Tate case of (1), let Θ′0 ∈ (h′0)CL be the associated Sen element. The
isomorphism Lie(f0)CL carries Θ′0 to the Sen element Θ0 ∈ (h0)CL corresponding to the
Hodge–Tate representation σ0, so Θ′0 inherits semisimplicity from Θ0 due to the functorial-
ity of the Jordan decomposition with respect to f0. The hypothesis on lifting of 1-parameter
CL-subgroups through (f0)CL implies that Θ′0 has eigenvalues in Z under any linear repre-
sentation of H ′0, so σ′0 is Hodge–Tate.

For the deRham case of (1) (assuming a Hodge–Tate σ′0 exists), note that it is harmless
to replace L with a finite extension, so we can assume that σ′0 and σ0 land in the respective
identity components of H ′0 and H0. Hence, we may assume that H0 and H ′0 are connected, so
ker f0 is central in H0. Any two continuous lifts of σ0 are therefore related by a finite-order
central twist, so if one such lift is deRham then all lifts are deRham. Hence, the deRham
case is reduced to (2) since deRham representations are potentially semistable.

It remains to prove (2). We may and do replace H ′0 and H0 with their identity components.
Now f0 is a central isogeny, so any two continuous lifts of σ0 are related by a finite-order
central twist. Thus, for any two semistable lifts, the finite-order central twist relating them
must also be semistable and therefore trivial. This proves the uniqueness of a semistable σ′0.
The existence of a semistable lift is (an immediate consequence of) the main result of [W2,
§2]. To check that if σ0 is crystalline then σ′0 is crystalline, consider a linear representation
ξ0 : H ′0 → GL(V ) over Qp. We want to prove that ξ0 ◦ σ′0 is crystalline, and it is the same to
check this for the underlying Qp-linear representation of the K-linear representation VK of
IL for a finite extension K/Qp. The finite central Qp-subgroup µ = ker f0 in H ′0 splits over
a finite extension K/Qp, and we work with such a K.
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Decompose VK according to the K-linear characters of the finite constant K-group µK .
It suffices to show that for each such character χ, the χ-isotypic component W = (VK)χ is
crystalline as a Qp-linear IL-representation space. Since W is semistable, the problem is to
prove that the operator N on the covariantly associated filtered (φ,N)-module D = Dst(W )
vanishes. Let F denote the residue field of (Lun)∧ and E = W (F)[1/p], so D is naturally a
module overK⊗QpE. LettingW ∗ denote the (semistable)K-linear dual ofW , andD∗ denote
the E-linear dual of D (equipped with its compatible K-linear structure), the nilpotent
K ⊗Qp E-linear monodromy operator on Dst(W ⊗KW ∗) = D⊗K⊗QpE

D∗ is N ⊗ 1− 1⊗N∗,
where N∗ denotes the E-linear dual of N (with action on D∗ that is K ⊗Qp E-linear). The
H ′K-action on W⊗KW ∗ factors through an HK-action, so via the inclusion H ↪→ RK/Qp(HK)
we see that the Qp-linear IL-action on W ⊗K W ∗ factors as the composition of σ0 and the
algebraic H-action, so it is crystalline. Hence, N ⊗ 1− 1⊗N∗ = 0. It is easy to check (by
considering the factor fields of K ⊗Qp E separately) that this forces N and N∗ to be scalar
endomorphisms over K ⊗Qp E and hence 0 (due to nilpotence). �

We need a version of Theorem 6.2 over Qp, with IL replaced by WL or GL and with ker f
central but possibly of positive dimension. This will be given in Corollary 6.7, resting on a
preliminary version for central torus kernels in Proposition 6.5. An analogue for isogenies
in the crystalline case is [W1, §1.2, Prop. 2], but that case rests on uniqueness properties
which are not available when dim ker f > 0. We will use geometric local class field theory to
handle the non-uniqueness aspects of the problem:

Lemma 6.3. Let L be a finite extension of Qp and let cφ : Iab
L → Iab

L be the automorphism
g 7→ φgφ−1 induced by conjugation by any arithmetic Frobenius element φ ∈ WL. Let ϕ be

the endomorphism of Hom(Iab
L ,Q

×
p ) dual to cφ.

For every θ ∈ Hom(Iab
L ,Q

×
p ) there exists χ ∈ Hom(Iab

L ,Q
×
p ) such that ϕ(χ)/χ = θ. If θ

has finite order then χ can also be chosen to have finite order.

Proof. Let F = Qp. Any θ ∈ Hom(Iab
L , F

×) is valued in K× for a finite extension K/Qp,

and the abelian profinite Iab
L uniquely decomposes as the direct product of its wild (pro-p)

part and its tame quotient
∏

` 6=p Z` on which cφ induces multiplication by the size q of the
residue field κ of L. Thus, θ uniquely decomposes as a product of a finite tame part and
a pro-p-part. Since F× is (q − 1)-divisible, the tame part is easily handled by extracting a
(q − 1)th root in F×. To handle the wild part of the character group, we will use geometric
local class field theory for L′ := (Lun)∧ = W (F)⊗W (κ) L (where F is an algebraic closure of
the residue field κ of L). We will lift a wild θ through the operation χ 7→ ϕ(χ)/χ (preserving
the finite-order property when θ has finite order) at the expense of replacing the target K×

with the multiplicative group of a finite extension containing pnth roots of all 1-units in K,
where pn is the order of the group of p-power roots of unity in L.

Following [S1, 5.3], define the functor π1 on the category of commutative pro-algebraic
F-groups to be the first left-derived functor of the right-exact functor π0 of connected com-
ponents. By [S1, 10.2], π1 is exact on connected pro-algebraic groups over F. Furthermore,
its formation commutes with inverse limits [S1, 6.2, Prop. 3, Prop. 4]. By the main theorem
of [S2], we have canonically Iab

L = Gab
L′ ' π1(UL′), where UL′ is the pro-algebraic F-group of

integral units of L′. In particular, the wild part of Iab
L is identified with the pro-unipotent
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radical π1(U1
L′) of π1(UL′), where U j

L′ is the pro-unipotent F-group associated to 1 +mj
L′ (so

U1
L′/U

j
L′ is an ordinary smooth connected unipotent F-group). The filtration {U j

L′} of U1
L′

defines a composition series on π1(U1
L′) whose successive quotients are π1(U j

L′/U
j+1
L′ ) with

U j
L′/U

j+1
L′ ' Ga using the jth power of a uniformizer of L, or even any κ-basis of mj

L/m
j+1
L .

(Changing the basis has the effect of κ×-scaling on Ga.)
Our task is to prove the surjectivity of the endomorphism of Hom(π1(U1

L′), F
×) induced

by cφ − 1 on π1(U1
L′) via its isomorphism to Gab

L′ from geometric local class field theory.
This latter isomorphism is functorial in L′ (see [S2, §2.3, Prop. 7]), so we may compute cφ
as the effect on U1

L′ by the chosen q-Frobenius element φ ∈ GL. In particular, the effect

on U j
L′/U

j+1
L′ ' Ga is the usual q-power endomorphism φq on the F-group Ga because the

isomorphism U j
L′/U

j+1
L′ ' Ga is defined via a κ-basis of mj

L/m
j+1
L (the choice of which does

not matter). Thus, φ − 1 : U1
L′ → U1

L′ is a surjective morphism (equivalently, injective on
Hopf algebras) since tq − t is a surjective endomorphism of Ga, so we have a short exact
sequence of pro-algebraic groups

0→ U1
L → U1

L′
φ−1→ U1

L′ → 0

where U1
L denotes the 0-dimesional pro-algebraic F-group associated to the profinite group

of 1-units in L.
Passing to the “homotopy sequence” and using that π1 vanishes on 0-dimensional objects

[S1, 5.3, Prop. 5] and π0 is the identity functor on 0-dimensional objects, we get a short exact
sequence of profinite groups

0→ π1(U1
L′)

φ−1→ π1(U1
L′)→ U1

L → 0.

Pushing out along a character θ : π1(U1
L′) → U1

K ⊂ F× for a finite extension K/K0 gives a
short exact sequence of pro-p groups

(6.1) 0→ U1
K → E → U1

L → 0.

If θ has finite order then we get an analogous exact sequence

(6.2) 0→ µp∞(K)→ E → U1
L → 0

with µp∞(K) a finite cyclic p-group. Note that in both cases the pro-p-group E is necessarily
a finitely generated Zp-module. To lift θ through the injective endomorphism π1(φ − 1)
of π1(UL′), it suffices to show that (6.1) splits after pushout to the 1-units of some finite
extension K ′ of K, and to preserve the finite-order property when θ has finite order it
suffices to split (6.2) after pushout to µp∞(K ′) for some K ′/K.

Now it remains to show that any class ξ ∈ Ext1
Zp(U

1
L, U

1
K) is killed under pushout to

Ext1
Zp(U

1
L, U

1
K′) for some finite extension K ′/K, and similarly upon replacing the 1-units in

K and K ′ with the finite groups of p-power roots of unity in K and K ′ respectively. Decom-
posing U1

L into the product of its finite cyclic torsion subgroup µ and a finite free Zp-module,
we may instead consider the analogous assertions for Ext1

Zp(µ, U
1
K) and Ext1

Zp(µ, µp∞(K)).

Upon choosing an isomorphism µ ' Zp/(p
n) we get Ext1

Zp(µ,M) ' M/(pn)M naturally in

Zp-modules M . The map U1
K/(U

1
K)p

n → U1
K′/(U

1
K′)

pn vanishes by taking K ′ large enough to
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contain pnth roots of all 1-units of K, and similarly with finite groups of p-power roots of
unity in place of 1-units. �

Proposition 6.4. Let L be a finite extension of Qp, and let Γ denote IL, GL, or WL.

Consider a central extension 1→ Z → H ′
f→ H → 1 of affine Qp-groups of finite type, with

Z a torus. Any representation σ : Γ→ H(Qp) admits a lift σ′ : Γ→ H ′(Qp).

This is a local version of Proposition 5.3, for which Lemma 6.3 will enable us to bypass
the absence of a WL-analogue of Tate’s vanishing theorem for H2(k,Q/Z) with k a global
field. As with Proposition 5.3, the affineness hypothesis can be removed (but we will not
discuss it).

Proof. Since Γ is totally disconnected, by arguing as in the proof of Proposition 5.3 we reduce
to proving lim−→H2(Γ, (1/n)Z/Z) = 0. If Γ = GL, this limit is Tate-dual to the total Tate
module of µ∞(L), which vanishes since µ∞(L) is finite. If Γ = IL then it vanishes since IL
has cohomological dimension 1 [S5, II, §3.1].

It remains to consider the case Γ = WL. Choose a finite extension K0 of Qp and a map
f0 : H ′0 → H0 between affine finite type K0-groups that descends the given central quotient
map f : H ′ → H and satisfies ker f0 ' Gm over K0. Increasing K0 by a finite amount, we
may assume that σ(Γ) ⊆ H0(K0). The map H ′0(K0) → H0(K0) is surjective (Hilbert 90),
and it admits continuous (even K0-analytic) local sections through any h0 ∈ H0(K0) since
H ′0 → H0 is smooth. By taking K0 large enough, we may pick a continuous lift σ̃′0 of σ|IL
valued in H ′0(K0). Let φ ∈ WL be a Frobenius element and choose h′0 ∈ H ′0(K0) lifting σ(φ).
To construct σ′0 we seek a character χ : IL → F× such that φ 7→ h′0 and χσ̃′0 : IL → H ′(F )

defines a representation WL → H ′(F ). That is, we want h′0(χσ̃′0)(g)h′0
−1 ?

= (χσ̃′0)(φgφ−1)
for g ∈ IL. The h′0-conjugate of σ̃′0 is a lift of g 7→ σ(φgφ−1), as is g 7→ σ̃′0(φgφ−1), so
h′0σ̃

′
0(g)h′0

−1 = η(g)σ̃′0(φgφ−1) for some character η : IL → F×. Hence, we seek χ such that
η(g) = χ(φgφ−1)/χ(g) for all g ∈ IL. This is part of Lemma 6.3, which also incorporates a
finer assertion for η of finite order. �

The local obstruction to lifting p-adic Hodge theory properties through a central extension
by a torus is encoded on inertia in terms of the Hodge–Tate condition:

Proposition 6.5. In the setup of Proposition 6.4, consider a representation σ : Γ→ H(Qp)

satisfying a basic p-adic Hodge theory property P. There exists a lift σ′ : Γ → H ′(Qp) that

satisfies P if and only if σ|IL admits a Hodge–Tate lift IL → H ′(Qp).

Proof. The “only if” implication is obvious. For the converse, pick a Hodge–Tate lift σ′ of
σ|IL . Let K0/Qp be finite inside F := Qp over which there is a central extension

1→ Z0 → H ′0 → H0 → 1

descending the given central extension over F (with Z0 = Gr
m), and such that σ(Γ) ⊆ H0(K0)

and σ′(IL) ⊆ H ′0(K0). For the Weil restrictions H ′ = RK0/Qp(H
′
0) and H = RK0/Qp(H0)

we have a central extension of linear algebraic Qp-groups

1→ Z →H ′ π→H → 1
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with the torus Z = RK0/Qp(Z0). In particular, σ : IL →H (Qp) lifts to σ′ : IL →H ′(Qp).
Since Z0 is a central torus in H ′0, there exists an isogeny splitting ψ0 : H ′0 → Z0 = Gr

m

over K0. Passing to Weil restrictions provides ψ : H → Z whose restriction to the central
Z ↪→ H is an isogeny. The composite homomorphism χ = ψ ◦ σ′ : IL → Z (Qp) is
Hodge–Tate and semisimple, so we may apply the following lemma.

Lemma 6.6. Let ρ : IL → GL(V ) be an abelian semisimple Hodge–Tate representation on
a finite-dimensional Qp-vector space. This is potentially crystalline, and there exists m > 0
such that g 7→ ρ(gm) is crystalline.

Proof. Let L′ = (Lun)∧, so IL = GL′ . The image of Qp[G
ab
L′ ] in End(V ) under ρ is a semisimple

commutative Qp-subalgebra, which is to say
∏
Ei for finite extension fields Ei of Qp, so we

may suppose ρ is a character Gab
L′ → E× for a finite extension E/Qp. This character is locally

algebraic, due to the Hodge–Tate property, so Proposition B.4(i) implies the potentially
crystalline property (though this can also be seen more directly with Barsotti–Tate groups,
using [S6, Prop. 4, III, A.4] and [S6, Cor. Thm. 2, III, A.5]).

To find m > 0 such that the mth power of ρ is crystalline, it is harmless to replace ρ with
a twist by a finite-order character (valued in a finite extension of E). We will first construct
such a twist that descends to a representation of some GLn (valued in a finite extension of
E), where Ln is the degree-n unramified extension of L. Consider the endomorphism ϕ of

Hom(Iab
L ,Q

×
p ) as in Lemma 6.3; this is induced by the conjugation cφ on IL by an arithmetic

Frobenius element φ ∈ WL. For n > 0 sufficiently divisible so that the element φn ∈ GL is the
identity on the Galois closure of E in L, ϕn(ρ)/ρ is Hodge–Tate with all Hodge–Tate weights
equal to 0. Hence, this ratio has finite order on IL, so Lemma 6.3 provides a character χ of
finite order on IL such that ϕn(ρ)/ρ = ϕn(χ)/χ. The resulting twist χ−1ρ is ϕn-invariant,
so it descends to a character of GLn (valued in a finite extension of E).

By replacing E with a finite extension and ρ with a finite-order twist as above, we
may assume ρ descends to a character ρ0 : Gab

Ln
→ E×. This is locally algebraic; let

χ : RLn/Qp(Gm) → RE/Qp(Gm) be the homomorphism of Qp-tori that agrees with ρ0 on
an open subgroup U of O×Ln via local class field theory. If m = [O×Ln : U ] then ρm0 = χm on

O×Ln . Hence, ρm0 |GLn is crystalline by Proposition B.4(i), so ρm is crystalline on IL. �

By replacing ψ with ψN for a sufficiently divisible N > 0, we may assume that ψ ◦ σ′ is
crystalline and therefore satisfies property P. The map

(ψ, π) : H ′ → Z ×H

is an isogeny between linear algebraic Qp-groups, and its composite (ψ◦σ′, σ) with σ′ satisfies
P. But σ′ is Hodge–Tate, so by Theorem 6.2 there is a lift σ̃ : IL →H ′(Qp) = H ′0(K0) of

(ψ ◦ σ′, σ) : IL → (Z ×H )(Qp) = (K×0 )r ×H0(K0)

satisfying P. Extending scalars to F gives a type-P lift σ̃ : IL → H ′(F ) of σ|IL : IL → H(F ).
We have solved the lifting problem on IL, and we need to find a solution on Γ. Let

Z ′ = Gr−1
m be the product of the first r− 1 factors of Z, so H ′/Z ′ is a central extension of H

by Z/Z ′ = Gm. Assuming the case r = 1 is settled, there is a type-P lift σ′ : Γ→ (H ′/Z ′)(F )
of σ. By hypothesis, σ|IL has a Hodge–Tate lift ρ : IL → H ′(F ), so the representations
ρ = ρ mod Z ′(F ) and σ′|IL are Hodge–Tate lifts of σ|IL . Thus, there is a character χ : IL →
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(Z/Z ′)(F ) = F× such that χρ = σ′|IL . Necessarily χ is Hodge–Tate since ρ and σ′ are
Hodge–Tate. By identifying Z/Z ′ with the evident Gm-factor of Z complementary to Z ′,
we may view χ as taking values in Z(F ), so χρ is a Hodge–Tate lift of σ′|IL . Induction on
r then implies that σ′ admits a type-P lift Γ→ H ′(F ), hence likewise for σ. Thus, we may
may and do now assume Z = Gm.

Pick an arithmetic Frobenius element φ ∈ WL. By Proposition 6.4, there is a lift σ′ :
Γ → H ′(F ) of σ, so the existence of a type-P lift on IL provides a character χ : IL → F×

such that χσ′|IL satisfies P. Let h′ = σ′(φ). Enlarge K0 so that χ takes values in K×0 .
Letting cφ denote the endomorphism g 7→ φgφ−1 of IL, h′-conjugation carries (χ ◦ cφ)σ′|IL to
(χσ′|IL) ◦ cφ. This latter representation is type-P (by functoriality of p-adic Hodge theory
relative to extension of the ground field), so (χ ◦ cφ)σ′|IL satisfies P. But χσ′|IL satisfies P,
so (χ◦cφ)/χ twists the type-P representation χσ′|IL into the type-P representation obtained
by h′-conjugation. Hence, (χ ◦ cφ)/χ satisfies P.

Let ϕ be the endomorphism of Hom(Iab
L , F

×) defined by θ 7→ θ ◦ cφ. By Lemma 6.6, the
type-P character ϕ(χ)/χ is potentially crystalline. Thus, if P is “crystalline” or “semistable”
then ϕ(χ)/χ is crystalline since a semistable and potentially crystalline representation has
vanishing monodromy operator (cf. end of the proof of Lemma 4.1). We claim that ϕ(χ)/χ
has finite order. (Note that χ may not be Hodge–Tate.) This character is valued in a central
torus, yet we saw above that it scales a representation (namely, χσ′|IL) to a conjugate and
thus is valued in the derived group. In any linear algebraic group, the maximal central torus
has finite intersection with the derived group (as we may check in the maximal reductive
quotient). This gives the asserted finiteness. Thus, ϕ(χ)/χ is trivial in the crystalline and
semistable cases, and has finite image in the deRham and Hodge–Tate cases.

In the crystalline and semistable cases we conclude that ϕ(χ) = χ, so χ : Iab
L → F× is

invariant under φ-conjugation on IL. Thus, in such cases χ extends to a character χ̃ : Gab
L →

F× (carrying φ to 1, for example). But then χ̃σ′ : Gab
L → H ′(F ) is a lift of σ that satisfies

P since its IL-restriction χσ′|IL does. This settles the crystalline and semistable cases.
Now consider the deRham and Hodge–Tate cases, so χ is potentially crystalline and

ϕ(χ)/χ : IL → F× has finite order. By Lemma 6.3, there exists a character η : IL → F× of
finite order such that ϕ(χ)/χ = ϕ(η)/η. Hence, χ/η : IL → F× is invariant under cφ and so
extends to a character GL → F× carrying φ to 1. It is harmless to replace χ with χ/η since
a finite-order twist has no effect on the deRham or Hodge–Tate properties on IL. Thus, we
conclude as in the crystalline and semistable cases. �

Consider the variant of Proposition 6.5 in which Z := ker(H ′ � H) is merely of mul-
tiplicative type rather than a torus (e.g., a central isogeny). An additional hypothesis is
required in the deRham and Hodge–Tate cases, as the following example shows. Consider

a tame character ψ : GL → Q
×
p . This is finitely ramified (by local class field theory), so

it is deRham, and it admits an nth root on IL for any n > 0 since Itame
L is torsion-free.

However, if ψ is ramified then it does not admit an nth root on WL or GL when n is divisible
by q − 1. This provides counterexamples for lifting the Hodge–Tate property through the
central isogenies tn : Gm → Gm and SLn → PGLn for such n. But in these examples there
is no lift even without the p-adic Hodge theory constraint. That turns out to be the only
further obstruction when Z is permitted to be disconnected:
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Corollary 6.7. The lifting criterion in Proposition 6.5 remains valid if Z is merely assumed
to be of multiplicative type, provided that when P is “deRham” or “Hodge–Tate” we assume
ρ admits a lifting as a Γ-representation.

Before proving this corollary, we make some observations. Theorem 6.2(2) provides a
useful reformulation of the lifting criterion for finite Z in the semistable and crystalline cases
(and geometric local class field theory shows that there is no analogue in the deRham or
Hodge–Tate cases). Also, by Proposition 6.4, the additional hypothesis imposed in Corollary
6.7 in the deRham and Hodge–Tate cases is automatically satisfied when Z is a torus (and is
necessary when Z is disconnected and Γ = GL, as is easily seen via local class field theory).

Proof. Let us first grant the case of finite Z and settle the general case. Since H ′/Z0 → H
has finite central kernel, by hypothesis there is a type-P lift ρ : Γ → (H ′/Z0)(F ) of σ. By
hypothesis there is a Hodge–Tate lift σ′ : IL → H ′(F ) of σ, so σ′ mod Z0 and ρ|IL are related
through twisting by a character χ : IL → (Z/Z0)(F ). But Z → Z/Z0 admits a section since
Z is of multiplicative type, so we can lift χ to a character IL → Z(F ) of finite order. Thus,
we may replace σ′ with a finite-order twist so that it lifts ρ|IL , and this procedure preserves
the Hodge–Tate property. Proposition 6.5 lifts ρ to a type-P representation Γ→ H ′(F ).

Now we may and do assume that Z is finite. Let Z ↪→ T be an inclusion into an F -
torus, and form the central pushout as in (5.2). By hypothesis, ρ|IL admits a Hodge–Tate
lift to H ′(F ), and hence to H ′(F ). Thus, Proposition 6.5 provides a type-P representation
ρ̃ : Γ→H ′(F ) lifting ρ. It is necessary and sufficient to prove that the composite character
ψ : Γ → (T /Z)(F ) as in (5.3) has a type-P lift through the isogeny of tori T → T /Z.
The assumption that ρ|IL admits a Hodge–Tate lift to H ′(F ) implies that ψ|IL admits a
Hodge–Tate lift to T (F ). By choosing compatible bases of the character groups of T and
T /Z as in (5.4), we are reduced to showing that if a type-P character ψ : Γ → F× admits
a Hodge–Tate nth root on IL then it admits an nth root of type P, provided that when P
is “deRham” or “Hodge–Tate” there is an nth root on Γ. That is, we have reduced to the
special case of lifting through the isogeny t 7→ tn on Gm.

The case Γ = WL easily reduces to Γ = GL (due to the structure of W ab
L and Gab

L ), and any
Hodge–Tate character IL → F× is potentially crystalline (Lemma 6.6). Since ψ is crystalline
if and only if it is semistable, we just need to treat the crystalline cases for Γ = GL or IL
and the Hodge–Tate cases on GL (when there exists an nth root on GL in this latter case).

Consider a Hodge–Tate character ψ : GL → F× such that ψ|IL = ξn for some Hodge–Tate
character ξ : IL → F×. The Hodge–Tate weights of ψ are divisible by n, so by (the proof of)
Proposition 4.2, if ψ admits an nth root on GL then this nth root is Hodge–Tate and can
be chosen to be crystalline when ξ is crystalline.

For a crystalline character ψ : IL → F× that admits a Hodge–Tate nth root, the argument
near the end of the proof of Proposition 6.5 provides a descent ψ0 : GL → F× of ψ. Thus,
the settled crystalline case on GL provides a crystalline nth root of ψ. �

Now we incorporate p-adic Hodge theory conditions into Theorem 5.5(2) and Corollary 5.7
when F = Qp and k is a number field. The following example (illustrating a phenomenon
brought to my attention by F. Calegari) shows that an analogue of Theorem 5.5(2) using
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p-adic Hodge theory conditions with Z = Gm requires additional hypotheses on ρ. Such an
analogue seems quite deep, so in what follows we will only consider finite Z.

Example 6.8. Let k be a real quadratic field in which a fundamental unit ε satisfies Nk/Q(ε) =
−1 (i.e., ε has opposite signs at the two real places), and assume it is unramified at 2 and
3. For instance, k = Q(

√
5) and ε = (1 +

√
5)/2 (with 3 inert), or k = Q(

√
13) and

ε = (3 +
√

13)/2 (with 3 split). Let p > 2 be a prime split in k, with {v, v′} the places of k
over p. Let Ad0 denote the 3-dimensional space of traceless matrices in Mat2, viewed as a
faithful representation for PGL2 in the usual manner.

Let L0/Q be a totally real cyclic extension of degree p − 1 that is disjoint from k/Q
and totally ramified at p with p-adic completion Qp(ζp). Let L = k ⊗Q L0. By using
induction of idele class characters, we will construct a representation ρ : GL → PGL2(Qp)
that is unramified at the unique place ṽ over v, crystalline at the unique place ṽ′ over v′ with
Hodge–Tate weights −1, 0, 1 on Ad0, and has local restriction at ṽ′ admitting a crystalline lift
to GL2(Qp), yet there is no representation ρ′ : GL → GL2(Qp) lifting ρ that is Hodge–Tate
at both ṽ and ṽ′. (Recall that we require representations to be unramified at all but finitely
many places.) Note that by Proposition 5.3 and Corollary 5.4 there exist representations
ρ′ lifting ρ unramified at any desired finite set of places where ρ is unramified, and we will
arrange that all such ρ′ are odd and absolutely irreducible. However, due to the construction
using induction from a quadratic extension of k, ρ will be reducible on Ad0 (as is necessary
for ρ to fail to admit a lift ρ′ that is Hodge–Tate at ṽ and ṽ′).

Let k′/k be a quadratic extension obtained as the compositum of k with an imaginary
quadratic field that is unramified at 2 and 3 and split at p. Thus, k′ has as its roots of unity
only ±1, and k′/Q is totally split at p. Since k(

√
ε) and k(

√
−ε) each have a real place,

whereas k′ is totally complex, it follows that O×k′ = ±εZ.
Let {w1, w2} be the places of k′ over v, and {w′1, w′2} be the places of k′ over v′. We have

canonically Qp = kv = k′wj and Qp = kv′ = k′w′j
, with εv ∈ kv = Qp and εv′ ∈ kv′ = Qp

satisfying εv′ = −1/εv. The pro-p group (1 + mv) × (1 + mv′) meets O×k in an infinite
cyclic group uZ for some u. The maximal pro-p torsion-free quotient of the idele class
group Ck′ of k′ contains as a finite-index open subgroup the maximal torsion-free quotient
of (

∏
w|p(1 + mw))/uZp , where 1 + mw = 1 + pZp ' Zp.

Using the canonical square root on 1 + pZp, consider the character∏
w|p

(1 + mw)→ 1 + pZp

defined by (cw1 , cw2 , cw′1 , cw′2) 7→
√
cw′1/cw′2 . This kills the diagonally embedded u, so it

extends to a character ψ : Ck′ → K× valued in some finite extension K of Qp and unramified
away from p. At the places of k′ over v, the character ψ2 is trivial on wild inertia; at the
places w′1 and w′2 of k′ over v′, ψ2 agrees on wild inertia with Qp(−1) and Qp(1) respectively.
In particular, ψ is not Hodge–Tate at either w′j.

The representation ρ′ = IndGkGk′ (ψ) : Gk → GL2(K) ⊂ GL2(Qp) is clearly unramified at v

and away from p∞, and is odd at the real places. Also, ρ′ is (absolutely) irreducible since

ψ does not descend to a Q
×
p -valued character of Gk (as all such characters factor through
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GQ near 1, due to the global unit ε, yet ψ is unramified over v and infinitely ramified over
v′). Thus, ρ′|GL is also absolutely irreducible (since L/k is cyclic) and odd at the real places

of L. Moreover, the restriction of ρ′ to Gkv′
is a direct sum η1 ⊕ η2 of Q

×
p -valued characters

that are trivial on tame inertia and have restriction to wild inertia 1 + mv′ = 1 + pZp given
by c 7→

√
c and c 7→ 1/

√
c. In particular, ρ′ is not Hodge–Tate at v′.

For the natural quotient map f : GL2 → PGL2 modulo the central torus Z = Gm, the
composite representation ρ′ = f ◦ ρ′ : Gk → PGL2(Qp) computes the 3-dimensional adjoint

representation on Ad0. In this way, ρ′|Gkv′ is identified with a direct sum of the 1-dimensional

trivial representation and characters that are trivial on tame inertia and respectively agree
on wild inertia with with Qp(−1) and Qp(1). We conclude that ρ := ρ′|GL is crystalline at
the unique place ṽ′ of L over v′ (with inertial restriction Qp(−1)⊕Qp(1)⊕Qp on Ad0) and
it is unramified at ṽ. The representation Iv′ → GL2(Qp) defined by Qp(1)⊕Qp has adjoint
representation Qp(1)⊕Qp(−1)⊕Qp on Ad0, so ρ|Iṽ′ admits a Hodge–Tate (even crystalline)

lift to GL2(Qp). Hence, ρ|GLṽ′ admits a crystalline lift to GL2(Qp), by Proposition 6.5.

Finally, we claim that ρ : GL → PGL2(Qp) has no lift ρ̃ : GL → GL2(Qp) that is Hodge–
Tate at both p-adic places ṽ and ṽ′. Indeed, the continuous lifts have the form χρ′|GL for

χ : GL → Q
×
p , but ρ′ is unramified at ṽ and is not Hodge–Tate at ṽ′. Thus, if χρ′|GL is

Hodge–Tate at both ṽ and ṽ′ then χ is Hodge–Tate at ṽ but not at ṽ′. The number field

L is totally real and abelian over Q, so its Zp-rank is 1 and hence its Q
×
p -valued characters

of infinite order are finite-order twists of p-adic powers of the p-adic cyclotomic character.
Hence, the Hodge–Tate property for χ at ṽ implies that some Tate twist of χ has finite order.
This is inconsistent with χ not being Hodge–Tate at ṽ′.

In view of the preceding example, we now consider a central extension 1 → Z → H ′ →
H → 1 of linear algebraic groups over F = Qp with finite Z. Let ρ : Gk → H(F ) be a
representation. Choose finite disjoint sets S and T of places of k with no archimedean places
in T , and assume that ρ is unramified at S and tame at T .

Proposition 6.9. Using notation as above, let Σ be a set of p-adic places of k disjoint from
S ∪ T . Assume that for each v ∈ Σ the restriction ρ|Iv satisfies a basic p-adic Hodge theory
property Pv and admits a Hodge–Tate lift ρ′v : Iv → H ′(F ). Let Σsst be the set of v ∈ Σ for
which Pv is either “semistable” or “crystalline”.

Let n denote the exponent of Z, and assume that (k, ∅, n) is not in the special case. There
exists a representation ρ′ : Gk → H ′(F ) lifting ρ that is unramified at S, tame at T , and
satisfies Pv at v for all v ∈ Σ except for possibly when (k, S ∪ T ∪ Σsst, n) is in the special
case, Sk 6= ∅ and 2sk−1|ordv(2) for all v ∈ Sk.

Proof. We may and do assume that we are not in the exceptional situations described at
the end of the proposition. Since (k, ∅, n) is not in the special case, ρ lifts to some ρ′ as
a Gk-representation (by Theorem 5.5(1)). Hence, by Corollary 6.7 each ρ|Gk,v admits a lift
ρ′v : Gk,v → H ′(F ) that satisfies Pv for v ∈ Σ. Thus, by finiteness of Z, we can use Lemma
4.1 and Proposition 4.2 (with S there taken to be empty, and T there taken to be S∪T in the
present circumstances) to carry over the proof of Theorem 5.5(2) incorporating the condition
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Pv at each v ∈ Σ. (The divisibility condition on the Hodge–Tate weights in Proposition 4.2
is satisfied, due to the Hodge–Tate lifting hypothesis at each v ∈ Σ.) �

Using Proposition 6.9 instead of Theorem 5.5(2), we can refine Corollary 5.7(2):

Corollary 6.10. Let k be a number field, H a connected reductive Qp-group, H ′ its semisim-
ple derived group, and n the exponent of ZH′. Assume that (k, ∅, n) is not in the special case.

Let ρ : Gk → H(F ) and S, T,Σ be as in Proposition 6.9, and assume that there is no local
obstruction to the existence of a central twist ρ′ of ρ valued in H ′(Qp). Let Σsst be the set of
v ∈ Σ for which the local property Pv is either “semistable” or “crystalline”.

There exists an H ′-valued central twist ρ′ of ρ that is unramified at S, tame at T , and
satisfies Pv at each v ∈ Σ except for possibly when (k, S ∪ T ∪ Σsst, n) is in the special case,
Sk 6= ∅, and 2sk−1|ordv(2) for all v ∈ Sk.

Appendix A. The Grunwald–Wang theorem

For any m ≥ 2, let ηm ∈ Q(µ2m)+ denote an element of the form ζ2m + ζ−1
2m for some

primitive 2mth root of unity in Q(µ2m). (Note that η2 = 0, and Q(µ2m+1)/Q(ηm) is bi-

quadratic with its three quadratic subfields respectively generated by
√
−1 and

√
±(2 + ηm)

[AT, Ch. X, §1].) For a number field k, let sk denote the maximal s ≥ 2 such that k contains
Q(µ2s)

+. The elements ηsk ∈ k are not uniquely determined up to Aut(k/Q)-conjugacy in
general if sk > 2. Any use of ηsk ∈ k will be independent of the choice made.

Let S be a finite (possibly empty) set of places of a global field k. The Grunwald-Wang
theorem [AT, Ch. X, Thm. 1] computes the obstruction group for the local-to-global principle
for nth roots in k when we ignore local information at S; i.e., the group

ker(k×/(k×)n →
∏
v 6∈S

(k×v )/(k×v )n) 'X1
S(k, µn).

It says that X1
S(k, µn) = 1 except when (k, S, n) satisfies the following condition.

Definition A.1. The triple (k, S, n) is in the special case when

• k is a number field,
• k(µ2sk+1)/k is biquadratic (equivalently, −1 and ±(2 + ηsk) are non-squares in k),
• ord2(n) > sk (so 8|n),
• S contains the set Sk of all 2-adic places v of k at which kv(µ2sk+1)/kv is biquadratic

(equivalently, −1 and ±(2 + ηsk) are non-squares in kv).

In this definition, note that: n only intervenes through the largeness of ord2(n), the places
of S not in Sk do not intervene, and when S = ∅ the final condition says exactly that Sk = ∅.
Also, if 2 is unramified in k then sk = 2 and Sk is the set of all 2-adic places of k.

The Grunwald–Wang theorem also says that in the special case X1
S(k, µn) has order 2,

with nontrivial element equal to the Kummer class of

ak,n = (2 + ηsk)
n/2 ∈ (k×)n/2

(for any fixed choice of ηsk ∈ k). Note that ak,n is totally positive at all real places and is a
unit away from 2-adic places (since 2 + ηm = η2

m+1 and ηm+1 = ζ−1
2m+1(1 + ζ2m), where 1 + ζ2m

has minimal polynomial (X − 1)2m−1
+ 1 over Q with constant term 2 since m ≥ 2).
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Remark A.2. Consider the extension k(µ2sk+1)/k that is biquadratic or quadratic. In the
biquadratic case its quadratic subfields are k(

√
2 + ηsk), k(µ2sk ) = k(i), and k(

√
−2− ηsk),

whereas in the quadratic case one of these three fields equals k (see [AT, Ch. X, §1]). This
global extension induces an extension of each kv, with local degree at most 2 when v 6∈ Sk:
for v|∞ it is obvious, for v - 2∞ it follows from unramifiedness at v, and for v|2 it follows
from the hypothesis v 6∈ Sk. Thus, if v 6∈ Sk then kv contains one of

√
2 + ηsk , 1 + ζ2sk , or√

−2− ηsk , each of which has nth power ak,n. This makes explicit that ak,n is locally an nth
power at every v 6∈ Sk. It is not locally an nth power at any v ∈ Sk; see [AT, Ch. X, §1].

We need a standard application [AT, Ch. X, Thm. 5] of the Grunwald–Wang theorem:

Proposition A.3. Let S be a finite set of places of k, and χv : G×kv → C× a character with
finite order nv for each v ∈ S. There exists a finite-order character χ : Gk → C× inducing
each χv such that the order of χ is equal to the least common multiple n of the nv except
when (k, S, n) is in the special case with

∏
v∈Sk χv(ak,n) 6= 1. In these latter cases, the product

is −1 and χ exists with order 2n but not with order n.

Implicit in the finite product obstruction above is the convention that
∏

v∈Sk χv(ak,n) = 1
if Sk is empty. That is, if Sk = ∅ then χ can always be found with order n, even when
(k, ∅, n) is in the special case.

Appendix B. Local algebraicity and crystalline representations

Let L be a finite extension of Qp and ψ : Gab
L → K× a continuous character, with K a

finite extension of Qp. Upon composing with the local Artin map rL : L× → Gab
L (using

either normalization) we get a continuous composite map L× → K× whose source and target
are respectively identified (as topological groups) with the groups of Qp-points of the Qp-tori
L× = RL/Qp(Gm) and K× = RK/Qp(Gm) defined by Weil restriction of scalars.

Definition B.1. The representation ψ is locally algebraic if there exists a (necessarily unique)
Qp-homomorphism L× → K× whose restriction to Qp-points agrees with ψ ◦ rL near 1.

Since ψ is semisimple when viewed as a Qp-linear abelian representative of GL (as we see
by applying (·) ⊗Qp Qp), it follows from a result of Tate (see [S6, III, A6, Cor. 2]) that ψ
is locally algebraic if and only if its underlying Qp-linear representation is Hodge–Tate. In
this appendix we address two useful refinements for which there do not seem to be suitable
references in the literature: computing the Hodge–Tate weights for a Hodge–Tate ψ without
requiring L to be “sufficiently large” ([S6, III, A.5] settles the case when L splits K over
Qp), and relating the crystalline condition to local algebraicity.

Define the local Artin map rL : L× → Gab
L using the arithmetic normalization. Assuming ψ

is Hodge–Tate, we seek a formula for its Hodge–Tate weights in terms of K and L. Choose an
auxiliary finite extension K ′/K that splits L over Qp (i.e., every factor field of the K ′-algebra
K ′ ⊗Qp L is equal to K ′). By local algebaicity of ψ, near 1 the composite homomorphism

L×
rL→ Gab

L

ψ→ K× ↪→ K ′
×
.
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agrees with

x 7→
∏

τ∈HomQp (L,K′)

τ(x)−nτ

for integers nτ indexed by the set of Qp-embeddings of fields τ : L → K ′. For the Qp-
linear representation V = K of GL via ψ, the semi-linear representation CL ⊗Qp V of GL

naturally decomposes into GL-stable CL-lines Vσ indexed by the Qp-embeddings σ : K →
CL, and Vσ = CL(wσ) for some wσ ∈ Z (i.e., {wσ} is the set of Hodge–Tate weights of
ψ). If ψ′ : Gab

L → K× is a second Hodge–Tate homomorphism (with underlying Qp-linear
representation V ′), and its Hodge–Tate weights are {w′σ}, then the product homomorphism
ψψ′ : Gab

L → K× is Hodge–Tate with weights {wσ + w′σ} because (V ⊗K V ′)σ = Vσ ⊗CL V
′
σ

as CL-semilinear representations of GL.
We shall compute the integers wσ in terms of the factor fields of K ⊗Qp L viewed as both

a K-algebra and an L-algebra. The first step is to encode in terms of the nτ ’s the property
that

∏
τ τ(x)−nτ is valued in the subfield K ⊂ K ′ for x ∈ L×. (It is equivalent to require the

same only for x ∈ L× near 1). This is given by the following lemma.

Lemma B.2. For each Qp-embedding τ : L→ K ′, let nτ be an integer and let 1⊗ τ denote
the unique K-algebra map K⊗Qp L→ K ′ extending τ (i.e., a⊗ b 7→ aτ(b)). Let

∏
Fi denote

the decomposition of K⊗QpL into a finite product of fields, and let qi : K⊗QpL→ Fi denote
the canonical quotient map.

The product homomorphism L× → K ′× defined by x 7→
∏

τ τ(x)−nτ is valued in K× if and
only if nτ only depends on the index i for which 1⊗ τ factors through qi.

Proof. We may assume thatK ′ is finite Galois over Qp, and then invariance under Gal(K ′/K)
encodes the property of being valued in K. It is straightforward to check that such invariance
is equivalent to the property that nτ only depends on the factor field of K ⊗Qp L through
which 1⊗ τ factors. �

By Lemma B.2, for each factor field Fi of K ⊗Qp L we may define ni to be the common
value of the integers nτ for those τ such that 1⊗τ factors through qi. In more intrinsic terms
(i.e., without mentioning K ′/K), ψ ◦ rL : L× → K× agrees near 1 with the homomorphism

(B.1) x 7→
∏
i

NFi/K(qi(1⊗ x))−ni .

Here is a formula for the wσ’s in terms of the ni’s:

Proposition B.3. With notation as above, for each Qp-embedding σ : K → CL the Hodge–
Tate weight wσ is equal to ni for the unique i such that the L-algebra map σ⊗1 : K⊗Qp L→
CL extending σ factors through qi.

Proof. For each i, we may certainly construct a continuous homomorphism ψi : Gab
L → K×

such that ψi ◦ rL agrees near 1 with x 7→ NFi/K(qi(1⊗ x))−1. By (B.1) and multiplicativity
considerations, (

∏
ψnii )/ψ has all Hodge–Tate weights equal to 0. Thus, it suffices to treat

each ψi. In other words, we choose a finite extension F/Qp containing K and L as subfields
such that KL = F (i.e., a factor field F of K⊗Qp L) and may assume that ψ ◦rL : L× → K×

is given near 1 ∈ L× by x 7→ NF/K(x)−1. In this case we wish to prove that wσ = 1 when
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the L-algebra map σ ⊗ 1 : K ⊗Qp L→ CL factors through the quotient map K ⊗Qp L� F
defined by multiplication inside F and that wσ = 0 otherwise.

Since F and K ′ are both extensions of K, it makes sense to form F ⊗K K ′. Let F ′ be
a finite Galois extension of a factor field of F ⊗K K ′, so F ′ contains K and L as subfields
(inside F ) with compositum F . In particular, Gal(F ′/K) ∩Gal(F ′/L) = Gal(F ′/F ). Since
F ′ contains K ′, can compute the same integers nτ using F ′ rather than K ′.

To compute the wσ’s, we first pick an L-embedding f : F ′ → CL and use it to identify CL

with a completed algebraic closure CF ′ of F ′. (In particular, f “computes” the restriction
map Gab

F ′ → Gab
L .) Letting j : K → F ′ be the canonical inclusion and resF ′/L : Gab

F ′ → Gab
L be

the natural restriction map (which has no effect on Hodge–Tate weights), the homomorphism
χ′ = ((j ◦ ψ) ◦ resF ′/L) ◦ rF ′ : F ′× → F ′× is given near 1 by

x 7→ NF/K(NF ′/L(x))−1.

It is convenient to raise this to the [F ′ : F ]th power (at the cost of dividing Hodge–Tate
weights by [F ′ : F ] at the end) because NF/K(y)[F ′:F ] is given by a product

∏
g g(y) over

g varying through the entire Galois group Gal(F ′/K) rather than through the coset space
Gal(F ′/K)/Gal(F ′/F ) = HomK(F, F ′) (as when computing NF/K).

The [F ′ : F ]th power of χ′ is given near 1 ∈ F ′× by x 7→
∏

(g,h) g(h(x))−1, where g varies

through Gal(F ′/K) and h varies through Gal(F ′/L). This product expression motivates
us to consider the problem of computing the Hodge–Tate weights for a locally algebraic
representation ρ : Gab

F ′ → F ′× such that ρ ◦ rF ′ : F ′× → F ′× agrees near 1 with x 7→ τ(x)−1

for τ ∈ Gal(F ′/Qp). The semilinear extension ρ ⊗Qp CF ′ canonically decomposes into a
direct product of lines indexed by g ∈ Gal(F ′/Qp), and by [S6, III, A.5, Thm. 2] (especially
Lemma 2 in its proof) the gth line has Hodge–Tate weight 0 except for g = τ−1, which has
weight 1 (due to our arithmetic normalization of the local Artin map).

Note that every Qp-embedding ι : F ′ → CL lands in the subfield f(F ′) and so may be
identified with an element τι ∈ Gal(F ′/Qp). Thus, for each Qp-embedding ι : F ′ → CF ′ =
CL the associated Hodge–Tate weight for (j ◦ ψ)[F ′:F ] : Gab

L → F ′× is equal to the number
of pairs (g, h) such that gh = τ−1

ι . There is a natural right action by Gal(F ′/F ) on the set
of such pairs via (g, h).γ = (gγ, γ−1h), and this is simply transitive when the set is non-
empty because Gal(F ′/K) ∩ Gal(F ′/L) = Gal(F ′/F ) (as F = LK inside F ′). Hence, these
Hodge–Tate weights are either 0 or [F ′ : F ].

We conclude that j ◦ψ has all Hodge–Tate weights equal to 0 or 1, and 1 occurs precisely
for the Qp-embeddings ι : F ′ → CL whose associated Qp-automorphism τ = τι of F ′ admits
the form τ = (gh)−1 = h−1g−1 for some g ∈ Gal(F ′/K) and h ∈ Gal(F ′/L). There are
Qp-embeddings ι extending each Qp-embedding σ : K → CL, and the condition “τι|K = σ”
is invariant under right multiplication on τι by Gal(F ′/K). Thus, wσ ∈ {0, 1} for all σ, and
wσ = 1 if and only if σ : K → f(F ′) ⊂ CL lifts to an automorphism h−1 ∈ Gal(F ′/L).

It remains to show that the image of Gal(F ′/L) under the surjective restriction map
Gal(F ′/Qp) � HomQp(K,F

′) consists of those σ for which the unique L-algebra extension
K⊗QpL→ F ′ factors through the natural quotient map q : K⊗QpL� F onto the composite
subfield F = KL ⊂ F ′. This is a general Galois theory fact, and it holds because the natural
map K ⊗Qp L→ F ′ induced by multiplication inside F ′ factors through q. �
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Crystalline locally algebraic abelian semisimple representations are given by:

Proposition B.4. Let L and K be finite extensions of Qp, and let rL : L× → Gab
L be the

local Artin map with arithmetic normalization. Let ψ : Gab
L → O×K ⊂ K× be a continuous

homomorphism. Let V be the Qp[G
ab
L ]-module underlying a 1-dimensional K-vector space

endowed with a K-linear action by Gab
L via ψ.

(i) The representation space V is crystalline if and only if there exists a homomorphism
of Qp-tori χ : L× → K× such that ψ ◦ rL and χ (on Qp-points) coincide on O×L .

(ii) Assume that the condition in (i) is satisfied. Let a denote the residual degree of L
over Qp. The filtered φ-module Dcris(V ) over L covariantly attached to the crystalline
representation V is free of rank 1 over K ⊗Qp L0 and its L0-linear endomorphism φa

is given by the action of the product ψ(rL(πL))−1 · χ(πF ) ∈ K×, where πL ∈ OL is
any uniformizer and χ is as in (i).

The interested reader will easily check (akin to the proof of Lemma 4.1) that the equiv-
alence in (i) implies a more general equivalence between the crystalline condition and al-
gebraicity on O×L when ψ is allowed to be any abelian semi-simple linear representation of
GL on a finite-dimensional Qp-vector space. This general equivalence goes back to [S4, §2.3,
Cor. 2], whose proof rests on work of Fontaine using an early version of the formalism of
p-adic Hodge theory. Since (ii) is not directly addressed in [S4], for the convenience of the
reader we now give a proof of both parts of Proposition B.4.

Proof. First assume that V is crystalline, so it is Hodge–Tate. The 1-dimensionality over K
implies that V is semi-simple as a Qp-representation space of GL, so it is also semisimple
on the normal inertia subgroup. Hence, by [S6, III, A.7] (and the initial hypotheses in [S6,
III, A.3]), there is a finite extension L′/L in L splitting K/Qp such that ψ|Gal(L/L′) is locally

algebraic. Let χ′ : L′× → K× be the unique map of Qp-tori such that on Qp-points it
agrees with ψ ◦ rL ◦ NL′/L near 1 ∈ L′×. The norm map NL′/L : L′× → L× is a surjection
of Qp-tori with connected kernel, so we may use Qp-points near 1 to infer that χ′ kills the
torus ker(NL′/L). Hence, χ′ = χ ◦ NL′/L for a unique χ : L× → K×, so ψ ◦ rL and χ agree
near 1 ∈ L×; in particular, ψ is locally algebraic.

Obviously χ|O×L can be extended to an O×K-valued Galois character θχ of GL, and we claim

that such a character is crystalline. (The choice of extension θχ does not matter, since
the crystalline property only depends on the inertial restriction.) Assuming this property
holds, upon choosing θχ we get that ψ · θ−1

χ is a crystalline representation of GL with finite
image on inertia. All such representations are unramified, since we can perform finite Galois
descent on the filtered φ-module side (relative to a finite extension of (Lun)∧ which splits the
Galois representation) and then apply the Dieudonné–Manin classification of isocrystals for
an algebraically closed residue field to infer that Dcris(ψ · θ−1

χ |IL) as a filtered φ-module has
trivial filtration and is isoclinic of slope 0. This would give that ψ ◦ rL and χ coincide on
O×L , assuming θχ is crystalline.

We see that to prove (i) it remains to show that for any Qp-homomorphism χ : L× → K×,
if its O×L -restriction on Qp-points is extended to an O×K-valued Galois character θχ of L then
θχ is crystalline. It is harmless to increase the scalar field K such that it splits L/Qp, so a
basis of the Z-module of such χ’s consists of the maps [τ ] : L× → K× induced on A-points
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by τ ⊗ 1 : (L ⊗Qp A)× → (K ⊗Qp A)× for all Qp-algebras A, where τ varies through the
Qp-embeddings of L into K. It is therefore enough to treat the case χ = [τ ]−1 for some τ ,
in which case the Qp-representation space on inertia is the scalar extension by τ : L → K
of the inertial restriction of any Galois character ψ : Gab

L → O×L such that (ψ ◦ rL)|O×L is

inversion. By [S6, III, A.4] and our choice of the arithmetic normalization of local class field
theory, examples of such Galois characters ψ arise from Lubin–Tate formal groups over OL,
which are p-divisible groups and hence are crystalline. This proves (i).

For the proof of (ii), it is convenient first to compute Dcris(V ) in a special case:

Example B.5. Let κ denote the finite residue field of L, with size qL, and let L0 := W (κ)[1/p]
be the maximal unramified subfield of L. Assume that ψ arises as the generic fiber of a p-
divisible group Γ over OL, so ψ is crystalline and Dcris(ψ) := (ψ ⊗Qp Bcris,L)Gal(L/L) is a
K ⊗Qp L0-module equipped with a structure of K-linear filtered φ-module over L. The
compatibility of the K ⊗Qp L0-module structure with the φ-operator forces Dcris(ψ) to have
a nonzero factor module over each factor field of K ⊗Qp L0 and hence be invertible as a
K ⊗Qp L0-module for Qp-dimension reasons.

Let Γ0 denote the special fiber over κ, and D(Γ0) denote its (contravariant) Dieudonné
module. The qL-Frobenius on Γ0 is the action of some λ ∈ K× in the isogeny category of
p-divisible groups over κ. By [F1, 6.6] there is a natural L0-linear φ-compatible isomorphism

(B.2) ηΓ : HomL0(D(Γ0)[1/p], L0) ' Dcris(ψ),

with φ acting Frobenius-semilinearly on the L0-linear dual of D(Γ0)[1/p] in the usual manner
(sending a functional f to σ ◦ f ◦φ−1

D(Γ0), where σ is the absolute Frobenius automorphism of

L0). Naturality forces ηΓ to be K⊗Qp L0-linear, so if pa = qL then σa = id and the L0-linear
φa on Dcris(ψ) has to be multiplication by 1/λ.

Returning to the proof of (ii), the invertibility of Dcris(V ) as a K ⊗Qp L0-module follows
from a consideration of the φ-operator, exactly as in Example B.5. Now we may increase K so
that it splits L/Qp, and the proof of (i) shows that in such cases ψ is a product of O×L -valued
Lubin–Tate characters of GL (viewed with values in O×K via Qp-embeddings τ : L → K).
The tensor-compatibility of Dcris (using the coefficient field K) and the multiplicativity of
the proposed formula for φa thereby reduces us to checking the special case when K = L
and ψ is the Lubin–Tate character Gab

L → O×L associated to a choice of uniformizer πL. Let
κ denote the residue field of L, and qL its size.

We have ψ(rL(πL)) = 1, and the associated algebraic character χ : L× → L× is inversion.
Thus, by using the compatibility (B.2) of Dieudonné modules and Dcris, the inversion at the
end of Example B.5 cancels out and we are reduced to checking that if ΓπL is the Lubin–Tate
p-divisible group associated to πL then its reduction over κ has qL-Frobenius endomorphism
induced by πL. This is the property that uniquely characterizes ΓπL . �
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