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PROPERTIES OF UNIFORM DOUBLY STOCHASTIC MATRICES

SOURAV CHATTERJEE, PERSI DIACONIS, AND ALLAN SLY

Abstract. We investigate the properties of uniform doubly stochastic random matrices, that is

non-negative matrices conditioned to have their rows and columns sum to 1. The rescaled marginal

distributions are shown to converge to exponential distributions and indeed even large sub-matrices

of side-length o(n1/2−ǫ) behave like independent exponentials. We determine the limiting empirical

distribution of the singular values the the matrix. Finally the mixing time of the associated Markov

chains is shown to be exactly 2 with high probability.

Random matrices have become a central area of focus for modern probability theory and numer-

ous models have been intensely studied including Wigner, Wishart, GOE and GUE matrices [3]. In

this paper we study a model for which much less is known, namely uniformly chosen entries of the

set of doubly stochastic matrices (called Uniformly Distributed Stochastic Matrices). The Birkhoff

polytope is an (n− 1)2 dimensional polytope in R
n2

constituting the set of doubly stochastic ma-

trices and is the convex hull of the permutation matrices (see e.g. [41]). While its extreme points

are sparse matrices we shall see that typical entries chosen according to the uniform distribution

are by contrast very dense. Little is known about the properties of uniformly distributed stochastic

matrices as they fall outside the scope of techniques from the usual random matrix theory, however,

important recent progress has been made by Barvinok and Hartigan.

We will let X = (Xij)i,j=1,...,n denote a uniform doubly stochastic matrix. By symmetry its rows

and columns are exchangeable and all its entries have the same marginal distribution. It is natural

then to ask what is the limiting distribution of nX11, the first entry rescaled to have mean 1. In

our first result we determine that the rescaled marginal distribution converges to an exponential

random variable of mean 1.

Theorem 1. With X = (Xij)i,j=1,...,n a uniformly chosen doubly stochastic matrix we have that,

nX11
d→ exp(1)

as n → ∞ where the convergence is in total variation distance. Further, for any ǫ > 0,

dtv(nX11, exp(1)) = O(n−1/2+ǫ).

A natural extension to this question is to ask about the joint distribution for a collection of

several entries. It can be shown using the same approach that finite collections of random variables

converge to independent exponentials with mean 1. This convergence holds not just in distribution

but also in total-variation distance and its moments converge to the moments of independent

exponentials (see Section 3.2). We believe that in many ways uniformly distributed stochastic
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matrices behave much like matrices of independent. For example the largest entry of the matrix is

at most (2 + o(1)) 1n log n with high probability,

Theorem 2. For any ǫ > 0,

P

(
max

1≤i,j≤n
nXij > (2 + ǫ) log n

)
→ 0,

as n → ∞.

Another question one may ask is the limiting distribution of the singular values of X̄ = n1/2(X−
EX). Denote these by 0 ≤ σ1(X̄) ≤ . . . ≤ σn(X̄). Letting µ denote the measure on [0, 2] with

density
1

π

√
4− x2

we have the following result.

Theorem 3. The limiting empirical singular value distribution of X̄ is given by

n∑

i=1

δσi(X̄) → µ

where the convergence is in the weak topology, in probability as n → ∞.

We conjecture that the empirical spectral distribution converges to the circular law.

One natural question is to ask how large a sub-matrix can one take so that the entries are still

asymptotically independent. This problem was studied in the context of the random orthogonal

matrix [31] where it was shown that an k×k sub-matrix is asymptotically distributed as independent

normal random variables in total variation provided k = o(n
1
2 ) answering a question of the second

author [24]. In [31] it is further shown that order n/ log n entries simultaneously converge if weaker

topologies are used. Here we show that for sub-matrices of uniformly distributed stochastic matrices

of size almost n1/2 the entries are asymptotically independent.

Theorem 4. Let V denote the projection of a uniformly distributed stochastic matrix onto the

k × k-sub-matrix of its first k rows and columns and let ∆ be a k × k matrix of independent mean

one exponential random variables. When k = O(
√
n

log n) the rescaled law of V converges to ∆,

dtv(nV,∆) → 0

as n → ∞ where dtv denotes the total variation distance.

Unlike most other classes of random matrices, uniformly distributed stochastic matrices are of

course stochastic which raises the question of the properties of the associated Markov chains. For

any doubly stochastic Markov transition kernel the stationary distribution is the uniform distribu-

tion. For a uniform stochastic (but not necessarily doubly stochastic) matrix, that is a uniformly

chosen Markov chain, the mixing time is two asymptotically almost surely [1]. We show that this

holds also for uniformly chosen doubly stochastic random matrices.

Theorem 5. The mixing time of the Markov chain given by a uniform double stochastic matrix is

with high probability 2.

In Section 1 we give background and history for the Birkhoff polytope. In Section 2 we give the

proofs of Theorems 1 and 4. Then in Section 3 we begin by studying polytopes of matrices with

non-constant row sums. By establishing that the volumes of the polytopes are maximized when the



PROPERTIES OF UNIFORM DOUBLY STOCHASTIC MATRICES 3

row and column sums are equal, we get strong control over the distribution of a row in a uniformly

distributed stochastic matrix through which we can bound the tails of the marginal distributions

establishing convergence of the moments and Theorem 2. Finally, knowing that the entries are not

too large allows us to show strong concentration for the entries of X2 which guarantees that the

mixing time is 2.

1. Background

This section gives background and references for four topics that motivate our work: the Birkhoff

polytope, prior distributions on Markov chains, limit theorems for entries of large random matrices

in classical compact groups and contingency tables with fixed row and column sums

1.1. The Birkhoff Polytope. The set Mn of n × n doubly stochastic matrices is known as the

Birkhoff polytope, the bistochastic polytope and the assignment polytope. It is a basic object

of study in operations research because of its appearance as the feasible set for the assignment

problem. Given a cost matrix Cij this asks for a permutation σ minimizing
∑

i Ciσ(i). This is

the same problem as minimizing
∑

ij CijMij for M ∈ Mn because of Birkhoff’s Theorem: the

permutation matrices are the extreme points of Mn. A thorough treatment of the assignment

problem is in [33].

Because of this connection, the structure of Mn has been intensively studied. Two permutations

σ, ς are adjacent on Mn if and only if σς−1 is a cycle (see [25] page 214). The diameter (the

maximum distance between two vertices on the skeleton) of Mn is two [25]. The face structure of

Mn is described in [11]. Finding a closed form expression for the volume of Mn is a well known

open problem. The volume is a rational number and in known for n ≤ 14 (see [16] and references

therein). The combinatorics suggest a simple probability problem: what is the mixing time of the

nearest neighbor random walk on vertices of Mn? Pak [39] showed that it is two.

Birkhoff’s characterisation of the extreme points is “equivalent” to other basic theorems in com-

binatorics such as Kontg’s Lemma, Hall’s Marriage Theorem and the Max-flow Min-Cut Theorem.

A splendid account of these connections is in [33].

There are other polytopes with similarly nice descriptions. For example, the symmetric doubly

stochastic matrices have extreme points 1
2(Aσ +AT

σ ) with Aσ the permutation matrix of σ [14, 40].

Perhaps the methods and results of our paper can be used to study the behavior of a randomly

chosen point in these polytopes. The properties of the random tri-diagonal doubly stochastic

matrices are thoroughly studied in [19].

1.2. Statistical Analysis of Markov Chains. Our original motivation for this work comes from

the statistical analysis of a Markov chain on {1, 2, . . . , n} with unknown transition matrix (Xij) ∈
Qn (Qn the set of stochastic matrices). One observes a run R0, R1, . . . , RN and is requried to

estimate (Xij). A Bayesian approach to this problem starts with a prior distribution on Qn. The

classical Bayesian approach using, conjugate priors, sets each row to be an independent Dirichlet

distribution. One natural choice has each Dirichlet distribution as uniform on the n-simplex. This

gives the measure studied below. For background and references see [35, 22, 42].

Recent developments put priors on natural subclasses of Markov chains. For example [20, 4]

develop and apply priors for reversible Markov chains and [5] develop priors for higher order Markov

chains.
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It is natural to consider priors on the space of Markov chains with a fixed (known) stationary

distribution. This is again a connected convex set. Perhaps the most natural example is the uniform

distribution on {1, 2, . . . , n}. Now the set of transition matrices is the Birkhoff polytope and the

uniform distribution is a natural prior. Understanding the uniform distribution for large n leads to

the topics in this paper.

Knowing about Birkhoff’s Theorem it is also natural to study the prior measure on Mn resulting

from a uniform combination of extreme points. Thus if Aσ is the permutation matrix corresponding

to σ and {Xσ} is a uniform point of the n!-simplex thenM =
∑

σ∈Sn
AσXσ is a uniform combination

of extreme points. This distribution was proposed and studied in [37] as a way to put a prior on

the parameters of an n × n-contingency table with known uniform margins. The following result

suggests this is a strange distribution, sharply concentrated about the matrix with all entries 1/n.

Proposition 1.1. Let M ∈ Mn be a uniform convex combination of extreme points. Then

E
∑

ij

|Mij −
1

n
| ≤ n

√
n− 1

n! + 1

Proof. The distribution of M11 is given by Beta(a, b) distribution with a = (n − 1)! and b =

(n−1)(n−1)! which has mean a/(a+b) = 1/n and variance ab/(a+b)2(a+b+1) = (n−1)/n2(n!+1).

Then by the symmetry of the entries

E
∑

ij

|Mij −
1

n
| = n2E|M11 −

1

n
| ≤ n2

√
VarM11 ≤ n

√
n− 1

n! + 1
.

�

Of course, this prior is absolutely continuous with respect to the uniform distribution and a

sufficiently large amount of data will swamp the prior (although this may be prohibitive large when

n is large).

A variety of measures on the stochastic matrices were studied in the subject of “random random

walks” [27]. This area was initiated with a theorem of Aldous and Diaconis [1]. If an n × n

stochastic matrix is chosen by making the rows uniform on the n-simplex the expected time to

stationarity is small, indeed two steps suffice (but one does not). This suggests that this models

does not capture the essential features of real Markov chains which are usually “local”. Much of

the work thus restricts attention to random walks on finite groups G (see [27] for more details).

Our discussion leaves many points untouched. To generate points from the uniform distribution

on Mn we use a basic “Gibbs sampling algorithm”: pick a pair of distinct rows and a pair of

distinct columns at random. These intersect in a 2 × 2 matrix A =

(
a b

c d

)
. This is replaced

by

(
a′ b′

c′ d′

)
chosen uniformly on the set of matrices with the same row and column sums as A.

This is easy to do choosing a′ uniformly from the relevant range. We would like to understand the

running time of this algorithm. A host of other algorithms for uniform choice in a compact set is

in [2].

The posterior distribution on Mn after observing the Markov chain of length N is proportional to∏
i,j x

N(i,j)
ij where N(i, j) is the number of observed transitions from i to j in the run. How do such

measures behave? Our work suggests a heuristic: the measures should behave like product Dirichlet

distributions. The ith row having density proportional to
∏

j x
N(i,j)
i,j . The known properties of the
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Dirichlet distribution now make basic questions accessible. For example, the Bayes estimate of the

transition matrix is easy to compute.

1.3. Elements of Random Matrices. The present paper has many points of contact with the

ongoing study of the behavior of entries of a uniformly chosen random matrix in one of the classical

compact groups On or Un. These problems we originally studied to understand the ‘equivalence

of ensembles’ in statistical mechanics. Indeed, the first row of a random matrix in On is uni-

formly distributed on the n-sphere–the micro-canonical ensemble. The entries multiplied by
√
n

are approximately independent standard normal–the canonical ensemble. This is an early theorem

of Borel; see [22] for a historical review, sharp statements and pointers to the work of Lévy and

others. Later these theorems were extended and used to prove sharp finite forms of de Finetti’s

theorems and many extensions [24].

For M chosen uniformly on Un, the entries multiplied by
√
n are approximately independent

standard complex normal. This has been proved in various sense. For example [31] shows that

an m × m block is close to normal in total variation if m = o(
√
n). For other topologies [29]

shows indepdent normal behaviour persists for m = o(n/ log n). Other global features, such as the

maximum entry [30], traces of powers of M [21, 17] and arbitrary linear combinations of the entries

[15] behave like normals as well. Of course there are differences. The eigenvalues of a random

element of Un lie on the unit circle while the eigenvalues of independent normals fill out the disk

uniformly. For refinements, see [36, 38].

Yuval Peres suggested that these results may have a close connection to the Birkhoff polytope.

Let M be uniform in Un and set Nij = |Mij |2. Then N is doubly stochastic with entries approxi-

mately independent and exactly exponentially distributed. While we show in Section 3.1 that these

distributions are not the same it seems likely that they share many properties.

Classical results for equivalence of ensembles show equivalence of micro-canonical and canonical

ensembles which result from fixing low dimensional sufficient statistics. The results above, and in the

present paper, show that equivalences of various sorts persist after conditioning on high dimensional

statistics: If {Eij} is a matrix of independent exponentials, the conditional distribution given that

all the row and column sums are equal to one is uniform on Mn. More background on equivalence

of ensembles can be found in [42] and [32].

1.4. Magic squares and contingency tables. There is a close connection between the Birkhoff

polytope Mn and MS(n, c) the set of n× n matrices with non-negative integer entires and all row

and column sums equal to c. Elements of MS(n, c) are called magic squares in the enumerative

literature. It is known that |MS(n, c)| is a polynomial in c of degree (n−1)2. The leading coefficient

of this polynomial is a simple multiple of the volume of Mn [41]. See also [18].

Generalizing, the set of m×n matrices with non-negative entries and fixed row and column sums

is intensively studied both in combinatorics and statistics where they are called contingency tables.

It is known that exact enumerations of the size of this set is #P -complete even when n = 2. A

host of techniques for approximate counting and random generation have been developed as well

as a remarkable collection of asymptotic formulae. See [23] and [6] for surveys.

Questions of the properties of random contingency tables or randomly chosen points in polytopes

are closely connected to the problem of estimating the volume of the polytopes. Important recent

work by Barvinok and Hartigan has given asymptotic formulas for the number of contingency tables

and the volumes of polytopes of such matrices [8, 9, 7] as well as the closely related problem of the
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number of graphs with a given degree sequence [10]. A central idea in their analysis is the maximum

entropy distribution which for the Birkhoff polytopes corresponds to independent exponentials for

the vertices of the matrix. This maximum entropy distribution provides a good approximation to

the distribution yielding (after much work) an asymptotic calculation of the volume.

Beyond asymptotic volume calculations Barvinok [6] also asked the question of “what does a

random contingency table look like”? In [7] a precise sense was given to the statement that “in

many respects a random matrix behaves as a matrix X of independent geometric random variables”,

a direction pursued independently in this paper. One result of this equivalence given in [6] is

that the sum of large subsets of the entries of such contingency tables are concentrated around

their expectation given under the maximum entropy distribution. Barvinok [7] posed the natural

question of determining the marginals of the entries of such random matrices. In the case of doubly

stochastic matrices we answer this question determining that they are asymptotically independent

exponentials.

2. Marginals of Uniform Doubly Stochastic Matrices

Let X = (Xij)i,j=1,...,n be a uniform doubly stochastic matrix, that is chosen uniformly from

the Birkhoff polytope. Since the sum of the rows and columns add to 1, it satisfies 2n − 1 linear

constraints and the matrix is determined by the (n−1)2 entries (Xij)i,j=1,...,n−1. Let Γ : R(n−1)2 →Rn2
denote the function

Γ(X) = Γ(X)ij =





Xij 1 ≤ i, j ≤ n− 1,

1−
∑n−1

k=1 Xik 1 ≤ i ≤ n− 1, j = n

1−∑n−1
k=1 Xkj 1 ≤ j ≤ n− 1, i = n

1−∑n−1
l=1 (1−

∑n
k=1Xkl) i = j = n .

Let Φ : R(n−1)2 → Rn2
be the projection X 7→ (Xij)1≤i,j≤n−1. By an abuse of notation we will also

use Γ as a function from Rn2
to itself by Γ(Φ(X)). Then the doubly stochastic matrices correspond

to the (n− 1)× (n− 1)-matrices in the set

Sn =

{
(xij)i,j=1,...,n−1 ∈ [0, 1](n−1)2 : min

1≤i,j≤n
xij − Γ(x)ij ≥ 0

}
.

The distribution of (Xij)i,j=1,...,n−1 is given by the uniform distribution on Sn. Let Zn denote the

volume of Sn, that is

Zn =

∫

[0,1](n−1)2
I(x ∈ Sn)dx

where I denotes the indicator function. Canfield and McKay [13] showed that asymptotically the

volume of the Birkhoff polytope (in units of basic cells of the lattice which is equivalent to our

usage) is

Zn =
1

nn−1
· 1

(2π)n−1/2n(n−1)2
exp

(1
3
+ n2 + o(1)

)
. (2.1)

Also define

Dn =

{
(yij)i,j=1,...,n ∈ Rn2

: Φ( 1ny) ∈ Sn,min
i,j

(y − Γ( 1ny))ij ≥ 0

}
.

As we observed in the introduction, the uniformly distributed stochastic matrix shares many prop-

erties with matrices of independent exponentials so let us define (Yij)1≤i,j≤n as a matrix of iid

exponential mean 1 random variables.
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Lemma 2.1. Conditional on Y ∈ Dn we have that 1
n(Yij)1≤i,j≤n−1 is uniform on Sn. Further, for

large n we have that,

P (Y ∈ Dn) ≥ n−4n. (2.2)

Proof. Let W be the product of the intervals W =
∏

1≤i,j≤n Iij where

Iij =

{
[0,∞) if max{i, j} = n

{0} o.w.

Then for each fixed Ȳ ∈ Sn the set {Y ∈ Dn : ( 1nY )i,j=1,...,n−1 = Ȳ } is nΓ(Ȳ ) + W. Since the

density of Y depends only on
∑

ij Yij and since
∑

ij nΓ(Ȳ )ij ≡ n2 it follows that Γ( 1nY ) is uniform

on Sn. Now

P (Y ∈ Dn) =

∫Rn2
exp


−

n∑

i=1

n∑

j=1

yij


 I (Y ∈ Dn) dy11 . . . dynn

=

∫

nSn

∫R2n−1

exp


−

n∑

i=1

n∑

j=1

n(Γ( 1nY )ij − [yij − n(Γ( 1nY )ij)]


 (2.3)

· I
(
min
i,j

yij − Γ(Y )ij ≥ 0

)
dy11 . . . dynn

= Voln2(nSn) exp(−n2) (2.4)

·
∫

[0,∞)2n−1

∫R2n−1

exp


−

n∑

i=1

yin −
n−1∑

j=1

yin


 dy1n . . . dynndyn1 . . . dyn,n−1 (2.5)

= Voln2(nSn) exp(−n2). (2.6)

Combining equations (2.1), (2.7), (4.6) we have that

P (Y ∈ Dn) =
1

nn−1
· 1

(2π)n−1/2n(n−1)2
exp

(1
3
+ n2 + o(1)

)
nn2

exp(−n2) ≥ n−4n, (2.7)

for large n. �

In particular this means for X uniform on Mn, for any measurable set B ⊂ R
(n−1)2 , by equation

(2.7) we have that

P (X ∈ B) ≤ n4nP (Φ(Y ) ∈ B). (2.8)

This equation is only meaningful when P (Φ(Y ) ∈ B) ≤ n4n. However, for a number of important

large deviation events we can effectively translate results about Y to results about X. In particular

using the exchangeability of the entries of X we can establish the asymptotic marginal distribution

of the entries of the X given in Theorem 1.

Proof of Theorem 1. Let A be a measurable subset of [0,∞). By the Azuma–Hoeffding inequality

P



∣∣∣∣∣∣

1

n(n− 1)

n−1∑

i=1

n−1∑

j=1

I(nYij ∈ A)− P (Y11 ∈ A)

∣∣∣∣∣∣
>

1

2
n−1/2+ǫ


 ≤ exp(−cn1+2ǫ).
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Then by equation (2.8) we have that,

P



∣∣∣∣∣∣

1

n(n− 1)

n−1∑

i=1

n−1∑

j=1

I(nXij ∈ A)− P (Y11 ∈ A)

∣∣∣∣∣∣
>

1

2
n−1/2+ǫ


 ≤ n4n exp(−cn2) ≤ exp(−c′n2)

and so since the entries of X are exchangeable,

|P (nX11 ∈ A)− P (Y11 ∈ A)| < n−1/2+ǫ + exp(−c′n2).

As this holds uniformly over all A it follows that dtv(X11, Y11) < n−1/2+ǫ for large n which estab-

lishes the result. �

2.1. Marginal distributions of submatrices. In this subsection we go beyond marginal dis-

tributions and investigate the asymptotic distribution of sub-arrays of the matrix, in particular

showing that for boxes of sidelength almost
√
n the entries are close to iid exponentials after rescal-

ing.

Fix some k = k(n) = O(n
1/2

logn). Define W ℓ1ℓ2 ∈ R
k2 as the k × k-submatrix of entries of the

matrix Yij for i ∈ {(ℓ1 − 1)k + 1, . . . , ℓ1k} and j ∈ {(ℓ2 − 1)k + 1, . . . , ℓ2k}, i.e.,

W ℓ1ℓ2 =




Y(ℓ1−1)k+1,(ℓ2−1)k+1 . . . Y(ℓ1−1)k+1,ℓ2k
...

. . .
...

Yℓ1k,(ℓ2−1)k+1 . . . Yℓ1k,ℓ2k


 .

Let ǫ > 0 and let A be a measurable subset of Rk2 . By the Azuma–Hoeffding inequality we have

the following large deviations bound.

P



∣∣∣∣∣∣

⌊
n− 1

k

⌋−2 ⌊n−1/k⌋∑

ℓ1=1

⌊n−1/k⌋∑

ℓ2=1

I(W ℓ1ℓ2 ∈ A)− P (W 11 ∈ A)

∣∣∣∣∣∣
>

1

2
ǫ


 ≤ exp

(
−ǫ2

8

⌊
n− 1

k

⌋2)
.

(2.9)

Now define V ℓ1ℓ2 ∈ R
k2 as the k × k-submatrix of Xij with i ∈ {(ℓ1 − 1)k + 1, . . . , ℓ1k} and

j ∈ {(ℓ2 − 1)k + 1, . . . , ℓ2k}, i.e.,

V ℓ1ℓ2 =




X(ℓ1−1)k+1,(ℓ2−1)k+1 . . . X(ℓ1−1)k+1,ℓ2k
...

. . .
...

Xℓ1k,(ℓ2−1)k+1 . . . Xℓ1k,ℓ2k


 .

We now prove Theorem 4 showing that dtv(nV
11,W 11) converges to 0.

Proof of Theorem 4. By equation (2.8) and (2.9) we have that,

P



∣∣∣∣∣∣

1

n(n− 1)

n−1∑

i=1

n−1∑

j=1

I(nV ij ∈ A)− P (W 11 ∈ A)

∣∣∣∣∣∣
>

1

2
ǫ


 ≤ n4n exp

(
−ǫ2

8

⌊
n− 1

k

⌋2)
= o(1).

Since the entries of X are exchangeable this implies that,

∣∣P (nV 11 ∈ A)− P (W 11 ∈ A)
∣∣ < 1

2
ǫ+ o(1).

As this holds uniformly over all A it follows that dtv(nV
11,W 11) < ǫ for large n which establishes

the result.

�
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3. Further properties of uniform doubly stochastic matrices

In this section we establish further properties of the matrices including convergence of moments

and the mixing time of such matrices.

3.1. Non-constant row sums. It will be important to consider the generalized case of m × n-

matrices with fixed but non-constant row and column sums. For a sequence of positive row sums

{ai}mi=1 and columns sums {bi}ni=1 where
∑m

i=1 ai =
∑n

i=1 bi = t we define the transportation

polytope p = p ((ai), (bi)) to be the polytope of m × n-matrices with nonnegative entries, row

sums ai and column sums bi. Let Pm,n,t denote the set of all such polytopes and let p∗ = p∗m,n,t

denote the special case of polytopes with constant row sums t/m and column sums t/n. We will

let Vol(m−1)(n−1)(p) denote the volume of the image of the set p under the map

(Xij)i=1,...,m,j=1,...,n 7→ (Xij)i=1,...,m−1,j=1,...,n−1

in R
(m−1)(n−1). The following lemma shows that amongst all m × n-matrices p∗ has the largest

volume.

Lemma 3.1. We have that

Vol(m−1)(n−1)(p
∗
m,n,t) = max

p∈Pm,n,t

Vol(m−1)(n−1)(p)

Proof. We begin by proving the following simpler claim.

Claim 3.2. Let {ai}mi=1 be a collection of row sums with
∑m

i=1 ai = t and let p(r) denote the

polytope of m× 2-matrices with row sums (ai) and column sums r, t− r for 0 ≤ r ≤ t. Then

Vol(m−1)p(t/2) = max
0≤r≤t

Vol(m−1)p(r).

Let X = (Xij)i=1,...,m,j=1,2 be chosen uniformly according to p(r). Let (Yi)i=1...,m be independent

random variables with the uniform distribution [0, ai]. It is easy to verify that (Xi1)i=1...,m is equal

in distribution to (Yi)i=1...,m conditional on
∑m

i=1 Yi = r and moreover that the volume Vol(m−1)p(r)

is proportional to the density of
∑m

i=1 Yi at r.

It remains to show that this density is maximized at t = r/2. We say a distribution is log-

concave if the logarithm of its density concave. This clearly includes the uniform distribution on an

interval. Moreover, the sum of independent random variables with log-concave distributions itself

has a log-concave distribution [12]. Since the density of
∑m

i=1 Yi is symmetric about t/2 it follows

that it is maximized at t/2 which completes the claim.

We now complete the proof of Lemma 3.1. Let p = p ((ai), (bi)) and p′ = p ((ai), (b
′
i)) where

b′1 = b′2 =
b1+b2

2 and b′i = bi for i ≥ 3. Further define the set

Â = {(âi)mi=3 : 0 ≤ âi ≤ ai,
m∑

i=1

âi = t− b1 − b2}

which represent possible values for the sum of the entries of the rows of a matrix in p excluding the

first two columns. Then by first conditioning on these sums we have the following integral for the

volumes

Vol(m−1)(n−1)p ((ai), (bi))

=

∫

Â
Vol(m−1)p ((ai − âi), (bi)i=1,2) Vol(m−1)(n−3)p ((âi), (bi)i=3,...,n)µ(d(âi))
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where µ is the uniform distribution over A∗. Similarly

Vol(m−1)(n−1)p
(
(ai), (b

′
i)
)

=

∫

Â
Vol(m−1)p

(
(ai − âi), (b

′
i)i=1,2

)
Vol(m−1)(n−3)p

(
(âi), (b

′
i)i=3,...,n

)
µ(d(âi))

Applying Claim 3.2 we, therefore, have that

Vol(m−1)(n−1)p ((ai), (bi)) ≤ Vol(m−1)(n−1)p
(
(ai), (b

′
i)
)

which says that replacing the first two column sums by their average can only increase the volume

of the polytope. This is true of course for any pair of columns and similarly for any pair of rows.

It is easy to show that the volume of polytopes in Pm,n,t are symmetric and continuous in the row

and column sums (ai), (bi) and hence it follows that p∗ must be a maxima of the volume. �

Canfield and McKay [13] give an asymptotic formula for the volume of matrices with constant

row and column sums as

Vol(m−1)(n−1)(p
∗
m,n,m)

=
1

m(n−1)/2n(m−1)/2
· 1

(2π)(m+n−1)/2n(m−1)(n−1)
exp

(
1

3
+mn− (m− n)2

12mn
+ o(1)

)
. (3.1)

Note that our definition of volume corresponds to their notion of volume in units of basic cells of

the lattice induced by Z
mn.

Let R = Rr,n denote the r(n − 1)-dimensional polytope of nonnegative matrices whose rows

sum to 1. Let νr denote the measure on R induced by the first r rows of a uniform doubly

stochastic n × n-matrix (Xij) and let µr denote uniform probability measure on R. Equivalently

µr is the measure induced by the first r rows of a uniform stochastic matrix(one where the rows

are independent and conditioned to sum to 1).

Lemma 3.3. For a fixed integer r ≥ 1 and n > r the Radon-Nikodym derivative of the measures

µr and νr satisfies

dνr
dµr

≤ (1 + o(1))er/2.

as n → ∞.

Proof. Conditioned on the first r rows of a uniform doubly stochastic n × n-matrix (Xij) the

remainder of the matrix is a uniformly chosen matrix from the polytope of (n− r)× n-matrices

p

(
1n−r,

(
1−

r∑

i=1

Xij

)
j=1,...,n

)

where 1m represents the vectors of 1’s of length m. Since µr is the uniform distribution over

R = Rr,n it follows that

dνr
dµr

(Xij) ∝ Vol(n−r−1)(n−1)p

(
1n−r,

(
1−

r∑

i=1

Xij

)
j=1,...,n

)

where ∝ denote proportionality. To determine the constant of proportionality note that

Zn = Volr(n−1)(R)

∫

R
Vol(n−r−1)(n−1)p

(
1n−r,

(
1−

r∑

i=1

Xij

)
j=1,...,n

)
µr(d(Xij))
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recalling that Zn is the volume of the Birkhoff polytope. It follows that

dνr
dµr

(Xij) =
1

Zn
Volr(n−1)(R)Vol(n−r−1)(n−1)p

(
1n−r,

(
1−

r∑

i=1

Xij

)
j=1,...,n

)

≤ 1

Zn
Volr(n−1)(R)Vol(n−r−1)(n−1)p

∗
m,n,m

by Lemma 3.1. Hence substituting the formulas for the volumes of the polytopes and applying

Stirling’s formula we have that

dνr
dµr

(Xij) ≤ (1 + o(1))
nn−1

(n − r)(n−1)/2n(n−r−1)/2
· 1

((n − 1)!)r
· (2π)n−1/2n(n−1)2e−rn

(2π)(2n−r−1)/2n(n−r−1)(n−1)

= (1 + o(1))nr/2er/2 · nr

(
√
2πn nne−n)r

· (2π)r/2nr(n−1)e−rn

= (1 + o(1))er/2

which completes the proof. �

This proof also shows that the uniformly distributed stochastic matrix is not given exactly by

the square of the absolute value of a random unitary matrix. In such a random matrix the rows

are distribution according to µ1 while we have that

dν1
dµ1

( 1n1n) =
1

Zn
Volr(n−1)(R)Vol(n−r−1)(n−1)p

∗
m,n,m = (1 + o(1))er/2.

Hence at least for large n the models are not the same (in the trivial case of n = 2 they are equal).

3.2. Convergence of Moments. Using Lemma 3.3 we may now establish convergence of the

moments of the entries of a doubly stochastic matrix to those of independent exponentials. We will

let (Vk) be a sequence of iid exponentially distributed mean 1 random variables.

Lemma 3.4. Let (i1, j1), . . . , (iL, jL) be a fixed sequence of pairs of positive integers and α1, . . . , αL

be fixed a sequence of positive integers. Then if (Xij)i,j=1,...,n are distributed as a uniform doubly

stochastic matrix then

E

L∏

k=1

(nXik ,jk)
αk → E

L∏

k=1

V αk
k .

Proof. By Theorem 4 the joint distribution of the (nXik,jk)k=1,...,L converges to iid exponential

random variables. It follows that

E

[
L∏

k=1

(nXik ,jk)
αkI( max

1≤k≤L
nXik,jk < M)

]
→ E

[
L∏

k=1

V αk
k I( max

1≤k≤L
Vk < M)

]
,

and hence we can complete the proof by showing that

lim
M→∞

lim sup
n

E

[
L∏

k=1

(nXik ,jk)
αkI( max

1≤k≤L
nXik,jk ≥ M)

]
→ 0. (3.2)

By the exchangeability of X we may assume without loss of generality that max1≤k≤L ik ≤ L and

that max1≤k≤L jk ≤ L. In particular this assumption implies that each of the entries Xik,jk appear

in the first L rows of the matrix. Let Ỹij denote a uniform stochastic matrix, that is one whose

rows are independent and chosen according to µ1.
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Now by Lemma 3.3 it follows that

E

[
L∏

k=1

(nXik,jk)
αkI( max

1≤k≤L
nXik,jk ≥ M)

]

≤ (eL/2 + o(1))E

[
L∏

k=1

(nỸik,jk)
αkI( max

1≤k≤L
nỸik,jk ≥ M)

]

and hence it is sufficient to establish equation (3.2) replacing the Xik ,jk with Ỹik,jk . Now the Yik,jk

are given by Beta distributions B(1, n− 1). It follows that

EỸ αk
ik,jk

=

αk∏

ℓ=1

ℓ

n− 1 + ℓ
= (1 + o(1))αk!n

−αk (3.3)

By the power mean inequality and the fact that E|Ỹ |αI(Y > M) ≤ M−1E|Ỹ |α+1

E
L∏

k=1

(nỸik,jk)
αkI( max

1≤k≤L
nỸik,jk ≥ M)

≤ E
1

∑L
k=1 αk

L∑

k=1

αk(nỸik,jk)
∑L

k=1 αkI( max
1≤k≤L

nỸik,jk ≥ M)

≤ M−1E
1

∑L
k=1 αk

L∑

k=1

αk(nỸik,jk)
1+

∑L
k=1 αk

and hence by equation (3.3),

lim
M→∞

sup
n

E
L∏

k=1

(nYik,jk)
αkI( max

1≤k≤L
nYik,jk ≥ M) = 0

which completes the proof. �

We may also examine the maximal element of the matrix. For an n×n-matrix of iid exponential

random variables with mean 1 the maximum entry is at most (2+ o(1)) log n with high probability

and we show that this is also the case for the renormalized uniform doubly stochastic matrix.

Proof of Theorem 2. By Lemma 3.3 we have that

P (nX11 > (2 + ǫ) log n) ≤ (e1/2 + o(1))P (nY11 > (2 + ǫ) log n)

Now since Y11 has B(1, n− 1) distribution

P (nY11 > (2 + ǫ) log n) = (n − 1)

∫ 1

(2+ǫ) logn
n

(1− y)n−2

=

(
1− (2 + ǫ) log n

n

)n−1

= (1 + o(1))n−2−ǫ. (3.4)

The exchangeability of the entries and a union bound completes the proof. �
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3.3. Mixing Time. As uniformly distributed stochastic matrices correspond to the transition

matrices of Markov chains one can ask about the mixing time of such matrices.

Proof of Theorem 5. By Lemma 3.3 the mixing time cannot be 1 since it implies that the rows of

the matrix are not close to being constant. We show at time 2, however, they are almost constant.

Let X
(2)
ij denote the ij-th entry of the matrix X2. The total variation distance from stationarity of

the Markov chain at time 2 is given by

max
i

1

2

n∑

j=1

∣∣∣∣
1

n
−X

(2)
ij

∣∣∣∣

which is equal to

max
i

n∑

j=1

max{ 1
n
−X

(2)
ij , 0}.

Since the rows are exchangeable, by taking a union bound it is sufficient to show that for each

ǫ > 0,

P




n∑

j=1

max{ 1
n
−X

(2)
1j , 0} > ǫ


 = o(1/n).

We will again work first in the independent entries model (Yij). Let F denote the σ-algebra

generated by (Y1j)j=1,...,n−1 and let H denote the event

{
max

1≤j≤n−1
Y1j ≤ 3 log n

}
∩





n−1∑

j=1

Y1j ≤ n− 3 log n



 .

The sums
∑n−1

k=2 Y1kYkj are conditionally independent given F . Further for δ, λ > 0,

P

(
1

n

n−1∑

k=2

Y1kYkj < 1− δ and H | F
)

= P

(
1

n

n−1∑

k=2

Y1k(1− Ykj) > δ − 6 log n and H | F
)

= P

(
exp

(
λ

n

n−1∑

k=2

Y1k(1− Ykj)

)
> exp

(
λ
n(δ − 6 log n)

)
and H | F

)

Now if Y1k ≤ 3
n log n and λ = n

log3 n
then by Taylor series for large n and 1 ≤ j ≤ n− 1,

E
[
exp

(
λ
nY1k(1− Ykj)

)
| Y1k

]
=

exp(λnY1k)

1 + λ
nY1k

≤ 1 + λ
nY1k + (λnY1k)

2

1 + λ
nY1k

≤ exp
(
(λnY1k)

2
)
.

Hence by Markov’s inequality for large n,

P

(
1

n

n−1∑

k=2

Y1kYkj < 1− δ and H | F
)

≤
exp

(
9n

log4 n

)

exp
(
n(δ− 6

n
logn)

log3 n

) ≤ exp

(
− nδ

2 log3 n

)

with room to spare. By the conditional independence of the sums we have that

P

(
#

{
1 ≤ j ≤ n− 1 :

1

n

n−1∑

k=2

Y1kYkj < 1− δ

}
> δn and H | F

)
≤
(
n

nδ

)
exp

(
− n2δ2

2 log3 n

)
.

(3.5)
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This implies that

P




n−1∑

j=1

max

{
1

n
−

n−1∑

k=2

Y1k

n

Ykj

n
, 0

}
> 2δ and H


 ≤

(
n

nδ

)
exp

(
− n2δ2

2 log3 n

)
.

We can now return to the doubly stochastic matrix setting. By equation (2.8) we have that

P




n−1∑

j=1

max

{
1

n
−

n−1∑

k=2

X1kXkj, 0

}
> 2δ, max

1≤j≤n
X1n ≥ 3 log n

n


 ≤ n4n

(
n

nδ

)
exp

(
− n2δ2

2 log3 n

)
.

and hence since X
(2)
1j =

∑n
k=1X1kXkj ≥

∑n−1
k=2 X1kXkj and so

P




n∑

j=1

max

{
1

n
−X

(2)
1j , 0

}
> 2δ +

1

n
, max
1≤j≤n

X1n ≥ 3 log n

n


 = o(1/n)).

By equation (3.4) we have that

P ( max
1≤j≤n

X1n ≥ 3 log n

n
) = O(n−2)

so it follows that

P




n∑

j=1

max{ 1
n
−X

(2)
1j , 0} > 2δ +

1

n


 = o(1/n)

for any δ > 0. Letting δ go to 0 completes the proof. �

4. Singular Values

In this section we give the proof of Theorem 3. Let 0 ≤ σn
1 ≤ · · · ≤ σn

n denote the singular

values of n1/2(X − EX). These correspond to the square roots of the eigenvalues of the matrix

n(X − EX)(X − EX)∗ which is a Hermitian matrix. For a Hermitian matrix A let λ1(A) ≤ . . . ≤
λn(A) denote its eigenvalues and let µ̂(A) =

∑n
i=1 δλi(A) denote the empirical spectrum of A.

Let (Ỹij)i,j=1,...,n denote the n×n-matrix with i.i.d. entries supported in [0,K] and consider the

Wishart Matrix Ξn = n−1(Ỹ −EỸ )(Ỹ −EỸ )∗ which is Hermitian and hence has real eigenvalues.

Marčenko and Pastur [34] showed that µ̂(Ξn) → µ′ weakly in probability as n → ∞ where µ′ is the

distribution on [0, 2] with density

√
x(4−x)

2πx .

As with our previous results we use large deviation results on random matrices to transfer results

to uniform doubly stochastic matrices. In this case we use results of Guionnet and Zeitouni [26]

who establish concentration of measure results for the spectrum of large Wishart matrices. In

Corollary 1.8 and the remarks that follow they show that for any ǫ > 0 there exists c(ǫ) > 0 such

that for large n and K > 1,

P (dW (µ̂(Ξn), Eµ̂(Ξn)) > ǫ) ≤ exp
(
−cK−2n2

)
. (4.1)

where dW denotes the Wasserstein distance. We will take the entries of Ỹ to have density given by

ρn(x) =

{
1

1−n10 e−x x ∈ [0, 10 log n] ,

0 o.w.
(4.2)
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That is the entries are mean 1 exponentials conditioned to be less than 10 log n and so it follows

that

P (dW (µ̂(Ξn), Eµ̂(Ξn)) > ǫ) ≤ exp
(
−c′n2 log−2

)
. (4.3)

Now let

S̃n =

{
(xij)i,j=1,...,n−1 ∈ Sn : max

1≤i,j≤n
Γ(x)ij ≤ 6

n log n

}

which corresponds to the doubly stochastic matrices whose maximum entry is at most 6
n log n. Also

define

D̃n =
{
(xij)i,j=1,...,n ∈ [0, 8 log n]n

2
: 1
n(xij)i,j=1,...,n−1 ∈ S̃n,∀1 ≤ i, j ≤ n, 0 ≤ (x− Γ(x))ij ≤ n−4

}
.

The following lemma is the analogue of Lemma 2.1 for Ỹ .

Lemma 4.1. With Ỹ as above with marginals given by (4.2), conditional on Ỹ ∈ D̃n we have that

Γ( 1nY ) is uniform on S̃n. Further, for large n we have that,

P (Ỹ ∈ D̃n) ≥ n−8n. (4.4)

Proof. Let W be the product of the intervals W =
∏

1≤i,j≤n Iij where

Iij =

{
[0, n−4] if max{i, j} = n

{0} o.w.

Then for each fixed Ȳ ∈ S̃n the set {Ỹ ∈ D̃n : Φ( 1n Ỹ ) = Ȳ } is nΓ(Ȳ ) +W. Since the density of Ỹ

depends only on
∑

ij Ỹij and since
∑

ij nΓ(Ȳ )ij ≡ n2 it follows that Γ( 1n Ỹ ) is uniform on S̃n.

Now

P (Ỹ ∈ D̃n) = (1− n−10)−n2

∫

D̃n

exp


−

n∑

i=1

n∑

j=1

yij


 dy11 . . . dynn

= (1 + o(1)) exp(−n2)nn2
Voln2(Dn) (4.5)

as for all Ỹ ∈ D̃n we have that

n2 ≤
n∑

i=1

n∑

j−1

Ỹij ≤ n2 + (2n + 1)n−4.

The volume of W is clearly n−4(2n−1) so we have that

Voln2(D̃n) = Vol(n−1)2(S̃n)n
−4(2n−1).

Now interpreting S̃n as a subset of Sn it corresponds to the set of doubly stochastic matrices whose

maximum entry is at most 6 log n. Hence by Theorem 2 we have that

Vol(n−1)2(S̃n)

Vol(n−1)2(Sn)
= P (max

ij
Xij ≤ 6 log n) = 1− o(1). (4.6)

Combining equations (2.1), (2.7), (4.6) we have that

P (Ỹ ∈ D̃n) = (1 + o(1))
exp(−n2)nn2

n−4(2n−1)

nn−1(2π)n−1/2n(n−1)2
exp

(1
3
+ n2

)

≥ n−8n (4.7)

for large n. �
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Now the Courant-Fischer Minimax Theorem says that for an n×n Hermitian matrix X the k-th

eigenvalue of X is given by

λk(X) = min
U :dim(U)=k

max
x∈U

x∗Xx

x∗x

where the minimum is over all k-dimensional subspaces ofRn. It follows that for Hermitian matrices

X,Y that

|λk(X) − λk(Y )| ≤ ‖X − Y ‖op ≤ nmax
ij

|Xij − Yij|

where ‖ · ‖op is the operator norm (see e.g. [28]). For Ȳ ∈ S̃n and Ỹ ∈ D̃n such that Γ( 1n Ỹ ) = Γ(Ȳ )

we compare the eigenvalues of the matrices

A = n(Γ(Ȳ )− n−11)(Γ(Ȳ )− 1
n1)

∗

B = n−1(Ỹ − y1)(Ỹ − y1)∗

where y = 1−(1+10 logn)n−10

1−n−10 = EỸ11 and 1 is the n × n-matrix of all 1’s. By the above bound we

have that for 1 ≤ k ≤ n,

|λk(A)− λk(B)| ≤ nmax
i,j

|Aij −Bij| (4.8)

Breaking A−B into parts we first have that

sup
i,j

∣∣∣∣
(
nΓ(Ȳ )2 − n−1Ỹ 2

)
ij

∣∣∣∣ = sup
i,j

n−1

∣∣∣∣∣

(
2(nΓ(Ȳ ))(Ỹ − nΓ(Ȳ )) +

(
Ỹ − nΓ(Ȳ )

)2)

ij

∣∣∣∣∣

= O(n−3) (4.9)

since maxi,j(nΓ(Ȳ ))ij ≤ 6 log n and maxi,j |(Ỹ − nΓ(Ȳ ))ij | ≤ n−4. Also

sup
i,j

∣∣∣∣
(
nΓ(Ȳ ) · n−11− n−1Ỹ · y1

)
ij

∣∣∣∣ = sup
i,j

∣∣∣∣
((

Γ(Ȳ )− n−1yỸ
)
1
)
ij

∣∣∣∣

= sup
i,j

∣∣∣∣
((

Γ(Ȳ )− n−1Ỹ
)
1
)
ij

∣∣∣∣+O(n−10)

= O(n−4) (4.10)

since 1− y = O(n−10). Finally we have that

sup
i,j

∣∣∣
(
n−11− n−1y21

)
ij

∣∣∣ = O(n−10) (4.11)

since 1− y2 = O(n−10). Combining (4.12), (4.9), (4.10) and (4.11) it follows that

|λk(A)− λk(B)| ≤ O(n−2). (4.12)

In particular we have that for large n if dW (µ̂(A), µ̂(B)) = o(1) uniformly in Ȳ and Ỹ . With Ξn

defined above and X a uniform doubly stochastic matrix by Lemma 4.1 we have that for any ǫ > 0

and large enough n that

P
(
dW (µ̂(n(X −EX)(X − EX)∗), Eµ̂(Ξn)) > 2ǫ | Φ(X) ∈ S̃n

)

≤ P
(
dW (µ̂(Ξn), Eµ̂(Ξn)) > ǫ | Ỹ ∈ D̃n

)

≤ P (dW (µ̂(Ξn), Eµ̂(Ξn)) > ǫ)P
(
Ỹ ∈ D̃n

)−1

≤ n8n exp
(
−c′n2 log−2

)
= o(1) (4.13)
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where the final inequality follows from Lemma 4.1 and equation (4.3). Now by Theorem 2,

P
(
Φ(X) ∈ S̃n

)
→ 1

so

P (dW (µ̂(n(X − EX)(X − EX)∗), Eµ̂(Ξn)) > 2ǫ) → 0

as n → ∞. As Eµ̂(Ξn) → µ′ (see e.g. [34, 3]) it follows that

µ̂(n(X − EX)(X − EX)∗) → µ′

weakly in probability as n → ∞. Since the singular values of n1/2(X−EX) are the positive square

roots of the eigenvalues of n1/2(X − EX)(X − EX)∗ and the map x 7→ x2 maps µ to µ′ this
completes the proof of Theorem 3.
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