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Five Stories for Richard

Persi Diaconis

Richard Stanley writes with a clarity and originality that makes those of us in
his orbit happy we can appreciate and apply his mathematics. One thing missing
(for me) is the stories that gave rise to his questions, the stories that relate his
discoveries to the rest of mathematics and its applications.

I mostly work on problems that start in an application. Here is an example,
leading to my favorite story about stories. In studying the optimal strategy in
a game, I needed many random permutations of 52 cards. The usual method of
choosing a permutation on the computer starts with n things in order, then one
picks a random number from 1 to n — say 17 — and transposes 1 and 17. Next one
picks a random number from 2 to n and transposes these, and so forth, finishing with
a random number from n — 1 to n. This generates all n! permutations uniformly.
When our simulations were done (comprising many hours of CPU time on a big
machine), the numbers “looked funny.” Something was wrong. After two days of
checking thousands of lines of code, I asked “How did you choose the permutations?”
The programmer said, “Oh yes, you told me that fussy thing, ‘random with 1, etc’
but I made it more random, with 100 transpositions of (i,5),1 < i,5 < n.” T asked
for the work to be rerun. She went to her boss and to her boss’ boss who each told
me, essentially, “You mathematicians are crazy; 100 random transpositions has
to be enough to mix up 52 cards.” So, I really wanted to know the answer to the
question of how many transpositions will randomize 52 cards. Eventually, Mehrdad
Shahshahani and I figured it out [11]: the answer is about £nlogn. More carefully,
the refined estimates in [18] show that for | = (nlogn+c), [|Q* —u||rv < e~¢. Set
the right side = 1/100 and solve for ¢; this gives about 400 transpositions needed
to randomize 52 cards.

Our method of proof used character theory in a novel way, and a small subject
started [5]. T gave a talk on this at Harvard’s math department and my friend Barry
Mazur came up afterward and said, “That’s great, and you know, you can use the
same ideas to work things out for other groups: try GL,,(F;).” I was puzzled. Why
would I want to do that? Explaining my puzzlement I said, “Sure, but what’s the
story?” This puzzled Barry, who didn’t understand my need for an application.
When he did he said, “I see; you don’t understand that in mathematics, somebody
else makes up the story.”
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I know that Richard appreciates motivation. He’s even coined a term for my
talents in this direction, occasionally asking me to try persification to find a story
for one of his theorems; I think it makes both of us happy.

I’ve chosen five stories that relate Richard’s theorems to an application. I'm
sure there are hundreds more examples, at least one for every reader of this paper.

1. Story One: P-partitions and shuffling cards

P-partitions are a unifying machine that Richard built in his thesis [20]. He
tells a cleaned-up version in [30, Chap. 3]. This is vintage Richard: “just the
facts.” It begins with a partially ordered set P on [n]. A P-partition is a function
f:P — {0,1,2,...} such that if i <p j then f(i) < f(j) and if i <p j with
i > j, then f(i) < f(j). Richard takes this and develops its enumerative theory,
ties it with a rich variety of classical enumerative mathematics (particularly by
MacMahon) and finds lots of new identities. The larger world of combinatorics
haven’t particularly warmed to this notion but see [13, 16] and their references.

His enumerative theory relates to descents: a permutation o in S, has a descent
at i if o(i) > 0(i+1), 1 <i <n—1. Let d(o) equal the number of descents. A
basic step in P-partition theory is:

FacT. Let P be the linear order on [n] induced by o € S,,. Let Qp(m) be the
number of P-partitions f : P — [m]. Then

(11) Qp(m) = (m+n—1—d(0)>'

n
This gives results for the enumerative theory of a general partial order £ via the
fundamental theorem of P-partitions: for any P, let £L(P) be all linear extensions,
then

(12) Qpm) = Y <m+n—1—d(0)>.

n
c€L(P)

There is a surprising connection to the ordinary method of riffle shuffling cards!
Consider a deck of n cards, originally in order 1,2, ..., n. An m-shuffle results from
cutting the deck into m piles (by a multinomial distribution) and riffle shuffling the
piles by dropping cards sequentially with probability proportional to packet size.
The chance that this results in the permutation o is denoted @,,(c). Repeated
shuffles reduce to this case because Q. * Qp = Q. In work with Dave Bayer
[2], we showed
(m+nfr(o'))

(1.3) Qm(o) = -

with 7(0) = d(c~1) + 1, the number of rising sequences for inverse riffle shuffles.
Thus Qm(c~t) = Qy(m)/m™. This means that much of the enumerative work
of P-partitions become theorems about shuffling, and vice versa. See [8] for an
extensive development.

Richard himself has made a marvelous connection between riffle shuffling and
algebraic combinatorics [27]. Here is one of his theorems. Let z1,x2, ... be nonnega-
tive reals that sum to 1. Describe an x-shuffle by starting with n cards in order, and
labeling them independently, with label ¢ chosen with probability ;. Then remove
all cards labeled 1, keeping them in the same relative order. Remove all the cards

mn



FIVE STORIES FOR RICHARD 3

labeled 2 and place them under the 1s, and so on. If 1 =29 = -+ =z, = 1/m
and z; = 0 for ¢ > m, this is an (inverse) m-shuffle. Let Q,(o) be the chance of
o. These satisfy a simple convolution formula. Moreover, for A a partition of n
let Q«(\) be the chance that an z-shuffle results in shape A under the Robinson—
Schersted—Knuth algorithm. Richard proved that

(1.4) Qx(N) = fasa(z)

with f) the dimension of the irreducible representation of S, and s, the usual
Schur function. This gives a shuffling interpretation of Schur functions that allows
transferring algebraic combinatorics into card shuffling. See [14] for development
and examples.

Here is a different effort to make up a story for P-partitions. Let P be a partial
order on [n] in a natural labeling, so i <p j implies ¢ < j. Consider dropping n
labeled balls into m labeled boxes with probability 1/m (usual multinomial alloca-
tion). The chance that the allocation respects P so balls labeled i < j are dropped
into boxes with weakly increasing labels is

(1.5) Qp(m)/m".

Thus, the many formulas for Qp(m) yield answers to easy-to-interpret probability
problems.

EXAMPLE. Suppose there are n; boys and nsy girls allocated to m pay levels
(with ny +n9 = n). If the allocation is random, the chance that all the girls are paid
less than or equally much as all the boys is Qp(m)/m™ with P corresponding to the
complete bipartite graph with all the girls below all the boys, e.g., if n; = 2, no = 3:

3 4 5

1 2

Alas, at this writing, for the boys/girls example, Qp(m) is not so simple to
write down. I’'m happy to work backward, taking posets that Richard knows about
and finding stories for them.

2. Story Two: Chromatic polynomials

Let G = (V, E) be a graph, say undirected, simple (no loops or multiple edges)
and connected. The chromatic polynomial of G, pg(r), is the number of proper
colorings of G with r colors. A long time ago, I noticed that pg(r) has a simple
probability interpretation: pg(r)/ IVl is the answer to the birthday problem. What
is the chance that if a graph is randomly r-colored there will be no monochromatic
edges? The classical birthday problem has G the complete graph on 23 vertices
(the people) and pg(r) = r(r—1),...,(r — 23+ 1) with r = 365, so the probability
the birthday problem fails is 365 - 364 - - - - - 343/365%% = 0.50. The graph version
is a natural probability problem: what is the chance that two people who know
each other have the same birthday? The probability community has many natural
variations. Instead of choosing the colors uniformly (probability 1/r) it is natural
to choose the colors with probability p1,ps,...,p, with p; >0, p1 +--- +p, = 1.
Then the probability of a proper coloring depends on p, call it pg(p). I noticed that
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pc(p) is a symmetric polynomial in p and it has a name: the Stanley chromatic
polynomial!

Shortly after realizing this, I told Richard about it at lunch. His response was
surprising: “That can’t be true, otherwise I would know it.” Then he got up and
walked around for about five minutes, came back and said, “You're right.” From
there we began a fascinating game of mathematical ping-pong. “You know,” he
said, “I have a version enumerating by the number of monochromatic edges.” This
is the Stanley—Tutte polynomial [23, 25]. We do know. For a probabilist the natural
question is “Fix a graph G, color the vertices with r colors chosen from py, ..., p;,
what’s the chance of having r monochromatic edges?” We prove theorems showing
that if n and p have

(2.1) (5) Z:p Y

then
(2.2) p{k monochromatic edges} = e *\* /k!.

He responded, “What about the hypergraph version?” We have that: with 88
people it is even odds that three or more of them have the same birthday. For a
survey of what probabilists know about birthdays, see [1, 4, 9].

The following beautiful work on the interfaces between combinatorics and prob-
ability has recently been done by my student Sukhada Fadnavis [12]. Fix a graph
G and consider coloring it with (p1,...,p,). What choice of p; makes a proper
coloring most likely? It seems intuitive that p; = 1/r, 1 <4 <r, does best and this
is true for the complete graph. Fadnavis shows it is true for claw-free graphs; this
is a close relative of the Stanley—Stembridge conjecture [31]. It is false in general,
e.g., for a k-star (k > 5) or a complete binary tree. Fadnavis shows it is always
true if the number of colors is large enough: more than 400d%/2, where d is the
maximum degree of the graph, will do. These all translate into monotonicity of the
Stanley chromatic polynomial.

Our ping-pong game continues with Bhattacharya and Mukherjee [3]. We re-
cently determined the distribution of the number of monochromatic edges for quite
general random graphs. What do you have to say to that Mr. Wise Guy? Have a
look at these papers of Richard’s. There is more in there to think about.

3. Story Three: The Jack polynomials

Many readers will know that enumerative combinatorics is much unified through
its connection with symmetric polynomials. There are a number of standard bases
for the homogeneous polynomials of degree n: monomial, elementary, homogeneous,
power sum, and Schur functions are standard bases indexed by partitions A\ of n.
The various change of basis matrices and inner products code up a huge swath of
combinatorics. Much of this was originally discovered in Richard’s thesis and is
brilliantly brought together in [26, Chap. 7].

Statisticians use another basis, the zonal polynomials of Alan James. These
are natural to statisticians because of their use in multivariate analyses such as
principle coordinate analysis of covariance matrices. They were unknown to combi-
natorialists and during a visit to MIT in 1985-86, I gave a series of working seminars
on them. Along the way, I mentioned the one-parameter family of bases J{' of Jack



FIVE STORIES FOR RICHARD 5

polynomials. This included many standard bases: when « tends to infinity they are
the monomials; when a = 0 they are the elementaries; when o« = 1 they are Schur
polynomials; when o = 2 they are zonals. Richard got hooked at working out their
properties as fully as he could [22]. Many remarkable identities and relationships
were proved.

There was a nagging question: what did the Jacks “mean” and what were they
good for? Aside from a few special values they weren’t associated with natural
groups or scientific problems. There was so much going on between them and the
rest of symmetric function theory there must be a reason.

A first scientific application was found in joint work with Phil Hanlon [6]. There
is a natural probability measure used by biologists and statisticians called “Ewens
measure.” This sets the probability of a permutation o € S, to

(3.1) po(o) = 271(0)970).

In (3.1), d is a metric on permutations, the Cayley distance: the minimum number
of transpositions to bring ¢ to og. The permutation og is a fixed “center” and
usually 0 < 6 < 1 is a scale parameter determining how concentrated py is about
0o. Finally, 2(0) is a normalizing constant. In applied work, one needs a way of
choosing random o from py, e.g., using Monte Carlo techniques to estimate things
such as the distribution of the number of fixed points of o or the efficacy of the
maximum likelihood estimate of 8 and oy.

The standard way to sample from py is the Metropolis algorithm: from o, pick
a transposition (i, 7) uniformly, let ¢’ = (,j)o. If pg(c’) > pe(c) move to o’. If
po(c’) < po(0), flip a coin with probability of heads pg(c’)/pg(c). If this comes up
heads, move to ¢’. If it comes up tails, stay at o. The transition matrix M (o, o’)
gives a Markov chain on S,,. If 09 = id, everything is invariant under conjugation
and there is an equivalent Markov chain on partitions of n, with transition matrix
M(A,N). This is a P(n) x P(n) matrix, and Hanlon and I found that the Jack
polynomials J{* gave an explicit diagonalization (here aw = 1/6). To explain, both
the Jacks and power sums are bases for symmetric polynomials of degree n. Thus
there is a change of basis matrix

(3-2) TR (@) =S upu(@).

For each fixed A, j§ , as a function of y is an eigenfunction of M with a simple
eigenvalue. Finding the appropriate normalizations needed Richard’s formulas for
inner products, his lovely hook-length formula for the deformed dimensions, and
much else. The result is a deformation of the example in Story One (6 = 1) and
required much hard work by Hanlon and Stanley to bring to fruition. Further
details are in [15] and [17]. My efforts to carry out a similar construction for
the two-parameter Macdonald polynomials with Arun Ram [10] seemed forced to
go in a different direction. Why these natural probabilistic deformations lead to
algebraically natural deformations is a mystery. Richard? Where are you?

4. Story Four: Alternating permutations and poset polytopes

This story has a familiar ring. I was working on an applied probability problem:;
I asked Richard for help recognizing an object. It turned out to be his friend and
that opened the problem up. I got stuck while inside and he helped with two
amazing algorithms. I sent him a draft of the paper and he actually looked at it,
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giving a short proof of a theorem with a three-page argument. Wow. Anyone who
looks will see that Richard loves alternating permutations [28, 29]: they go up,
down, up, down, ..., like 4 51 3 2. He also loves polyhedral combinatorics: face
numbers, h-vectors, g-conjectures. I never “got” these. Why does he care? What’s
it about? This story set me straight.

Working with Philip Matchett Wood [7], we were looking at the set Tj, of
(n+1) x (n+ 1) tridiagonal doubly stochastic matrices. For a probabilist, these
are “birth and death chains with a uniform stationary distribution.” For the rest
of you, they form a compact convex set. This inherits a uniform distribution and
we were studying the following: Having selected m € T,, at random, what are its
eigenvalues and mixing time? Drawing pictures and computing, we saw that our
polytope has a Fibonacci number Fj,;; of extreme points because the rows and
columns sum to 1; m is determined by its super-diagonal cy, ..., c,. The polytope
can be expressed as 0 < ¢;, ¢1 + ¢;41 < 1 for all i (set ¢y = ¢p1 = 0).

I asked Richard if he recognized this thing. He answered that he did, its volume
is E,,/n! where E,, is the number of alternating permutations in \S,,. In [21] he had
given a triangulation of it into unit simplices indexed by alternating permutations.
This gave us a fast, exact way to sample from T;, if only we knew how to pick an
alternating permutation. Richard outlined a method for this, and so it went. For
Phil and I, there were two bottom lines: 1) for m € T,, chosen at random, order
n?log n steps are necessary and sufficient to get close to random and 2) alternating
permutations/poset polytopes are really interesting parts of mathematics. Our
paper has some other nice stuff in it; we even managed to prove some new things
about alternating permutations (divide one by n, the entries are asympotically
distributed in the same way as ¢1,ca, ..., ¢, above). The story goes on, too: see
[19]. Mostly, this is a workaday success story for getting Richard’s attention.

5. Story Five: Stanley’s problems and Selberg’s integrals

Richard’s enumerative combinatorics books are filled with interesting problems.
Their available solutions make them practically a stand-alone tour of topics in enu-
merative combinatorics. I'm sure that most of the problems have stories attached
to them; the most well-known is [24]. The purpose of the present entry is to bring
one of these problems to life by telling its story.

The year was 1974. You have to know that I did my Ph.D. thesis in analytic
number theory and had just taken a job at Stanford’s Department of Statistics.
Atle Selberg was giving a talk at Berkeley and I went up, just to look at one of the
great living number theorists. Room 60 in Evans Hall was packed full, with people
sitting on the floor. What was Selberg going to talk about? He came out and
extracted a yellowed reprint and began copying. He was giving a talk on Selberg’s
integral, directly from his 1944 paper. The integral is

1 1n
(5.1) / / Hl’?_l(l — ;)P H(ﬂfz‘ — ;)% da, - dy,
0 0 =1 j

g Dlatp)+(n+ (G- +7)
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This was completely out of fashion and slow going for the modern audience. I began
to think about Bayes’ derivation of a simpler integral,

1
(5.2) / (?)aﬁj(l—m)"_j dr =1/(n+1), 0<j<n.
0

Bayes needed this for the first computation in Bayesian statistics. The left side
represents the chance of j heads out of n tosses with an z-coin, when z is given a
uniform a priori distribution. It’s still surprising that the answer doesn’t depend on
j. That was just Bayes’ point, that using a uniform prior is equivalent to a uniform
distribution of the outcome j. Nowadays, we prove Bayes’ result using the beta
integral. He didn’t have this in 1789 and argued in Bayes’ billiard ball argument as
follows. Picture an interval: for us, [0,1]; for Bayes, the length of a billiard table.
A red point (or ball) is dropped down at random. Following this, n further black
points are dropped down at random. Required to find the chance of j black balls
to the left of the red. On one hand, the answer is given by the left-hand integral
n (5.2). On the other hand, Bayes argued, all the balls are the same. You may as
well have dropped n+ 1 down at random, then picked a ball at random and colored
it red. On this argument, the chance of j black to the left of the red is clearly
1/(n+1), 0 < j <n,and we are done. Now, if we move the binomial coefficient to
the right, we have done the beta integral,

rG+1)I'(n—j54+1)
I'(n+j+2)

(5.3) /0 21— 2" da =

This argument works for integer j and n, but both sides are suitably analytic in
these parameters and the result holds generally (Carlson’s Lemma).

Back to Selberg’s lecture. At the end, questions were asked for. No one had
any, and after a minute or two, it became uncomfortable. Selberg’s original integral
was still on the board. He had written down a version in three variables with small
integer choices for a, 3, and . Then the right-hand side is a simple combination
of factorials and the whole has a probabilistic interpretation. I had figured out a
Bayes-like interpretation of the left-hand side along the lines of “three points are
dropped into the interval and then n further points, what is the chance that j points
are to the left of the first, & between, ....” Iraised my hand and started to give my
explanation of his example. He listened for a bit and then held up his hand to stop
me. “I don’t know what you are talking about and I don’t know if you know what
you are talking about. My proof is perfectly valid. Are there any other questions?”
There were none and the talk ended with me devastated. I was enough in shock
that T have been unable since to reconstruct my original argument.

This brings us to Richard’s problem [30, Chap. 1, Prob. 11]. T told the story
to Richard and he figured out the probabilistic interpretation of the left-hand side!
No one has figured out a probabilistic proof.

For me, these stories are what make mathematics come alive. I have another
dozen for Richard; perhaps this might make a good web site, telling the stories
behind Richard’s problems.

In fact, Richard is a pretty good storyteller himself: look at some of the extra
stuff on his web site. He doesn’t mix it with mathematics. I respect that, but hope
that he finds a way to set some of them down. Perhaps the examples here will push
him one way or the other.
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