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Abstract. An early result in the history of power laws, due to Miller, concerned the following experiment.

A monkey types randomly on a keyboard with N letters (N > 1) and a space bar, where a space separates

words. A space is hit with probability p; all other letters are hit with equal probability (1 − p)/N . Miller
proved that in this experiment, the rank-frequency distribution of words follows a power law.

The case where letters are hit with unequal probability has been the subject of recent confusion, with
some suggesting that in this case the rank-frequency distribution follows a lognormal distribution. We prove

that the rank-frequency distribution follows a power law for assignments of probabilities that have rational

log-ratios for any pair of keys, and we present an argument of H. Montgomery that settles the remaining
cases, also yielding a power law. The key to both arguments is the use of complex analysis.

The method of proof produces simple explicit formulas for the coefficient in the power law in cases
with rational log-ratios for the assigned probabilities of keys. Our formula in these cases suggests an exact
asymptotic formula in the cases with an irrational log-ratio, and this formula is exactly what was proved by

Montgomery.

1. Introduction

One of the earliest developments in the theory of power laws was the demonstration that the rank-
frequency distribution of natural languages, that empirically follows a power law, could be explained by an
entropy-optimization formulation developed by Mandelbrot [7]. (We provide this argument for completeness
below.) This optimization framework underlies more recent work by other authors who show how it can be
used to explain other power law behaviors, such as the degree distribution of the Internet graph [2, 3].

Soon after Mandelbrot’s argument appeared, however, another argument by the psychologist Miller
demonstrated that the power law behavior of rank-frequency distribution could be explained without the
underlying optimization argument [8]. Miller describes the following experiment. A monkey types randomly
on a keyboard with N letters and a space bar. A space is hit with probability p with 0 < p < 1; all other
letters are hit with equal probability (1 − p)/N . A space is used to separate words. Miller demonstrates
that in this experiment, the rank-frequency distribution follow a power law. (Again, we present more detail
below.) Miller’s result serves as warning: just because one finds a compelling mechanism to explain a power
law does not mean that there are not other, perhaps simpler, explanations.

Miller only gave the proof for the case where all letters other than the space are equally likely to be
hit. Interestingly, the case where letters are struck with unequal probability has recently become a point
of confusion. Perline recently argued that if the letter frequencies are not equal, a lognormal distribution
occurs. (This claim is repeated in [5].) Troll and bein Graben correctly argue that Perline’s result simply
shows that the distributions of the words of length up to n, for each fixed n, are approximately lognormal
[15]. They argue that, in general, the true distribution (without truncating words up to some fixed length)
is a power law, although they only give an argument for the case of two letters.

In this paper, we begin by reviewing the fascinating history of this fundamental problem. Then we use
methods from complex analysis to prove that Miller’s random monkey experiment yields power laws for
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rank-frequency distribution with probability assignments to keys satisfying a rationality assumption on log-
ratios of pairs of probabilities. We use analytic methods to establish a simple explicit power law in cases
with rational log-ratios for pairs of probabilities; more specifically, we use generalized Dirichlet series and an
elementary identity established by means of Fourier series. Passing to a limit on these formulas predicts an
analogous result in the remaining “irrational” cases, and this prediction agrees with an unpublished theorem
proved contemporaneously by H. Montgomery; in §6 we provide Montgomery’s argument, that uses methods
that are standard in analytic number theory.

The use of analytic techniques to study problems of this type is not in itself novel (see [4], [6], and [14], for
example), and it is also a well-known phenomenon that rationality issues can lead to cases that behave in a
manner somewhat different from generic cases. The novelty of this paper is therefore not in the consideration
of analytic techniques but rather in the application of these techniques to an interesting non-trivial problem
that has not before been studied in detail from the analytic point of view.

Notation and terminology. Throughout this paper, the phrase log-ratio for a pair of positive real
numbers refers to the ratio of their logarithms (to a common base, the choice of which cancels out), not the
logarithm of ratios (to some base, the choice of which does make a difference). All logarithms without an
indicated base are understood to be taken to the base e = 2.71828 . . . . We write b·c to denote the greatest-
integer function, and Z, Q, R, and C to denote the ring of integers and the fields of rational numbers, real
numbers, and complex numbers respectively.

Finally, to permit the use of the letter i as an indexing variable, we choose to write
√
−1 rather than the

customary i to denote a fixed choice of solution to z2 + 1 = 0 in C. This choice determines our sense of
direction for path integrals in the complex plane.

2. Review of Definitions and History

Our treatment here is based on a recent survey by Mitzenmacher [9], to which we refer the reader for more
information.1 In what follows, we let fj be the (asymptotic) fraction of the time the jth most frequently
used word appears. In many of our models several words can have the same probability of occurrence, so
there may be ties. In our context, we will say that fj follows a power law in j if there exist positive constants
c1, c2, α such that c1j−α ≤ fj ≤ c2j−α for sufficiently large j.

We sketch Mandelbrot’s argument that leads a power law in the rank-frequency distribution of words [7].
Consider some language consisting of W words. The cost of transmitting the jth most frequent word of
the language is denoted Cj . For example, if we think of English text, the cost of a word might be thought
of as the number of letters plus the additional cost of a space. We therefore naturally expect the most
frequent words to have the smallest number of letters. Let us take the cost of a space to be 0. Then if the
alphabet size is N > 1, there are Nk possible words of length k (including k = 0; we allow the empty word
for convenience). In particular, the words with k letter have frequency ranks from 1 + (Nk − 1)/(N − 1) to
(Nk+1 − 1)/(N − 1). It follows that logN j ≤ Cj ≤ logN j + 1. Suppose that we wish to design the language
to optimize the average amount of information per unit transmission cost. Here, we take the average amount
of information to be the entropy. We think of each word in our transmission as being selected randomly,
and the probability that a word in the transmission is the jth word of the language is fj . Then the average
information per word is the entropy H = −

∑W
j=1 fj log2 fj , and the average cost per word is C =

∑W
j=1 fjCj .

If we were designing the language, how would we choose the fj in order to minimize A = C/H? Taking
derivatives, we find

∂A

∂fj
=
CjH + C log2(efj)

H2
.

Hence all the derivatives are 0 (and A is in fact minimized) when fj = e−1 · 2−HCj/C . Since logN j ≤ Cj ≤
logN j + 1, we obtain a power law for the fj ; specifically,

(2−H/Ce−1)j−H(logN 2)/C ≤ fj ≤ e−1 · j−H(logN 2)/C .

1For instance, this survey describes another argument that leads to a power law of word frequency based on preferential
attachment, originally due to Simon [13]. We do not present this argument here.
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Mandelbrot argues that a variation of this model matches empirical results for English quite well.
We now consider Miller’s experiment [8]. Again, in his setup, a monkey types randomly on a keyboard

with N letters and a space bar. We again assume N > 1, and a space is used to separate words. A space is
hit with probability p (with 0 < p < 1); all other letters are hit with equal probability (1 − p)/N . As the
monkey types, each word with k (non-space) letters occurs with probability

pk =
(

1− p
N

)k
· p,

and there are Nk words of length k. (Again we allow the empty word of length 0 for convenience.) The
words of longer length are less likely and hence occur lower in the rank order of word frequency. Thus, again
the words with k letters have frequency ranks from 1 + (Nk − 1)/(N − 1) to (Nk+1 − 1)/(N − 1). Hence,
the word with rank-frequency j occurs with probability fj , where(

1− p
N

)logN j+1

· p ≤ fj ≤
(

1− p
N

)logN j

· p.

Rewriting yields (
p · 1− p

N

)
jlogN (1−p)−1 ≤ fj ≤ p · jlogN (1−p)−1,

and the power law behavior is apparent. (Note that this argument (and the conclusion) fails if N = 1 since
the relevant finite geometric series behave differently.)

The above analysis of Miller’s argument clearly makes use of the simplification that all letters are struck
with equal probability. As previously mentioned, the case of unequal letter probabilities has met with some
confusion; see, e.g., [9, 5, 10, 15]. The following example from [9] clarifies the power law behavior and lays
the groundwork for our more general argument.

Consider an alphabet with two letters: “a” occurs with probability q, “b” occurs with probability q2,
and a space occurs with probability 1 − q − q2. The value q must be chosen so that 1 − q − q2 > 0
(i.e., 0 < q < 1/Φ, where Φ = (1 +

√
5)/2). In this case, every valid word the monkey can type occurs

with probability qk(1 − q − q2) for some integer k. Let us say a word has pseudo-rank k if it occurs with
probability qk(1−q−q2). There is 1 word with pseudo-rank 0 (the empty word), 1 with pseudo-rank 1 (“a”),
2 with pseudo-rank 2 (“aa” and “b”), and so on. A simple induction yields that the number of words with
pseudo-rank k is in fact the (k+1)th Fibonacci number Fk+1 (where F0 = 0 and F1 = 1). This follows easily
from the fact that to obtain the words with pseudo-rank k we append an “a” to a word with pseudo-rank
k − 1, or a “b” to a word with pseudo-rank k − 2.

Recall that Fk = Φk/
√

5 + o(1) for large k, where Φ = (1 +
√

5)/2 . Also
∑k
i=1 Fi = Fk+2 − 1. Now the

argument is entirely similar to the case where all items have the same probability. When Fk+2 − 1 < j ≤
Fk+3 − 1, the jth most frequent word has pseudo-rank k. For k sufficiently large, we therefore have

k + 2 ≤ logΦ(
√

5(j + 1)) < k + 3.

The frequency fj therefore satisfies

(2.1) qlogΦ(
√

5(j+1))−2(1− q − q2) < fj ≤ qlogΦ(
√

5(j+1))−3(1− q − q2)

for large j. Again we have power law behavior.
Note that the key here was that the number of words with pseudo-rank at most k grew roughly exponen-

tially in k, where the base Φ was the reciprocal of the unique positive solution to the polynomial equation
x2 +x = 1. This is the statement we intend to generalize to more general sets of probabilities in what follows.

3. A General Problem

In general, we allow N letters with arbitrary probabilities (adding up to something less than 1, the rest
being the probability of a space), and we assume N > 1. If there are n distinct probability values, it is
convenient to label these in strictly increasing order, 0 < p1 < p2 < · · · , and write pi = pai1 . Note that in
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this case we have a1 = 1 and ai < 1 for i > 1. We let wi be the number of letters that are struck with the
probability pi. The probability of a space is therefore 1 −

∑
wipi, that we require to be positive. Asking

about the probability fj of the jth most frequent word (as a function of large j) can then be turned into
the question of how many words have probability of occurrence greater than or equal to pν1(1−

∑
wipi) (as

a function of large real ν), as we shall see later.
More generally we have the following problem. Let a1 > · · · > an be distinct positive real numbers and

let w1, . . . , wn be positive integers. Consider the multi-set A that contains ai with multiplicity wi for all i.
Say A has size N =

∑
wi, with elements enumerated as σ1, . . . , σN . We require

∑
wi > 1. Note that the

case n = 1 (with w1 > 1 counting the number of letters) corresponds to the situation considered by Miller
(equal probabilities).

For each real ν ≥ 0, let cν be the number of distinct N -tuples of non-negative integers (m1, . . . ,mN )
such that ν =

∑
miσi. Concretely, cν counts how many ways ν can be expressed as a sum of elements of

A (keep in mind that A is a multi-set, and our description of cν is consistent with the condition c0 = 1).
In the motivating situation of the variant on Miller’s problem with unequal probabilities, we can consider
the problem of counting the number of words (including the empty word) whose probability of occurrence
is exactly pν1(1−

∑
wipi). The quantity cν is exactly the answer to this problem.

Algebraically, we have a formal expansion (for x > 0)

(3.1)
1

1−
∑n
i=1 wix

ai
=
∑

cνx
ν ,

where c0 = 1 and cν = 0 for all ν outside of a discrete set of non-negative real numbers. Of course, when
the ai’s are not all integers then the right side of (3.1) is not an ordinary power series expansion around 0,
so the series usually does not make sense when x < 0. We wish to give asymptotic bounds, in the spirit
of (2.1), on

∑
ν<t cν (respectively

∑
ν≤t cν) as t →∞. In the application to word probabilities, these sums

count the number of words whose probability of occurrence (in the sense of the discussion above) is greater
than pt1(1−

∑
wipi) (respectively greater than or equal to pt1(1−

∑
wipi)).

Consider the function fa(x) =
∑n
i=1 wix

ai on [0,∞). It would be more accurate to write fa,w(x), but
whereas it will be convenient to sometimes consider behavior when the ai’s are varying, we shall never change
the wi’s. The function fa is a strictly increasing continuous function with fa(0) = 0 and fa(1) =

∑
wi > 1,

so there is a unique x0 ∈ (0, 1) with fa(x0) = 1, and this is the unique solution to fa(x) = 1 on [0,∞). The
example at the end of §2 corresponds to probabilities p1 = q2 and p2 = q = p

1/2
1 , so a1 = 1 and a2 = 1/2.

Thus, fa(x) = x+
√
x and x0 = φ2 in this case, where φ = (−1 +

√
5)/2.

In general, we wish to study the behavior of (
∑
ν<t cν)/(1/x0)t and (

∑
ν≤t cν)/(1/x0)t as t → ∞. We

will show that for explicit constants 0 < A ≤ A′ (depending on the ai’s and wi’s),

(3.2) lim inf
t→∞

∑
ν<t cν

(1/x0)t
= lim inf

t→∞

∑
ν≤t cν

(1/x0)t
= A, lim sup

t→∞

∑
ν<t cν

(1/x0)t
= lim sup

t→∞

∑
ν≤t cν

(1/x0)t
= A′,

where A = A′ if some ai/ai′ is irrational (the generic case) and otherwise A = x
1/r
0 A′ with r = D/a1 for the

least common multiple D of the denominators of the ratios ai/a1 ∈ (0, 1] when these ratios all lie in Q; we
will in fact establish an exact asymptotic formula for

∑
ν≤t cν that is more precise than (3.2) when all ratios

ai/ai′ are rational (and so A < A′), but this precise statement in a bit involved. Granting the asymptotics
in (3.2), let us see how we obtain a power law for rank-frequencies of words by using Miller’s argument.

Pick constants 0 < L′ ≤ L such that

(3.3) L · (1/x0)t ≤
∑
ν<t

cν ≤
∑
ν≤t

cν ≤ L′ · (1/x0)t

for sufficiently large t. The larger we take t, the nearer we can make L and L′ to A and A′ respectively. For
large j, we wish to estimate the probability of occurrence fj = p

t(j)
1 (1 −

∑n
i=1 wipi) assigned to the word

with rank-frequency j (this identity defines the t(j)’s, so 0 = t(1) ≤ t(2) ≤ . . . ); note that t(j) is typically
irrational in practice. As j → ∞ we have fj → 0, so t(j) → ∞. Thus, we may suppose j is big enough so
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that (3.3) holds for t = t(j). Recalling that cν counts the number of words whose probability of occurrence
is exactly pν1(1−

∑
wipi), we get ∑

ν<t(j)

cν < j ≤
∑
ν≤t(j)

cν ,

so L · (1/x0)t(j) < j ≤ L′ · (1/x0)t(j), and finally

log j − logL′

log(1/x0)
≤ t(j) < log j − logL

log(1/x0)
.

Hence, for large j we have

(3.4) p
(log j−logL)/ log(1/x0)
1 (1−

∑
wipi) ≤ fj ≤ p(log j−logL′)/ log(1/x0)

1 (1−
∑

wipi),

so the power law behavior of fj with respect to j is obtained: we can rewrite (3.4) as

(3.5) C(L) · j− log1/x0
(1/p1) ≤ fj ≤ C(L′) · j− log1/x0

(1/p1)

for large j, with constant C(u) def= (1/p1)log1/x0
(u)(1−

∑
wipi).

By taking j larger, we can make C(L) and C(L′) as close as we please to C(A) and C(A′) respectively.
Thus, as an important consequence, if at least one ratio ai/ai′ is irrational then since A′ = A we get
fj ∼ C(A)j−α where α = log1/x0

(1/p1). Even though (as we noted above) we will give an exact asymptotic
formula for

∑
ν≤t cν in the cases with rational ratios, this formula involves the intervention of greatest-

integers and the lack of control over the distribution of the fractional parts of the t(j)’s as j →∞ provides
the obstruction to the existence of a power-like exact asymptotic formula for fj in the rational-ratio cases.
In our mathematical analysis, it will be much simpler to focus on a study of the sums

∑
ν<t cν and

∑
ν≤t cν

as functions of t rather than the word probabilities fj as a function of the rank-frequency parameter j, and
it is for this reason that we have explained above how to extract the power law (3.5) from asymptotics on∑
ν<t cν and

∑
ν≤t cν .

A useful observation is that the liminf and limsup of (
∑
ν<t cν)/(1/x0)t and (

∑
ν≤t cν)/(1/x0)t (as func-

tions of t→∞) are invariant under positive scaling of the ai’s. Indeed, if a′i = rai for all i and some r > 0
(with w′i = wi for all i) then fa′(x) = fa(xr), so x′0 = x

1/r
0 . We likewise have that c′ν = cν/r, so∑

ν<t c
′
ν

(1/x′0)t
=

∑
ν<t/r cν

(1/x0)t/r
.

The scaling invariance follows, and the sums over ν ≤ t go the same way. Thus, for an analysis of such
liminf’s and limsup’s we may scale the ai’s by any common positive scaling factor. While this may suggest
we should exclusively consider sequences with a1 = 1, it is useful to avoid such a restriction. For example,
we will need to use asymptotic comparisons with (1/x0)btc, and for this purpose the necessary identities are

(3.6)
∑
ν<t c

′
ν

(1/x′0)btc
=

∑
ν<t/r cν

(1/x0)br(t/r)c/r
,

∑
ν≤t c

′
ν

(1/x′0)btc
=

∑
ν≤t/r cν

(1/x0)br(t/r)c/r
;

the failure of br(t/r)c/r = btc/r to equal bt/rc implies that comparisons against (1/x0)btc obey a transfor-
mation law with respect to ai 7→ rai that is more complicated than comparisons against (1/x0)t.

Here is our main result; see §6 for a discussion of the cases that violate the hypothesis of rational ratios.

Theorem 3.1. Let w1, . . . , wn > 0 be real numbers such that
∑
wi > 1. Let fa(x) =

∑
wix

ai on (0,∞)
with a1 > · · · > an > 0 such that ai/ai′ ∈ Q for all i and i′ (this condition is satisfied if n = 1), and let D be
the least common multiple of the denominators of the ratios ai/a1 ∈ Q∩ (0, 1]. Let x0 ∈ (0, 1) be the unique
positive zero of fa − 1, and let r = D/a1 (so r = 1 if the ai’s are integers and gcd(a1, . . . , an) = 1). Define

(3.7) A′ =
1

r(1− x1/r
0 )x0f ′a(x0)

> 0.
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We have

(3.8) lim
t→∞

∑
ν≤t cν

(1/x0)brtc/r
= A′.

That is,
∑
ν≤t cν ∼ A′ · (1/x0)brtc/r as t→∞.

It is not evident a priori that the limit in (3.8) exists, and the corresponding limit using
∑
ν<t generally

does not exist (t’s with ct 6= 0 present obstructions in even the simplest case of geometric series; see the end
of Example 3.4). Since t− 1/r < brtc/r ≤ t for all t, and as t varies over [n, n+ 1) for n ∈ Z the difference
t − brtc/r sweeps across the interval [0, 1/r), Theorem 3.1 and the continuity of the function t 7→ (1/x0)t

immediately yield:
Corollary 3.2. With notation and hypotheses as in Theorem 3.1,

(3.9) lim inf
t→∞

∑
ν<t cν

(1/x0)t
= lim inf

t→∞

∑
ν≤t cν

(1/x0)t
= x

1/r
0 A′, lim sup

t→∞

∑
ν<t cν

(1/x0)t
= lim sup

t→∞

∑
ν≤t cν

(1/x0)t
= A′.

The positive gap A′ − x1/r
0 A′ between limsup and liminf in Corollary 3.2 is artificial, being entirely due

to the use of division by the continuous function (1/x0)t rather than by the step function (1/x0)brtc/r. In §6
we will see how our limit formula (3.8) in the rational-ratios case predicts the correct asymptotic behavior
in the remaining cases; see Theorem 6.1.
Example 3.3. When n = 1 (Miller’s case), we have w = w1 > 1 and r = 1/a1. Thus, fa(x) = wxa1 , so
x0 = 1/wr. Hence, A′ = w/(w − 1). Writing (3.1) as 1/(1− wxa1) =

∑
n≥0 w

nxa1n, it is trivial to directly
establish (3.8) in this case.
Example 3.4. When n = 2, w1 = w2 = 1, a1 = 2, and a2 = 1, we have the Fibonacci-based example at the
end of §2. Since fa(x) = x2 + x, clearly x0 = φ where φ = (−1 +

√
5)/2 satisfies φ2 + φ = 1. Calculation

yields r = 1/2 and A′ = 1/(1− φ2)(1− φ/2) = 1/(φ+ 1/2) = 2/
√

5. Using (3.4), and recalling that p1 = q2,
we find that for sufficiently large j

qlogΦ j−logΦ((3+
√

5)/
√

5)(1− q − q2) ≤ fj ≤ qlogΦ j−logΦ(2/
√

5)(1− q − q2)

where Φ = 1/φ = (1 +
√

5)/2.
This can be made to look more like (2.1) by rewriting it as

qlogΦ(
√

5j)−logΦ(3+
√

5)(1− q − q2) ≤ fj ≤ qlogΦ(
√

5j)−logΦ 2(1− q − q2).

Compared to (2.1), this gives slightly weaker bounds in the bounding constant factors, although the power
law exponent is the same. To see why it is not surprising that we obtain weaker coefficient-bounds, note
that the direct analysis of rank-frequencies in this example corresponds to considering bounds as t runs
through the discrete set of values t(j) such that the summation function

∑
ν≤t cν jumps (i.e., the t(j)’s are

the discretely-spread values t such that ct 6= 0). Thus, whereas (3.3) with L and L′ very close to A and A′

respectively concerns optimizing bounding constants across a continuum of values of t→∞, in (2.1) we are
only optimizing over a discrete set of values t(j). This smaller sampling locus allows for the possibility of
tighter bounding constants.

For example, in the situation analogous to that considered by Miller one sees this phenomenon: for
w > 1, consider f(t) =

∑
ν≤t w

ν = (wbtc−1)/(w−1), where the sum is taken over integral ν ∈ [0, t]. Clearly
f(t)/wt ∼ 1/(w − 1) as t runs through the discrete locus (of integer values) where f jumps. Hence while
f(t)/wt varies between 1/(w− 1) and 1/(w(w− 1)) as t grows through all positive real values, f(w)/wbtc ∼
1/(w − 1) as t grows through all positive real values. Note in particular that a gap that appears over a
continuum may disappear when sampling over a discrete locus or when comparing with a well-chosen step
function (such as wbtc replacing wt).

In Example 3.4, we saw that by sampling only in a discrete locus, we can get estimates that may be much
tighter than what holds over a continuum of t-values. At the opposite extreme, omitting a discrete set of
sampling values has no impact on asymptotic power law bounding constants, as we record in the following
easy lemma (that will provide a useful simplification in the subsequent analysis):
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Lemma 3.5. Let 0 < τ1 < τ2 < . . . be a discrete unbounded sequence. To prove Theorem 3.1, it suffices to
prove

(3.10) lim
t→∞

∑
ν<t cν

(1/x0)brtc/r
= A′

as t grows without bound through values distinct from the τj’s, where A′ is as in (3.7). Moreover, it is enough
to consider the case when the ai’s are integers and gcd(a1, . . . , an) = 1.

Proof. Since
∑
ν<t cν is monotonically increasing and

∑
ν≤t cν = limε→0+

∑
ν<t+ε cν , and the function t 7→

(1/x0)brtc/r enjoys the same monotonicity and one-sided continuity properties, the first assertion follows.
The sufficiency of considering the case of a primitive n-tuple of integers ai comes down to the easy verification
that the limit formula (3.10) is compatible with the transformation formulas (3.6), the identity x′0 = x

1/r
0 ,

and the identity

(3.11) x′0f
′
a′(x

′
0) = rx0f

′
a(x0)

when a′i = rai for all i (to prove (3.11), differentiate the identity fa′(x) = fa(xr)). �

Thanks to this lemma, we shall now suppose (for the purpose of proving Theorem 3.1) that the ai’s are
integers without a non-trivial common factor. The advantage of this case is that

∑
wix

ai is a polynomial
and r = D/a1 is equal to 1. The proof of Theorem 3.1 will require some techniques from complex analysis,
and before giving the proof it will be convenient to make some preliminary remarks. This will also give us an
opportunity to introduce some notation to be used in the proof. Making the change of variable s = − log x
(that converts the positive real line into the whole real line) on (3.1), consider the meromorphic function

(3.12) F (s) =
1

1−
∑
wie−ais

=
∑
ν

cνe
−νs

for s ∈ C. The denominator is near 1 (hence non-vanishing) for Re(s)� 0 since |e−ais| = e−aiRe(s) → 0 as
Re(s)→∞. Thus, standard convergence arguments with truncated sums ensure that the right side of (3.12)
is absolutely convergent and equal to the middle term for Re(s) � 0. The poles of F are concentrated in
the vanishing locus of the denominator 1− fa(e−s). We are going to use the behavior of F as Re(s)→ ±∞
to get our desired asymptotics (the reader may wish to compare our argument with the “closing-the-box”
discussion in [14, pp.252ff]).

Note that the poles of F (i.e., the zeros of the denominator 1 − fa(e−s)) are concentrated in a vertical
strip V of bounded width. Indeed, as Re(s)→ −∞, we see that |e−ais| = e−ai Re(s) has exponential growth,
but the term for i = 1 dominates the rest since a1 > a2 > . . . , so F (s) · w1e

−a1s ∼ 1 (and hence F (s) has
exponential decay) as Re(s)→ −∞. We also saw above that the denominator term is near 1 as Re(s)→∞.
This leaves a closed vertical strip V of bounded width that contains all poles of F . We will make this explicit
in (4.1).

Due to the rationality hypothesis in Theorem 3.1, from which we brought ourselves to the case of integral
ai’s, fa is a polynomial. Thus, the equation fa(e−s) = 1 is a polynomial equation in e−s and so its solutions are
exactly s = − log ρα+2π

√
−1 ·n for n ∈ Z, where ρα runs over the finitely many roots of fa(z)−1 ∈ C[z]. In

particular, the set of solutions to fa(e−s) = 1 is discretely spread out in V (in the sense that there is a positive
lower bound on distances between solutions), and F is a vertically periodic function (F (s+2π

√
−1) = F (s))

since ai ∈ Z for all i. When at least one ratio among the ai’s is irrational, the periodicity is lost and the
geometry of the location of these denominator zeros (that is going to control our analysis) becomes more
difficult to handle directly. The irrational case will be discussed in §6.

4. Preparations for the proof of Theorem 3.1

Since the ai’s (and wi’s) will not be changing, we write f to denote fa(x) =
∑
wix

ai . Let {ρα} denote
the set of roots of the polynomial f − 1, with ρα0 = x0 the unique positive real root. Later on, when we
need to extract a dominant term, it will be important to use:
Lemma 4.1. The root x0 is a simple root of f − 1 and |ρα| > x0 for all α 6= α0.
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This lemma ensures that when there exist roots ρ ∈ C to f(z) = 1 with ρ 6= x0 (i.e., n > 1, or n = 1
and a1 > 1), such ρ lie strictly outside of the circle |z| = x0. Though the simplicity of the root at x0 is true
without requiring gcd(a1, . . . , an) = 1, the property |ρα| > x0 for α 6= α0 makes essential use of the condition
gcd(a1, . . . , an) = 1 and is false without it.

Proof. Since f −1 has derivative
∑
aiwix

ai−1 that is positive on (0,∞), this derivative is nowhere vanishing
on (0,∞). A double root of a polynomial must be a root of the derivative, so x0 has to be a simple root.

For any z ∈ C, the triangle inequality gives |f(z)| ≤
∑
wi|z|ai = f(|z|), so if |z| < x0 then |f(z)| <

f(x0) = 1. Hence, if f(z) = 1 then |z| ≥ x0. It remains to show that f(z) = 1 with |z| = x0 forces z = x0.
If |z| = x0 then f(z) = 1 forces the inequality

1 = |f(z)| ≤
∑

wi|z|ai = f(|z|) = f(x0) = 1

to be an equality. For a set of nonzero complex numbers {βi}, the triangle inequality |
∑
βi| ≤

∑
|βi| is

an equality if and only if there is no “angle cancellation”, so the wizai ’s all lie on the same ray emanating
from the origin. The sum of these wizai ’s must also lie on this ray, but this sum is f(z) = 1, so the ray
must be (0,∞). Hence, if f(z) = 1 and |z| = x0 then wiz

ai is a positive real number for all i, so zai is a
positive real number for all i. But gcd(a1, . . . , an) = 1 implies that

∑
aivi = 1 for some integers v1, . . . , vn,

so z = z
∑
aivi =

∏
(zai)vi is a positive real number. Since the equation f(x) = 1 has x0 as its unique

solution on (0,∞), we get z = x0, as desired. �

If s ∈ C satisfies 1 − f(e−s) = 0, then Lemma 4.1 yields e−Re(s) = |e−s| ≥ x0 with equality if and only
if e−s = x0. Defining s0 = − log(x0), we have Re(s) ≤ s0 with equality if and only if s ∈ s0 + 2π

√
−1 · Z.

If ρ0 is a root of f − 1 with the greatest distance from the origin (so |ρ0| > x0 if ρ0 6= x0), then Re(s) =
− log |e−s| ≥ − log |ρ0| also holds. Thus, the vertical strip

(4.1) V = {s ∈ C | − log |ρ0| ≤ Re(s) ≤ s0}

enjoys the property that the denominator function 1 − f(e−s) in (3.12) is non-vanishing outside of V and
its zeros within V consist of finitely many vertically periodic sequences sα + 2π

√
−1 · Z, where e−sα ranges

over the finitely many roots ρα of the polynomial f − 1 (recall f(0) 6= 1, so ρα 6= 0 for all α). To remove
ambiguity about the choice of sα’s satisfying e−sα = ρα, we require −π ≤ Im(sα) < π. This normalization
is not significant.

In the next section, it will be convenient to make an exponential change of variable, as follows. Let
0 = ν1 < ν2 < . . . be the discrete set of integers ν such that cν 6= 0. Define nk = eνk , so n1 = 1. Let
c′k = cνk . For Re(s)� 0, (3.12) yields the absolutely convergent series expansion

(4.2) F (s) =
∑
k≥1

c′k
nsk
,

where {nk} is a strictly increasing unbounded sequence in [1,∞); this type of sum is called a generalized
Dirichlet series (the usual Dirichlet series are those such that nk = k). Note that νk < t if and only if
nk < et. Since F is analytic on the open half-plane {Re(s) > s0} to the right of V and the coefficients c′k are
non-negative real numbers, basic complex analysis ensures that the generalized Dirichlet series expansion for
F in (4.2) is absolutely convergent for Re(s) > s0. Using Lemma 3.5 and the identity (1/x0)t = (et)s0 , we
can reformulate Theorem 3.1 as the assertion

lim
t→∞

∑
nk<y

c′k

ys0x
{t}
0

= A′

as y = et →∞ with y avoiding the nk’s (or avoiding a discrete locus in (0,∞) containing the nk’s, such as
eZ); here, {t} = t− btc denotes the fractional part of t, so ys0x{t} = (1/x0)btc.

In our later calculation of residues, we shall need two elementary formulas that we record here for conve-
nience of reference. For a meromorphic function g on C with a pole of order µb ≥ 1 at b ∈ C, the residue
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Res(g; b) of g at b ∈ C is given by

(4.3) Res(g; b) =
1

(µb − 1)!

(
d
dz

)µb−1

((z − b)µbg(z))|z=b.

In particular, if g has a simple pole at b then Res(g; b) = limz→b(z − b)g(z). Thus, if g has a simple pole at
b (or is analytic there) and h is analytic near b then this simple limit expression shows

(4.4) Res(gh; b) = h(b) Res(g; b).

For poles of order greater than 1, there is no simple formula for Res(gh; b) in terms of Res(g; b) and h(b)
alone; one needs to use more information about the series expansions of g and h around b. Fortunately for
us, Lemma 4.1 will ensure that the dominant term in the analysis involves simple poles and the unpleasant
(4.3) will suffice for an estimate on the rest as an error term.

Here is the main example of interest to us: for a fixed y > 0, consider the function

H(s) = ys · F (s)
s

=
ys

s · (1− f(e−s))
=

ys

s(1−
∑
wie−ais)

.

This is meromorphic in s, and its only possible poles are where s = 0 and where f(e−s) = 1. Since
f(1) =

∑
wi > 1, we see that H has a simple pole at s = 0 (with residue y0F (0) = 1/(1 −

∑
wi)

independent of y). Since ys is analytic in s and nowhere vanishing, it follows that H has poles at the points
in sα + 2π

√
−1 · Z (0 is not in this latter locus, since f(0) 6= 1).

5. Proof of Theorem 3.1

For Re(s) > s0 and y > 0, (4.2) yields

(5.1)
ysF (s)
s

=
1
s
·
∑
k≥1

c′k

(
y

nk

)s
.

Now comes the essential step where complex analysis provides non-trivial information: as in [14, §7.5.3] (that
treats ordinary Dirichlet series), we will compute partial sums of the generalized Dirichlet series (5.1) in the
form of line integrals. More precisely, for σ > s0 we wish to study the line integral

(5.2) Iσ(y) =
1

2π
√
−1

∫ σ+∞
√
−1

σ−∞
√
−1

ysF (s)
ds
s

def= lim
R→∞

1
2π
√
−1

∫ σ+R
√
−1

σ−R
√
−1

ysF (s)
ds
s
,

an integral over a vertical segment of length 2R centered at σ ∈ R with endpoints σ ± R
√
−1 going off to

σ ±∞
√
−1. We will briefly address the convergence of Iσ(y) after some preliminary remarks.

Such a line integral is just an ordinary calculus integral in disguise: we consider the integrand as a C-
valued function on a parameterized segment of points σ+ t

√
−1 where t ∈ [−R,R] (so ds = dt), and the real

and imaginary parts are integrated separately. Because the integrand ysF (s)/s is analytic in the half-plane
{Re(s) > s0} and the vertically periodic F (s) is bounded in {Re(s) ≥ s0 + ε} for any ε > 0, the integrand
ysF (s)/s dies off like 1/|s| as we move horizontally up and down in {σ ≤ Re(s) ≤ σ′}. Thus, the absence of
poles for ysF (s)/s in {Re(s) > s0} and elementary estimates on integrals of ysF (s)/s over short horizontal
segments imply that the convergence and value of Iσ(y) is independent of the choice of σ > s0.

The key facts about Iσ(y) are the following (that we’ll justify shortly):
• Iσ(y) is convergent, and equals

∑
nk<y

c′k as long as y is not equal to any of the nk’s;
• if we move the vertical line of integration σ + R

√
−1 to the left of the vertical strip V in (4.1), past

all of the poles of the integrand ysF (s)/s, we can compute Iσ(y) in terms of residues of ysF (s)/s at
all of its poles.

These facts allow us to compute the sum of interest,
∑
nk<y

c′k, as a sum of residues of ysF (s)/s, provided
y avoids the nk’s. Estimating such sums as y →∞ will be a tractable problem. In a sense that will become
clear later, the simple root x0 of f − 1 contributes the dominant term to the asymptotic and the other roots
in C (all lying outside of the circle |z| = x0, by Lemma 4.1) contribute terms of smaller order as y gets large.
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In order to relate Iσ(y) to the partial sums
∑
nk<y

c′k when y avoids the nk’s, we make the following formal
calculation (that can be justified rigorously): insert the generalized Dirichlet series expansion ysF (s) =∑
c′k(y/nk)s into (5.2) for σ > s0 and move the infinite sum through the integral to get

Iσ(y) =
1

2π
√
−1

∫ σ+∞
√
−1

σ−∞
√
−1

∑
k≥1

c′k

(
y

nk

)s ds
s

=
∑
k≥1

c′k
2π
√
−1

∫ σ+∞
√
−1

σ−∞
√
−1

(
y

nk

)s ds
s
.

A direct calculation shows that for any v > 0 and any σ ∈ R,

1
2π
√
−1

∫ σ+∞
√
−1

σ−∞
√
−1

vs
ds
s

=

 1 v > 1,
1/2 v = 1,
0 v < 1.

Since y is not equal to any of the nk’s (so y/nk 6= 1 for all k), we deduce that Iσ(y) is convergent and in fact
we obtain the well-known Perron–Mellin formula

Iσ(y) =
∑
nk<y

c′k.

Our aim is therefore to prove that Iσ(y)/ys0x{t}0 tends to A′ as y →∞ with y = et avoiding the nk’s.
Our study of the vertical line integral Iσ(y) will proceed in the usual manner by identifying it with a limit

of integrals around rectangles, with the latter integrals computed in terms of residues of ysF (s)/s. Recall that
for a meromorphic function h on C, we can use residues to compute the path integral (1/2π

√
−1)

∫
C
h(s)ds

around a rectangular path C that is disjoint from the discrete pole set of h and is given the counterclockwise
orientation:

1
2π
√
−1

∫
C

h(s)ds =
∑
b

Res(h; b),

where b runs over the finitely many poles of h on the interior of the rectangle with boundary C. We
apply this to h(s) = ysF (s)/s, taking C to be the rectangle CR,σ′ whose right side is the vertical segment
[σ − R

√
−1, σ + R

√
−1] with σ > s0 and whose left side is the vertical segment [σ′ − R

√
−1, σ′ + R

√
−1]

where σ′ � 0. We also choose the height R to ensure that the top and bottom edges avoid poles of the
integrand, and the periodic nature of the pole set of F provides an ε > 0 so that the nonzero vertical gaps
between poles of the integrand ysF (s)/s are always > ε, regardless of how far up and down we go. Thus,
we may choose the height R � 0 as if threading a needle through V so that the top and bottom edges are
always at least ε/2 away from all poles of the integrand.

Because our integrand has no poles far to the left, we can move the left side of the rectangle CR,σ′ as far to
the left as we please (i.e., take σ′ � 0) without affecting the value of the path integral under consideration.
Since F (s) is vertically periodic (F (s + 2π

√
−1) = F (s)) with exponential decay far off to the left, the

contribution of the left edge to the path integral tends to 0 as the left edge is moved off to −∞ while keeping
the top and bottom edges at a fixed height. Since |ys/s| = yRe(s)/|s| dies off exponentially to the left and
dies off (like 1/|s|) in bounded vertical strips as we go far up and far down, the vertical periodicity of F
implies that that there are no convergence problems along the top and bottom edges as we make them
become infinitely long off to the left, so

1
2π
√
−1

∫
CR,R′

ysF (s)
s

ds =
1

2π
√
−1

∫
CR,−∞

ysF (s)
s

ds

(with the right side an absolutely convergent path integral). When estimating the decay of the integral of
ysF (s)ds/s along the top and bottom edges of the infinitely long “rectangle” CR,−∞, as long as we choose
R to maintain these edges at a fixed positive distance ≥ ε/2 away from all poles of the integrand we see that
the contribution of these top and bottom edge integrals vanishes in the limit as R→∞.

The upshot is that if we apply the residue theorem to the integral of ysF (s)/s around a box CR,σ′ , the
integral is the sum of residues of the integrand at poles interior to the box, but when we first send the left side
off to −∞ (introducing no new poles inside of the region of integration) and then send the top and bottom
off to ±∞

√
−1 (acquiring more pole terms from the residue theorem), all that survives is the integral along
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the right edge σ + R
√
−1. This remaining line integral is exactly Iσ(y), so we conclude from the residue

theorem that

(5.3) Iσ(y) = Res(ysF (s)/s; 0) +
∑
α

∑
n∈Z

Res(ysF (s)/s; sα + 2π
√
−1 · n),

where
∑
n∈Z means limN→∞

∑
|n|≤N . In (5.3), sα runs over the finitely many solutions to f(e−s) = 1 in the

horizontal region −π ≤ Im(s) < π. To be precise about (5.3), we pair off sα ± 2π
√
−1 · n with n > 0 and

fixed α, and we handle the terms n = 0 separately. The residue term at s = 0 is y0F (0) = 1/(1−
∑
wi), a

constant that is independent of y, so it may (and will) be ignored for our study of behavior as y →∞ (recall
that sα + 2π

√
−1 · n is always nonzero, since f(0) 6= 1).

We shall analyze (5.3) by treating the contribution of {sα + 2π
√
−1 · n}n∈Z separately for each α, first

considering the case of s0 = sα0 , the unique rightmost solution (modulo 2π
√
−1 · Z) to f(e−s) = 1. The

terms for α = α0 in (5.3) enjoy the crucial property that the pole at each s0 + 2π
√
−1 · n is a simple pole,

essentially due to Lemma 4.1 (and the fact that pole order is unaffected by the change of variables x = e−s).
For clarity, consider any α such that F has a simple pole at the points sα + 2π

√
−1 · n (so sα may not be

real). By (4.4) and the definition of F (as periodic mod 2π
√
−1 · Z) we get

Res(ysF (s)/s; sα + 2π
√
−1 · n) =

ysα+2π
√
−1·n

sα + 2π
√
−1 · n

Res(F ; sα + 2π
√
−1 · n)

=
ysα+2π

√
−1·n

sα + 2π
√
−1 · n

lim
s→sα

s− sα
f(e−sα)− f(e−s)

(5.4)

(since f(e−sα) = 1), and the final limit is the reciprocal of (d/ds)(−f(e−s))|s=sα = ραf
′(ρα) 6= 0 (recall

ρα = e−sα 6= 0). When α = α0, this is x0f
′(x0) > 0. Adding up (5.4) over n ∈ Z, for any α such that

ordsα(F ) = −1 the contribution of the α-term in (5.3) is

(5.5)
ysα

ραf ′(ρα)

∑
n∈Z

y2π
√
−1·n

sα + 2π
√
−1 · n

.

The sum in (5.5) only depends on y through the point y2π
√
−1 on the unit circle, so we may apply:

Lemma 5.1. For fixed s ∈ C− 2π
√
−1 · Z and all z ∈ C with |z| = 1, the series

Hs(z) =
∑
n∈Z

zn

s+ 2π
√
−1 · n

= −H−s(1/z)

is convergent with Hs(1) = 1/s+
∑
n≥1 2s/(s2 + 4π2n2), and

(5.6) Hs(e2π
√
−1·θ) =

es(1/2−θ)

es/2 − e−s/2
=

e−θs

1− e−s

for 0 < θ < 1. In particular, Hs(z) is continuous in z (on the circle) away from z = 1, and it is bounded
away from 0 and ∞ in absolute value.

For real s > 0, Hs away from z = 1 is strictly decreasing and positive as we move around the circle in the√
−1-direction (i.e., counterclockwise), so Hs has lim inf and lim sup on {|z| = 1, z 6= 1} equal to 1/(es − 1)

and 1/(1 − e−s) respectively. When s ∈ C − 2π
√
−1 · Z, we have |Hs(z)| ≤ max(1, e−Re(s))/|1 − e−s| for

z 6= 1 with |z| = 1.

Proof. For z = 1, combining nth and −nth terms makes the formula for (and convergence of) Hs(1) clear.
Thus, we now consider z on the unit circle with z 6= 1, and we shall derive the proposed explicit formula,
from which everything else is obvious. For θ ∈ (0, 1) we compute:

Hs(e2π
√
−1·θ) =

∑
n∈Z

e2π
√
−1·nθ

s+ 2π
√
−1 · n

=
∑
n∈Z

(−1)n

s− 2π
√
−1 · n

· e2π
√
−1·n(1/2−θ),

where −1/2 < 1/2− θ < 1/2.
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Thus, it suffices to prove that for θ′ ∈ (−1/2, 1/2) and s ∈ C− 2π
√
−1 · Z,∑

n∈Z

(−1)n

s− 2π
√
−1 · n

· e2π
√
−1·nθ′ =

esθ
′

es/2 − e−s/2
.

Since fs(θ′) = esθ
′
/(es/2 − e−s/2) is continuous on (−1/2, 1/2) with bounded derivative (hence fs is of

bounded variation), it is pointwise equal to its formal Fourier expansion
∑
n∈Z f̂s(−n)e2π

√
−1·nθ′ , where the

Fourier transform f̂s on Z is given by the usual formula f̂s(n) =
∫ 1/2

−1/2
fs(θ′)e2π

√
−1·nθ′ dθ′. Thus, it suffices

to prove that f̂s(n) = (−1)n/(s+ 2π
√
−1 · n) for n ∈ Z. This is a simple integral computation. �

By Lemma 5.1 with θt = {t}, when y2π
√
−1 = e2π

√
−1{t} 6= 1 (a condition that causes y to avoid the discrete

set eZ that contains the nk’s) we see that for α = α0 the ratio between (5.5) and ys0x
{t}
0 = ysαe−θts0 is

positive and has limiting value equal to A′ > 0 as y → ∞ (recall that e−s0 = x0 < 1, so s0 > 0). For
the other sα’s at which there is a simple pole, Lemma 5.1 provides an explicit upper bound of A′αy

Re(sα)

on the α-contribution when y2π
√
−1 6= 1, where A′α = max(1, |ρα|−1)/(|1 − ρα||ραf ′(ρα)|). Since we can

make A′αy
Re(sα)−s0 as small as we please by taking y sufficiently large (because Re(sα) = − log |ρα| < s0,

by Lemma 4.1), this contribution is o(ys0). Additional division by x
{t}
0 does not affect this estimate since

x
{t}
0 is bounded away from 0 and ∞ as t varies. Provided we show that the contribution in (5.3) from the

other sα’s (where there is a higher order pole) is also o(ys0) as y gets large, the contribution to Iσ(y) from
the s0-term dominates the rest. This would verify the criterion in Lemma 3.5, taking t = log(y) not in Z.

In order to estimate the contributions from sα’s such that f has a zero of order µα > 1 at ρα = e−sα ,
consider the factorization f(z) − 1 = w1(z − ρα)µα ·

∏
α′ 6=α(z − ρα′)µα′ in C[z]. Replacing z with e−s, we

get F (s) = w−1
1 (e−s − e−sα)−µα ·

∏
α′ 6=α(e−s − e−sα′ )−µα′ . We want to insert this into the general residue

recipe (4.3) for g(s) = ysF (s)/s, but we will avoid trying to be explicit with the residue computation at
sα + 2π

√
−1 · n since all that we require is an upper bound of the form o(ys0) as y →∞.

Explicitly computing the µα-fold derivative as in (4.3) is not necessary. Instead, we shall focus on the
structure of the formula to get an upper bound. Using Leibnitz’ rule for differentiating multiple prod-
ucts finitely many times and considering the higher derivatives of ys/s (finite sums of terms of the type
ys−m(log y)q/sr, where m and q are non-negative), it is clear that the contribution to (5.3) from sα 6= s0

consists of two types of sums: a finite set of sums that (up to bounded multipliers and various multinomial
coefficients that we suppress) are of the shape in (5.5) with s0 replaced by sα (all such sums being o(ys0)
since Re(sα) < s0), and finitely many more sums that (again up to bounded multipliers) have the form

(5.7) (log y)qysα ·
∑
n∈Z

y2π
√
−1·n

(sα + 2π
√
−1 · n)r

for some r ≥ 2 and a fixed α. The sums in (5.7) are absolutely convergent since the terms of the sum are
O(|n|−r) as n → ±∞ with fixed r ≥ 2; the implicit constant in the O-estimate does not depend on y since
|y2π

√
−1·n| = 1. Thus, we get an estimate O(|ysα |(log y)q) for (5.7) as y →∞. But |ysα |(log y)q = o(ys0) as

y → ∞ since |ysα | = yRe(sα) with Re(sα) < s0 and (log y)q = o(yδ) for all δ > 0. This completes the proof
of Theorem 3.1.
Remark 5.2. For y2π

√
−1 6= 1, the infinite series in (5.7) can even be computed in closed form by repeated

differentiation of (5.6) with respect to s, so in fact (5.3) can be presented in closed form as a finite sum when
y 6∈ eZ.

6. The remaining cases

Since we found explicit formulas for the limit in the case of rational ratios ai/ai′ in Theorem 3.1, it is
tempting to try to “pass to the limit” via rational approximation of irrationals to guess what to expect in
the case when some ratio ai/ai′ is irrational. Such irrational ratios cannot occur when n = 1, so in this
section we assume n > 1.
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To motivate things, observe that as an n-tuple (a1, . . . , an) with rational ratios ai/ai′ converges to an
n-tuple with an irrational ratio, the value of r = D/a1 must explode to∞ because the common denominator
D must grow without bound while a1 stays bounded (and away from zero). Note that the unique zero x0 of
fa− 1 on (0,∞) is a continuous (and even analytic) function of the aj ’s (by the Implicit Function Theorem)
and brtc/r ∈ (t− 1/r, t] uniformly converges to t as r →∞, Also, as r →∞ we have uniformly

1
r(1− x0

1/r)
,

x
1/r
0

r(1− x1/r
0 )

→ 1
log(1/x0)

for x0 ∈ (0, 1) in a fixed small region. Since x0 is continuous in the ai’s, when we slightly move the ai’s it
follows that x0 remains within a fixed small region in (0, 1).

One may be tempted to believe that the asymptotics should behave roughly continuously in input data
(ai) for fixed w1, . . . , wn. This is actually false, since Theorem 3.1 shows it to fail when approximating a
sequence (ai) with rational ratios ai/ai′ by other arbitrarily close (but distinct) such sequences with rational
ratios. Approximating a rational number by an infinite sequence of (distinct) rationals is pathological. If
we recall that the problem of interest is one of counting the number of ways to express numbers below some
bound as sums of the ai’s (with fixed weights wi), it is not unreasonable to imagine that the count might
behave more “continuously” in the ai’s for fixed weights if we only use approximations of the ai’s that lead to
good rational approximations of the ai/ai′ ’s, say through continued fractions. This restriction causes rational
sequences (ai) with a1 = 1 to be non-approximable by infinitely many distinct rational sequences (a′i) with
a′1 = 1, and so it eliminates the pathology (as well as any meaningful limit process in cases with rational
ratios) and leads one to predict the asymptotic in the following result that covers precisely the “irrational”
cases not handled by Theorem 3.1:
Theorem 6.1. (H. Montgomery) Fix n > 1, positive reals w1, . . . , wn satisfying

∑
wi > 1, and a strictly

decreasing sequence a1 > · · · > an > 0 with some ai/ai′ irrational. Define fa(x) =
∑
wix

ai for x ≥ 0, and
let x0 ∈ (0, 1) be the unique non-negative solution to the equation 1 = fa(x). Define

B =
1

log(1/x0)x0f ′a(x0)
> 0.

Consider the formal expansion 1/(1 − fa(x)) =
∑
ν≥0 cνx

ν , with cν 6= 0 for a discrete set of ν’s. As
t→∞,

∑
ν≤t cν ∼ B(1/x0)t ∼

∑
ν<t cν .

We remind the reader that in the motivating case of the variant on Miller’s experiment with letter
probabilities that are not all equal, the ratio ai/ai′ is the exponent that arises when expressing the ith
probability pi as a power of the i′th probability pi′ (when distinct probabilities are labelled p1 < · · · < pn).
Thus, in most interesting situations at least one ratio ai/ai′ is irrational.
Remark 6.2. The scaling arguments as above Theorem 3.1 show that the assertion in the theorem (including
the value of B) is unaffected by common scaling on the ai’s. To be precise, if a′i = rai then we have seen
that x′0 = x

1/r
0 and x′0f

′
a′(x

′
0) = rx0f

′
a(x0), so clearly

log(1/x′0)x′0f
′
a′(x

′
0) = log(1/x0)x0f

′
a(x0).

Such scaling-invariance does not play a role in the proof of the theorem.
Remark 6.3. Although Montgomery’s proof of Theorem 6.1 will require more analytic input than the proof
of our complementary Theorem 3.1, as we shall explain below, it is interesting that (as we saw above) the
concrete formula (3.7) in the case of rational ratios does naturally lead to a prediction of the asymptotic
proved by Montgomery in all other cases. Hence, even though the case of rational ratios is of much less
significance in practice, its more elementary character and predictive power provides an interesting conceptual
and intuitive way for a non-mathematician to understand the difference in behavior between the case of
rational ratios and all other cases.

In the remainder of this section, we present Montgomery’s proof of Theorem 6.1; the proof uses more
advanced analytic methods. We are grateful to Montgomery for permission to explain his argument. The
irrationality of some ratio ai/ai′ does play an essential role in the analysis, so the following argument
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does not also prove Theorem 3.1 (though a refinement of the method likely provides an alternative, more
mathematically sophisticated, approach to Theorem 3.1). Let us begin by isolating a property that is a
variant on Lemma 4.1 and explains the mathematical significance of an irrational ratio.

In order to describe this variant, let w1, . . . , wn be positive reals satisfying
∑
wi > 1, and let a1 > · · · >

an > 0 be an arbitrary strictly decreasing sequence of positive real numbers. Let

F (s) = 1/(1−
∑

wie
−ais),

and let s0 > 0 be the unique positive number such that
∑
wie
−ais0 = 1. As was explained in the proof of

Lemma 4.1 without using a rationality condition on the ai’s, all poles of F satisfy Re(s) ≤ s0 (and there
is certainly a pole at s0). This is really a logarithmic reformulation of a conclusion in the proof of Lemma
4.1, adapted to the case of arbitrary (possibly non-integral) positive ai’s; recall that when ai > 0 is not an
integer, the expression zai (as in fa(z) =

∑
wiz

ai) is not well-defined for z ∈ C − {0} not a positive real
number. The importance of the irrationality of some ratio ai/ai′ is:
Lemma 6.4. With notation as above, the pole of F at s = s0 is the unique pole of F on the line Re(s) = s0

if and only if some ratio ai/ai′ is irrational.
Recalling the use of the periodic sequence of simple poles for F along s0 +2π

√
−1 ·Z in the computation of

the dominant term in the proof of Theorem 3.1, one can appreciate a priori that different asymptotic behavior
may be expected when there is uniqueness of s = s0 as the rightmost pole of F under the hypothesis of
Theorem 6.1. This uniqueness from Lemma 6.4 is crucial in Montgomery’s proof of Theorem 6.1.

Proof. Assuming F to have a pole at s0 +
√
−1 · t with t ∈ R, we wish to show that t = 0 is forced precisely

when some ratio ai/ai′ is irrational. The condition of a pole at s0 +
√
−1 · t says∑

wie
−ais0e−ai

√
−1·t = 1 =

∑
wie
−ais0 .

Since the terms on the right all lie on the same half-line (namely, (0,∞)) in C, the equality of these sums
happens if and only if the phase shifts eai

√
−1·t all equal 1 (argue via angle cancellation, as in the proof of

Lemma 4.1). That is, the pole condition at s0 +
√
−1 · t says exactly that ait ∈ 2πZ for all i. Hence, we

need to check that the implication
a1t, . . . , ant ∈ 2πZ =⇒ t = 0

holds if and only if some ratio ai/ai′ is irrational. Clearly if the implication fails, so ait0 = 2πni for
some nonzero t0 and (necessarily nonzero) integers ni, we compute that ai/ai′ = ni/ni′ ∈ Q for all i, i′.
Conversely, if all ratios ai/ai′ are rational, then by taking t = 2πN/a1 6= 0 for a positive integer N divisible
by the denominators of all ratios ai/a1 ∈ Q, we get ait ∈ 2πZ for all i. �

Lemma 6.4 puts us in the following situation. We have a meromorphic function

F (s) =
1

1−
∑
wie−ais

=
∑
ν≥0

cνe
−νs

that is analytic in the half-plane Re(s) > s0, and has a unique pole on Re(s) = s0 at the real point s = s0.
Given this, the aim is to deduce that

∑
ν<t cν ∼ Bes0t as t → ∞, with B = 1/ log(1/x0)x0f

′(x0), where
x0 ∈ (0, 1) is the unique positive real number such that f(x) =

∑
wix

ai is equal to 1 at x0. By the elementary
argument proving Lemma 3.5, this result also yields the asymptotic

∑
ν≤t cν ∼ Bes0t.

The basic problem is to make asymptotic estimates on partial sums of (generalized) Dirichlet series
coefficients when the (generalized) Dirichlet series of interest is meromorphic around a closed right half-
plane with a pole on the real line that its unique right-most pole in C. This type of asymptotic estimation
problem is ubiquitous in analytic number theory, where one studies functions such as the Riemann zeta
function ζ(s) =

∑
n≥1 n

−s (and its more sophisticated variants) that have a meromorphic continuation
beyond Re(s) ≥ 1 with a unique (simple) right-most pole that is moreover located at s = 1. In our situation,
if we consider the function

G(s) = F (ss0) =
∑
ν≥0

cνe
−νs0s =

∑
ν′≥0

c′ν′e
−ν′s
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with c′ν′ = cν′/s0 (i.e., ν′ = νs0), the pole is shifted to s = 1 and
∑
ν<t cν =

∑
ν′<ts0

c′ν′ . Thus, one can restate
Theorem 6.1 as the asymptotic

∑
ν′<t′ c

′
ν′ ∼ Bet

′
. If we let 0 = ν′1 < ν′2 < . . . be the values ν′ such that

c′ν′ 6= 0 and define Ck = c′ν′k
, then for n′k = eν

′
k we have G(s) =

∑
k≥1 Ckn

′
k
−s and

∑
ν′<t′ c

′
ν′ =

∑
n′k<y

Ck

with y = et
′
. The aim is therefore to prove

∑
n′k<y

Ck ∼ By as y →∞.
But G is a generalized Dirichlet series that is absolutely and uniformly convergent in right half-planes

Re(s) ≥ 1 + ε (ε > 0) and G has a meromorphic continuation past Re(s) = 1 with a unique pole on the line
Re(s) = 1 at the point s = 1. We compute that (s− 1)G(s) = (s− 1)F (ss0) = (s− 1)/(1−

∑
wie
−aiss0) is

the reciprocal of the difference quotient for the derivative of 1−
∑
wie
−aiss0 at s = 1, and this derivative at

s = 1 is equal to

−
∑

wie
−aiss0 · (−ais0)|s=1 =

∑
wie
−ais0 · ais0 =

∑
wix

ai
0 · ai log(1/x0)

= log(1/x0)x0 ·
∑

wiaix
ai−1
0

= log(1/x0)x0f
′(x0),

a nonzero quantity. Hence, G has a simple pole at s = 1, so its residue at s = 1 is equal to

lim
s→1

(s− 1)G(s) = 1/ log(1/x0)x0f
′(x0) = B.

Now consider an arbitrary generalized Dirichlet series H(s) =
∑
k≥1Akmk

−s with {1 = m1 < · · · } a
strictly increasing discrete sequence in [1,∞) and the Ak’s are non-negative real numbers. Assume that H
is convergent on Re(s) > 1 and is meromorphic on Re(s) ≥ 1 with a unique right-most pole that is moreover
located at s = 1. Assume the pole at s = 1 is simple; we have seen that G is such a function, taking Ak = Ck
and mk = n′k. For such H, we wish to establish the asymptotic estimate

∑
mk<y

Ak ∼ Ry as y →∞, where
R is the residue of H at s = 1; for H = G this would provide exactly what we need.

Consider the left-continuous monotonically increasing summatory function f(u) =
∑

logmk<u
Ak that

jumps at the logmk’s with a gap of Ak for the jump at logmk. The infinite series H(s) for Re(s) > 1
can be expressed as an absolutely convergent Riemann-Stieltjes integral

∫∞
0
e−su df(u). Since H is assumed

to meromorphically extend past the line Re(s) = 1 with a simple pole at s = 1 having residue R, the
Wiener-Ikehara Tauberian theorem gives f(u) ∼ Reu as u → ∞ (two references for this theorem are [11,
§6.1, Thm. 3] and [16, Ch. V, §17, Thm. 17]). Now letting y = eu, this says

∑
mk<y

Ak ∼ Ry, as desired.
This completes Montgomery’s proof of Theorem 6.1.

7. Conclusion

Through arguments based on complex analysis, the question of power laws for word frequencies in the case
of unequal key-stroke probabilities in Miller’s random monkey experiment has been settled affirmatively in all
cases, including some interesting subtleties. In certain cases, including the case originally analyzed by Miller,
there is a multiplicative gap, corresponding to liminfs and limsups for which we have given explicit formulas.
(The discussion at the end of Example 3.4 shows that, in principle, the gap might disappear when working
in the discretized language of individual word probabilities fj (ordered by the rank-frequency parameter j),
but (2.1) provides an explicit example when such a gap really occurs even at the level of word probabilities.)
In the generic cases when the log-ratios of the probabilities are not all rational, this gap disappears and one
has an explicit coefficient for the power law on word frequencies. Complex analysis explains this behavior
via the pole structure of the generating function for the problem, when this generating function is viewed as
a function of a complex variable through an exponential change of parameter x = e−s.

It would of course be pleasant to have a proof of the power law behavior in the case of unequal probabilities
that avoids some of this technical machinery. One possible approach is the following. Suppose that a random
variable Xt has a lognormal distribution with mean µt and variance σ2t. Now consider a random variable Y
chosen according to the distribution Xt, where the value of t is itself an exponentially distributed random
variable. It is known that the distribution of Y follows a power law [1, 9, 12]. Miller’s experiment is
quite similar. If we let t be the number of characters in a word, it follows a geometric distribution and
this approximates the exponential distribution. If we let Xt correspond to the probability that a word
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chosen uniformly at random from all words of length t is generated by Miller’s experiment, then Xt is
approximately lognormal for sufficiently large t [10]. If these approximations are sufficiently good, one might
expect to obtain that the rank-frequency of words in Miller’s experiment approximately follows a power
law. We are somewhat skeptical, however, that an approach through probability theory can yield the rich
insights obtained from utilizing the methods of analytic number theory, particularly an understanding of the
significance of the arithmetic condition of rationality of log-ratios of the probabilities.
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