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Abstract. The well-known Gilbert-Shannon-Reeds model for riffle shuffles assumes that the cards are initially cut
‘about in half’ and then riffled together. We analyze a natural variant where the initial cut is biased. Extending results
of Fulman (1998), we show a sharp cutoff in separation and L-infinity distances. This analysis is possible due to the
close connection between shuffling and quasisymmetric functions along with some complex analysis of a generating
function.

Résumé. Le modèle de Gilbert-Shannon-Reeds pour melange de cartes suppose que les cartes sont d’abord coupés
énviron de moitié’, puis intescaler ensemble. Nous analysons une variante naturelle, où la coupe initiale est biaisé.
Nous propons une extension des résultats de Fulman (1998), nous montrent une forte coupure dans les distances de
séparation et L-infinity. Cette analyse est possible grâce à l’étroite relation entre brassage et fonctions quasisymmetric.
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1 Introduction
We analyze a natural one-parameter model for riffle shuffling a deck of n cards. Roughly, the deck is cut
into two piles with a binomial (n, θ) distribution. Then the piles are riffled together sequentially according
to the following rule: if the left pile has A cards and the right pile has B cards, then drop the next card from
the bottom of the left pile with probability A/(A + B). Continue until all cards are dropped. Starting at
the identity, let Pθ(w) be the probability of the permutation w after one such θ-shuffle. Define convolution
by

P ∗k
θ (w) =

∑
v

Pθ(v)P ∗(k−1)
θ (v−1w), (1.1)

and define the uniform distribution by U(w) = 1/n!.
When θ = 1/2, this is the widely studied Gilbert-Shannon-Reeds model. The natural version with

biased cuts was studied by Diaconis et al. (1992), Lalley (1996, 2000) and most thoroughly by Fulman
(1998). A literature review is in Section 2 below. Here we study the rate of convergence in the separation
and `∞ metrics:

SEP(k) = max
w

(
1− P ∗k(w)

U(w)

)
(1.2)

`∞(k) = max
w

∣∣∣∣1− P ∗k(w)
U(w)

∣∣∣∣ . (1.3)
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Note that SEP(k) is bounded above by 1, and `∞(k) can be as large as n!− 1. Further, both SEP(k) and
`∞(k) are upper bounds for the total variation metric:

‖P ∗k − U‖TV =
1
2

∑
w

|P ∗k(w)− U(w)| ≤ SEP(k) ≤ `∞(k).

A main result of this note gives closed form expressions

SEP(k) = 1−
∑

w∈Sn

sgn(w)
n∏

i=1

(
θi + (1− θ)i

)kni(w)
(1.4)

`∞(k) =
∑

w∈Sn

n∏
i=1

(
θi + (1− θ)i

)kni(w) − 1, (1.5)

where ni(w) is the number of i-cycles in the permutation w. Using these formulae we prove the following.

Theorem 1 For the θ-biased riffle shuffle measure on Sn, let

k =
⌊ 2 log n− log 2 + c

− log(θ2 + (1− θ)2)

⌋
. (1.6)

Then

SEP(k) ∼ exp(e−c)− 1 (1.7)
`∞(k) ∼ 1− exp(−e−c) (1.8)

for any fixed real c as n tends to∞. Here 0 < θ < 1 is fixed.

An upper bound on separation of this form is given in Fulman (1998). Theorem 1 shows this bound is
tight, holds also for `∞, and establishes the cutoff phenomenon. Note that, as a function of θ, k as defined
in (1.6) above is smallest when θ = 1/2, so unbiased cuts lead to fastest mixing.

Background on Markov chains and shuffling is given in Section 2. There is an intimate connection
between these biased shuffles and quasisymmetric functions explained in Section 3 where we prove (1.4)
and (1.5). The upper bound in Fulman (1998) is derived using a strong stationary time. This is shown to
be exact and equivalent to (1.4) in Section 4. The proof of Theorem 1, which has extensions to allow θ to
depend on n (e.g. θ = 1/n), is in Section 5.

2 Riffle Shuffling
A superb introduction to Markov chains which treats riffle shuffling and stationary times is the book by
Levin et al. (2009). The analysis of riffle shuffling has connections to algebra, geometry and combina-
torics; a detailed survey is in Diaconis (2003). The results and references in Assaf et al. (2011) and Conger
and Howald (2010) bring this up to date.

For present purposes, the following extension is needed. Let 1 ≤ a ≤ ∞, and let θ = (θ1, θ2, . . . , θa),
with 0 ≤ θi ≤ 1 and θ1 + · · · + θa = 1, be fixed. A θ-shuffle of a deck of n cards proceeds as follows:
Choose {Ni}ai=1 from the multinomial(n, θ) distribution, that is, with the distribution of n balls being
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dropped into a boxes independently according to θ. Cut the deck into a packets of sizes N1, N2, . . . , Na

(some of the packets may be empty). Now sequentially drop cards from the bottom of each packet,
choosing to drop from pack i with probability proportional to its current packet size. Continue until all
cards have been dropped into a single pile. Let Pθ denote the associated measure on Sn. Note that several
more detailed descriptions of Pθ appear in Fulman (1998).

When a = 2 and θ1 = θ2 = 1/2, this is the basic Gilbert-Shannon-Reeds measure. When a = 2 and
θ1 = θ, θ2 = 1−θ, this is the θ-biased shuffle studied in the present paper. The measures Pθ were studied
by Diaconis et al. (1992) who prove that they convolve nicely: if θ = (θ1, . . . , θa) and η = (η1, . . . , ηb),
then set θ ∗ η = (θ1η1, . . . , θ1ηb, θ2η1, . . . , θaηb), a vector of length ab.

Proposition 2 (Diaconis et al. (1992)) On Sn, we have

Pθ ∗ Pη = Pθ∗η.

Thus P ∗k
θ = Pθ∗k , and the combinatorics of Pθ determines the convolution powers. Fulman (1998)

works out many properties of these measures giving closed formulae and asymptotics for the distribution
of cycle structure, inversions and descents.

When θ = 1/2, a sharp analysis of the rate of convergence for the Gilbert-Shannon-Reeds measure in
total variation distance appears in Bayer and Diaconis (1992). It is an open problem to give a similarly
sharp analysis for the measures P ∗k

θ .

Hyperplane walks
Our θ-shuffles may be studied from other points of view as well. They are a special case of hyperplane
walks introduced in Bidigare et al. (1999) and further studied in Brown and Diaconis (1998) and more
recently in Athanasiadis and Diaconis (2010) and Diaconis et al. (2011). Further, they fall into the class
of “Hopf-square” walks studied in Diaconis et al. (2011). Each of these perspectives adds to our picture.
A brief commentary follows.

The braid arrangement is based on the
(
n
2

)
hyperplanes Hi,j = {x ∈ Rn | xi = xj}, 1 ≤ i < j ≤ n.

This divides Rn into chambers and faces. As shown in Bidigare et al. (1999), the chambers are indexed
by permutations and the faces are indexed by block ordered set partitions. There is a simple projection
operator which, given a chamber C and a face F , returns the chamber C ∗ F that is adjacent to F and
closest to C (in the sense of crossing the fewest number of hyperplanes). Details are in Bidigare et al.
(1999); Brown and Diaconis (1998). It is shown there that projection operates as a kind of inverse riffle
shuffle. Put a probability measure on faces of form S, Sc, with S ⊂ [n], giving probability θ|S|(1−θ)n−|S|

to each (S may be empty). The resulting hyperplane walk may be explained as follows: Picture a deck
of n cards in order. For each card, flip an independent θ-coin. Remove all cards where the coin comes
up heads, keeping their relative order fixed, and move them to the top of the deck. This is precisely an
inverse θ-shuffle.

The theory of Bidigare et al. (1999); Brown and Diaconis (1998) gives useful expressions for the eigen-
values of any hyperplane walk. Specialized to θ-shuffles, they show there is one eigenvalue βw for each
permutation w ∈ Sn. Further, Diaconis et al. (2011) gives a description of the left eigen vectors. These
give right eigen vectors and values of the “forward” θ-shuffles.
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As one example, Brown and Diaconis (1998) gives a rate of convergence after k-steps. In the present
case, this reads

‖Kk − U‖TV ≤
∑

1≤i<j≤n

βk
i,j (2.1)

with βi,j =
∑

F⊆Hi,j
w(F ). By symmetry, βi,j = β1,2 is constant in i, j. The sum is over all set partitions

S, Sc where either {1, 2} ⊆ S or {1, 2} ⊆ Sc. So {1, 2} contributes
∑

A⊆[n−1] θ
2θ|A|(1− θ)n−2−|A| =

p2, the compliment contributes (1− θ)2, and so βi,j = θ2 + (1− θ)2. The bound above becomes

‖Kk − U‖TV ≤
(

n

2

)(
θ2 + (1− θ)2

)k
. (2.2)

This is exactly the birthday bound derived differently below. Of course, these are just upper bounds, and
it is of interest to know if they can be improved. The theory developed below shows that

‖Kk − U‖TV ≤ SEP(k) ≤
(

n

2

)(
θ2 + (1− θ)2

)k
. (2.3)

for fixed θ in (0, 1). Theorem 1 shows that SEP(k) ∼
(
n
2

) (
θ2 + (1− θ)2

)k
, so the bound is best possible.

Recall that any w ∈ Sn has a unique factorization as a product of decreasing Lyndon words: w =
`1`2 · · · `k. Here `i is Lyndon if it is lexicographically least among all cyclic rearrangements (so 132 is
Lyndon but 213 is not). For example 236415 = 236 · 4 · 15. The theorem in Diaconis et al. (2011) shows

βw =
k∏

i=1

(
θ|`i| + (1− θ)|`i|

)
(2.4)

where |`i| is the length of the Lyndon word `i. If w is the reverse of the identity, then all |`i| = 1 and
βw = 1. The second eigenvalue is θ2 + (1− θ)2 with multiplicity

(
n
2

)
, so the bound (2.3) uses precisely

these eigen values. More generally, the eigen values are
∏n

i=1

(
θi + (1− θ)i

)ai for any 0 ≤ ai ≤ n with∑
iai = n, each with multiplicity n!/(

∏
i iaiai!).

3 Quasisymmetric Functions
Background on symmetric function theory is in Macdonald (1995) with Stanley (1999) developing the
extension to quasisymmetric functions. We work with infinitely many variables X = {xi}∞i=1. The space
of quasisymmetric functions homogeneous of degree n has dimension 2n−1. A basis for this space is
indexed by subsets of [n − 1] = {1, 2, . . . , n − 1} or, equivalently, by compositions of n. We use the
following bijection between subsets D = {D1 < D2 < · · · < Da−1} of [n − 1] and compositions
α = (α1, α2, . . . , αa) of n to identify subsets and compositions, which we denote by α↔ D(α):

(α1, α2, . . . , αa) 7−→ {α1, α1 + α2, . . . , α1 + · · ·+ αa−1},
(D1, D2 −D1, . . . , n−Da−1) ←− [ {D1 < D2 < . . . < Da−1}.

The monomial quasisymmetric function basis is defined by

Mα(X) =
∑

i1<i2<···<ia

xα1
i1

xα2
i2
· · ·xαa

ia
. (3.1)
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For example, M(1,2,1)(X) =
∑

i1<i2<i3
xi1x

2
i2

xi3 .
The fundamental quasisymmetric function basis of Gessel (1984) is defined by

QD(X) =
∑

i1≤···≤in
ij=ij+1⇒j 6∈D

xi1 · · ·xin . (3.2)

For example, for n = 4, Q{1}(X) =
∑

i1<i2≤i3≤i4
xi1xi2xi3xi4 . Expressed in terms of monomial

quasisymmetric functions, Q{1}(X) = M(1,3)(X) + M(1,2,1)(X) + M(1,1,2)(X) + M(1,1,1,1)(X). In
general, the fundamental basis is related to the monomial basis by

QD(β)(X) =
∑

α refines β

Mα(X), (3.3)

where a composition α of length a refines the composition β of length b if there exist indices 0 =
i0, i1, i2, . . . , ib = a such that αij−1+1 + · · · + αij = βj . For example, both (1, 2, 1) and (1, 1, 2)
refine (1, 3) but (2, 1, 1) does not.

Stanley (2001), based on results in Fulman (1998), established a sharp connection between θ-shuffling
and quasisymmetric functions.

Theorem 3 (Stanley (2001)(Theorem 2.1)) Let w ∈ Sn and θ = (θ1, θ2, . . . , θa) be given. Then

Pθ(w) = QiDes(w)(θ),

where iDes(w) = Des(w−1) is the inverse descent set of w.

This identification together with (3.3) gives a useful inequality which shows that separation and `∞ are
achieved at the reversal and the identity permutations, respectively.

Proposition 4 For permutations w and u, if iDes(w) contains iDes(u), then Prob(w) ≤ Prob(u) with
equality if and only if iDes(w) = iDes(u).

Proof: First note that α refines β if and only if D(α) contains D(β). Let α and β be such that D(α) =
iDes(w) and D(β) = iDes(u). From (3.3) and the transitivity of refinement, we have

QD(β)(X) =
∑

γ refines β

Mγ(X)

=
∑

γ refines α

Mγ(X) +
∑

γ′ refines β
γ′ not refine α

Mγ′(X)

= QD(α)(X) +
∑

γ′ refines β
γ′ not refine α

Mγ′(X).

Furthermore, α 6= β if and only if β does not refine α, in which case the summand contains the term Mβ .
Since the xi are probabilities, they are all nonnegative, thus making QD(α) strictly less than QD(β). 2

In the partial order on subsets or, equivalently, composition, [n − 1] = D(1n) is the unique minimal
element and ∅ = D(n) is the unique maximal element. Therefore Proposition 4 has the following
consequence.
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Corollary 5 For any θ, we have

SEP(Pθ) = 1− n! ·Q[n−1](θ)
`∞(Pθ) = max(1− n! ·Q[n−1](θ), n! ·Q∅(θ)− 1).

Remark 6 When θ = (θ, 1− θ)∗k, we show below that the maximum is taken on at the second argument.
This is not always the case. On the cyclic group C3, with µ(1) = µ(−1) = 1

2 , µ(0) = 0, we have
3µ(1)− 1 = 1

2 and 1− 3µ(0) = 1.

For some permutations, the associated quasisymmetric functions are easy to write down. This hap-
pens in particular if the quasisymmetric function is symmetric. Below we need the elementary symmetric
functions en(X), the complete homogeneous symmetric functions hn(X), and the power sum symmetric
functions pn(X). For λ a partition with ni = ni(λ) parts equal to i, define eλ =

∏
i eni

i , hλ =
∏

i hni
i ,

pλ =
∏

i pni
i . As λ ranges over partitions of n, these are the familiar bases for the homogeneous symmet-

ric functions of degree n.
Note that

en(X) = Q[n−1](X), hn(X) = Q∅(X), pn(X∗k) = (pn(X))k
. (3.4)

Theorem 7 For any θ, with id = 1, 2, . . . , n and rev = n, n− 1, . . . , 1, we have

P ∗k
θ (rev) =

∑
λ`n

(−1)n−`(λ)z−1
λ

n∏
i=1

pi(θ)kni(λ), (3.5)

P ∗k
θ (id) =

∑
λ`n

z−1
λ

n∏
i=1

pi(θ)kni(λ), (3.6)

where `(λ) is the number of parts of λ and zλ =
∏

i ini(λ)ni(λ)!.

Proof: The result follows from Theorem 3, (3.4) and the standard expansions Macdonald (1995)

en =
∑

λ

ελz−1
λ pλ and hn =

∑
λ

z−1
λ pλ. (3.7)

2

Remark 8 For both (3.5) and (3.6) in the theorem, when λ = (1n), z−1
λ = 1/n! and

∏
i pi(θ)kni(λ) = 1.

Thus the lead term is 1/n! and all other terms are strictly less than 1. As k tends to∞, these terms tend
to 0 and P ∗k

θ (id) ∼ P ∗k
θ (rev) ∼ 1

n! . Of course, our work is to quantify this convergence.

Corollary 9 For any θ and all k ≥ 0, we have

SEP(P ∗k
θ ) = 1− n!P ∗k

θ (rev),
`∞(P ∗k

θ ) = n!P ∗k
θ (id)− 1.
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Proof: The first equality follows from the definition. For the second inequality,

`∞(P ∗k
θ ) = max(1− n!P ∗k

θ (rev), n!P ∗k
θ (id)− 1).

In comparing terms, the 1 cancels in both, and the second term is a sum of positive terms while the first
has the same terms, some with negative signs. 2

Specializing to θ-biased shuffles, Corollary 9 and Theorem 7 imply (1.4) and (1.5).

4 Strong Stationary Times
Repeated shuffling from any of the measures in Section 2 forms a Markov chain id = W0,W1,W2, . . .
taking values in Sn. A strong stationary time (SST) T is a stopping time (meaning P{T > k} only
depends on W0,W1, . . . ,Wk) such that for all k ≥ 0 and all w ∈ Sn,

P{Wk = w | T ≤ k} = U(w). (4.1)

We will build an SST for the Markov chain induced by P ∗k
θ . A basic proposition of this theory Levin et al.

(2009)[Lemma 6.1] is
SEP(k) ≤ P{T > k} for all k ≥ 0. (4.2)

Further, Aldous and Diaconis (1987) shows that there always exists a fastest SST T ∗ satisfying (4.2) with
equality for all k.

Background on stationary times is in Diaconis and Fill (1990). In this section, we build a fastest SST
(following Aldous and Diaconis (1987) and Fulman (1998)) involving a birthday problem to bound the
right hand side of (4.2). Solving this birthday problem by inclusion-exclusion gives a probabilistic proof
of (1.4), Theorem 7 and even the expression for the elementary symmetric function en in terms of the
power sums (3.7).

Constructing an SST for P ∗k
θ

Consider the inverse process in which cards are labeled i with probability θi independently. Then all the
cards labeled 1 are removed, keeping them in their same relative order, followed by all cards labeled 2,
and so on. This is one inverse θ-shuffle. Repetitions may be realized by labeling each card with a vector
with coordinates chosen independently from θ. The first shuffle is read off the first coordinate of each
card, the second shuffle off the second coordinate, and so on. Conceptually, each card may be labeled
with a vector of infinite length.

Consider the first time T that the first T coordinates of the n cards are distinct. Repeated inverse
shuffling sorts the vectors lexicographically, leaving the card with the smallest vector on top, the next
smallest second, and so on. By symmetry, at time T , the deck is uniformly distributed, even conditional
on T = k. This is (4.1). Further, this T is fastest. To see this, note that the reversal permutation
rev = n, n− 1, . . . , 1 is a halting state: P{T ≤ k} ≤ P{WT = rev}. Indeed, if WT = rev, then every
pair of cards must have a distinct label. Existence of a halting state implies that T is fastest (Diaconis and
Fill (1990)[Remark 2.39] and Levin et al. (2009)[Remark 6.12]), separation is achieved at rev, and

SEP(k) = P{T > k} for all k ≥ 0. (4.3)
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To work with the right hand side of (4.3), let Ai,j be the event that the first k coordinates of the labels on
the cards i and j are equal. Thus P{Ai,j} =

(∑
a θ2

a

)k
and

{T > k} =
⋃

1≤i<j≤n

{Ai,j}. (4.4)

Bounding the probability of the union by the sum of the probabilities yields

SEP(k) ≤
(

n

2

)(∑
a

θ2
a

)k

. (4.5)

This bound is also derived in Fulman (1998). The asymptotics of Section 5 show it is quite accurate.

Inclusion-Exclusion and the Birthday Problem

Consider this version of the birthday problem: n balls are dropped independently into B boxes with the
chance of box i being ηi. If Bi,j is the event that balls i and j both wind up in the same box, the chance
of success (having two or more balls in the same box) is

P (success) = P

 ⋃
1≤i<j≤n

Bi,j

 . (4.6)

Elementary considerations show that the chance of failure (all balls in distinct boxes) is expressible using
elementary symmetric functions en as 1− P (success) = n!en(η1, . . . , ηB). Using the expression for en

in terms of the power sums (3.7) gives

P (success) = 1−
∑

w∈Sn

sgn(w)pλ(w)(η) = 1− n!
∑
λ`n

(−1)n−`(λ)z−1
λ pλ(η) (4.7)

The inclusion-exclusion expansion of (4.6) gives a sum of polynomials which must match the neat
expressions in (4.7). This may be seen explicitly using the inclusion-exclusion formula for the chromatic
polynomial in Stanley (1995). For example,

P{B1,2∪B1,3∪B2,3} = 3P (B1,2)−3P (B1,2∩B2,3)+P (B1,2∩B1,3∩B2,3) = 3(
∑

p2
j )−2(

∑
p3

j ),

while (4.7) gives 6(− 1
2p(2,1)(η) + 1

3p3(η)) matching (4.6).

Remark 10 Since separation is achieved (uniquely) at the reversal permutation, (4.3), (4.4), (4.6), (4.7)
give a probabilistic proof of Theorem 7.

Remark 11 This connection between inclusion–exclusion, birthday problems and symmetric functions
seems generally useful. See, for example, Montgomery and Soundararajan (2004)[pg. 604–605].
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5 Main Result
This section derives the asymptotic results of Theorem 1 and some extensions. Without loss of generality,
suppose 1/2 ≤ θ ≤ 1. To bound the `∞ distance, using Corollary 9 together with (1.5) and (1.4), we are
interested in

`(k, n) =
∑

w∈Sn

∏
j

θ
knj(w)
j , (5.1)

where θj = θj + (1− θ)j and nj(w) denotes the number of j cycles in the permutation w. If

fn(x1, . . . , xn) =
∑

w∈Sn

∏
j

x
nj(w)
j

then we have the identity

∞∑
n=0

zn

n!
fn(x1, . . . , xn) = exp

( ∞∑
j=1

zj

j
xj

)
. (5.2)

Therefore we have that
∞∑

n=0

zn

n!
`(k, n) = exp

 ∞∑
j=1

zj

j
θk

j

 . (5.3)

Theorem 12 Define

M = M(k, n) =
∞∑

j=2

njθk
j .

If M ≤
√

n/(10 log n), then we have

`(k, n) = exp

 ∞∑
j=2

nj

j
θk

j

(1 + O

(
1 + M√

n

))
.

Proof: Set Fk(z) =
∑∞

j=1
zj

j θk
j . By the residue theorem we have

`(k, n) =
n!
2πi

∫
|z|=n

exp(Fk(z))z−n dz

z
=

n!
2πnn

∫ π

−π

exp(Fk(neix)− inx)dx.

We divide the integral into the ranges when |x| ≤ (log n)/
√

n which gives the main contribution, and
π ≥ |x| > (log n)/

√
n.

Consider first the range |x| ≤ (log n)/
√

n. Here we have

Fk(neix) = neix +
∞∑

j=2

nj

j
θk

j eijx = neix +
∞∑

j=2

nj

j
θk

j + O(|x|M),
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since eijx = 1 + O(j|x|). Therefore, using neix = n + inx− nx2/2 + O(|x|3n) and Stirling’s formula,
the integral over this region is

n!
2πnn

∫
|x|≤(log n)/

√
n

exp
(
n−nx2

2
+

∞∑
j=2

nj

j
θk

j +O
(
|x|3n+|x|M

))
dx = exp

( ∞∑
j=2

nj

j
θk

j

)(
1+O

(1 + M√
n

))
.

Now consider the range π ≥ |x| > (log n)/
√

n. Here we have

Re(Fk(neix)) ≤ Fk(n)− n(1− cos(x)) ≤ Fk(n)− c(log n)2,

for some positive constant c. Using Stirling’s formula again, the contribution of this segment of the
integral is therefore

� n!
nn

exp(Fk(n)− c(log n)2)�
√

n exp
( ∞∑

j=2

nj

j
θk

j − c(log n)2
)
,

which may be absorbed into our error term. 2

From this Theorem we can read off the behavior of the `∞ distance after k biased shuffles. First
consider the case when (1− θ) log n is large. In this range put

k =
⌊ 2 log n− log 2 + c

− log(θ2 + (1− θ)2)

⌋
. (5.4)

We find that the contribution to M(k, n) arises mainly from j = 2 and so M(k, n)� e−c, and we have

`(k, n) ∼ exp(e−c), (5.5)

so that the `∞ distance behaves like exp(e−c) − 1, and similarly the separation distance behaves like
1− exp(−e−c), in agreement with Diaconis et al. (1992).

Next consider the case when (1 − θ) log n = κ ∈ [0,∞). Keep the notation above for k, here we find
that n2θk

2 = 2e−c, as before, and for j ≥ 3,

njθk
j ∼ exp(

j

2
(−κ + log 2− c)

)
. (5.6)

Therefore, if c > log 2 − κ, then M(k, n) is small, and Theorem 12 applies. Moreover in this case we
have

`(k, n) ∼ exp
(
e−c +

∞∑
j=3

1
j

exp(
j

2
(−κ + log 2− c))

)
. (5.7)

Finally, consider the extreme case θ = 1− 1/n. It is convenient here to define k = n log n + cn. Then
njθk

j ∼ e−jc for j ≥ 2, and M(k, n) is small provided c > 0. In that case we have

`(k, n) ∼ exp
( ∞∑

j=2

e−jc

j

)
=

e−e−c

1− e−c
. (5.8)

Compare with Theorem 1.1 of Diaconis et al. (1992).
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