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We study the Gilbert-Shannon-Reeds model for riffle shuffied ask 'How many times must a deck of cards be
shuffled for the deck to be in close to random order?’. In 1®¥#yer and Diaconis gave a solution which gives

exact and asymptotic results for all decks of practicalrégt e.g. a deck of 52 cards. But what if one only cares
about the colors of the cards or disregards the suits fogusitely on the ranks? More generally, how does the
rate of convergence of a Markov chain change if we are intedes only certain features? Our exploration of this

problem takes us through random walks on groups and thedtgatiscovering along the way exact formulas leading
to interesting combinatorics, an 'amazing matrix’, and revalytic methods which produce a completely general
asymptotic solution that is remarkable accurate.

Keywords: card shuffling, lumping of Markov chains, Poisson summation

1 Introduction

A basic question in scientific computing is ‘How many timesatan iterative procedure be run?’. A
basic answer is ‘It depends.’. In this paper we study the mgixiroperties of the Gilbert-Shannon-Reeds
model [10, 12] for riffle shuffling a deck af cards and ask how many times the deck must be shuffled for
the cards to be in close to random order. Our answer depenasiyoon the metric we use to measure
distance to uniformity, but also on the particular propeytf the deck that are of interest.

To be precise, we consider a ‘deck’ to be a multiset @iards. We shuffle the deck by first cutting it
into two piles according to the binomial distribution, amen riffling the piles together by successively
dropping cards from either pile with probability proportad to the size. This process defines a measure,
denoted) (o), on the symmetric groufS,,. Repeated shuffles are defineddmnvolution powers

o)=Y Q" w). (1)
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This shuffling model, which accurately models how most pe@gitually shuffle a deck of cards, was
introduced by Gilbert and Shannon [10] and independentiRégds [12].

Bayer and Diaconis [3] generalized thisdeshuffles, which is the natural extension to shuffling with
hands: the deck is cut intopackets by multinomial distribution and cards are sucuebgsdropped from
packets with probability proportional to packet size. lrgtQ, (o) denote this measure, they show that
convolution of generat-shuffles is as nice as possible, namely

Qa * Qb = Qab- (2)

Thus it is enough to study a singteshuffle of the deck.

To that end, denote theniform distributionby U = U (o). For a deck withn distinct cardsl/ = 1/n!,
and for a more general deck wifhy, 1's, D5 2's, up toD,,, m's, we havell = 1/(’:’1+ +DM) There are
several ways to measure the distance betwigeandU, though for the purposes of this f paper we restrict
our attention to total variation distance and separatistadie.

Thetotal variation distances defined by

Qo = Ullry = max [Qa(A) —U(A)] = %ZIQa(U)—U(U)I- ®3)

ubsets A

In general, the formulas fof), (o) may be quite complicated, making calculations of total atoh
intractable. Therefore we will also consider $eparation distancdefined by

= max _Qa(d)
SEP(a) = max 1 TR

(4)

Here, only a single probability needs to be computed, thagtve shall see even that can be difficult.
From the formulas above, one can easily see that separatoilps an upper bound for total variation,
which makes separation a good measure to use when totaieafi@comes too complicated to compute.

In widely cited works, Aldous [1] and Bayer and Diaconis [Bpsv that% log,(n) 4 ¢ shuffles are nec-
essary and sufficient to make the total variation distancadlsmhile 2 log, (n) + ¢ shuffles are necessary
and sufficient to make separation small. These results, Veweok at all aspects of a permutation, i.e.
consider a deck with distinct cards. In many card games, catiain aspects of the permutation matter.
For instance, in Baccarat, suits are irrelevant anti(edland picture cards are equivalent, and in ESP card
guessing experiments, a Zener decRdicards with each o5 symbols repeated five times is used. Itis
natural, therefore, to ask how many shuffles are requirelddse situations, and so we consider a deck to
have repeated cards.

Many results are known for how long it takes certain featwiea permutation, e.g. longest cycle,
descent structure, etc, to become random; for a thoroughent of such results see [7]. The particular
problem we address in this paper has also been addressediggiGand Viswanath [5, 6] who derive
remarkable numerical procedures giving useful answersdses of practical interest.

In this paper, we present many of our main results from [2jingi exact formulae and asymptotics for
a deck ofn cards withD; cards labelled, D, cards labelle, ..., D,, cards labelledn. Our results
are proved from the deck starting ‘in order’, i.e. witls on top throughn’s at the bottom. In Section 2,
we show that the processes we study are Markov by framingrtitedgm in the context of random walks
on cosets. We derive a formula for the transition matrixdeihg a single card in Section 3, and show
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that this matrix shares many properties with Holte's ‘AnmagMatrix’ [11]. In Section 4, we consider
a general deck, limiting our metric to the separation distarand derive new formulae and asymptotic
approximations which we unify into our ‘rule of thumb’ fordau Section 5 shows that our results depend
on the initial configuration of the deck. This extended axgtcontains precise statements of our main
results along with the main ideas of the proofs; for full detsee [2].

2 Random walks on Young subgroups

In this section, we reformulate shuffling in terms of randoaiks on a finite group, so that our investiga-
tion of particular properties of a deck becomes a quotietik wa Young subgroups a$,,.

Let G be a finite group, and le be a probability orG, i.e. Q(g) > 0 anngGG Q(g) = 1. Take
arandom walk onG by repeatedly choosing elements independently fr@with probability @), say
g1, 92, g3, - - -, and, beginning with the identity elemeht, multiply on the left byg,;. This generates the
following sequence of elements, the left walk,

la, 91, 9291, 939291, - - -

By inspection, the chance that the walk isyadfter k steps is given by convolution formula (©)**(g),
whereQ°(g) = d1,,.

To focus on certain aspects of the walk, we choose a subgralgomsider thguotient walkas follows.
Let H < G be a subgroup a7, and letX denote the set of left cosets Bfin G, i.e. X = G/H = {zH}.
The quotient walk onX is derived from the left walk otz by reporting the coset to which the current
position of the walk belongs. This defines a Markov chainXowith transition matrix given by

K(z,y) = QyHz") = > Qyha™"). (5)

heH

Note thatK is well-defined (i.e. independent of the choice of cosetaspntatives) and doubly stochastic.
Thus the uniform distribution oX, U = |H| /|G|, is a stationary distribution fak. The following result,
showing that powers dk correspond precisely to convolving and taking cosetstistimely obvious with

a straightforward proof.

Proposition 2.1 For @Q a probability distribution on a finite grouf’ and K as defined in (5), we have

K'(z,y) = Q" (yHz™").

We may identify permutations i§,, with arrangements of a deck efcards by setting:(¢) to be the
label of the card at positiohfrom the top. For instance, the permutatibi 4 3 is associated with four
cards where “2” is on top, followed by “1”, followed by “4”, @finally “3” is on the bottom. Therefore
the random walk oib,, with probability Q- corresponds precisely to riffle shuffles of a deckdafistinct
cards. If we consider the firdd, cards to be labelled “1”, the neX?, cards to be labelled “2”, and so
on up to the lasD,,, cards labelledh", then this corresponds precisely to the coset space of agrou
subgroup,

X:Sn/(SDl XSD2 X XSDm)-

Thus Proposition 2.1 shows that the processes studied bottyeof this paper are Markov chains.
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3 A new ‘amazing’ matrix

Suppose the ace of spades is on the bottom of a deelcafds. How many shuffles does it take until this
one card is close to uniformly distributed ¢h, 2, ..., n}? We analyze this problem by writing down the
transition matrix following a single card through an othemvindistinguishable deck.

Proposition 3.1 Let P,(i,7) be the chance that the card at positiomoves to position after ana-
shuffle. Forl <i,j <mn, P,(,j) is given by

i Z Z (]_1)< n—j )kr(a . k)jflfr(k . 1)1'7177“(0/ —k+ 1)(7173')7(1'77“*1)
a” r 1—r—1

k=1 r=I

wherer ranges froml = max(0, (i +j) — (n + 1)) tou = min(i — 1,5 — 1).

Proof: Consider the number of ways that an invegsghuffle can bring the card at positigrio position
1. First, the card at positiopmust have come from some pile, dayl < k < a. Sayr of the cards above
this came from piled to &, and so the remaining— 1 — » came from piles + 1 to a. Thoser cards
all must appear before the card at positjon (j;l) ways. This leaves — 1 — r cards below positiorj

which came from pileg to k — 1 in (if;-jl) ways, and the remaining cards must be from pilésa. O
For example, the x n transition matrices fon = 2, 3 are given below.
1 (a—i—l a—l) 1 (a+1)(2a+1) 2(a®>-1) (a—1)(2a—1)

L — 2(a®-1)  2@®+2)  2(a®-1)
20\ a—1 a+1 6a (a—1)2a—1) 2(a*—-1) (a+1)(2a+1)

These matrices share many properties, given in Propogdtiyrwith the ‘amazing matrix’ discovered
by Holte [11] in his study of the ‘carries process’ of ordipaddition. Diaconis and Fulman [8] show that
Holte's matrix is also the transition matrix for the numbédescents in repeatedshuffles. We have not
been able to find a closer connection between the two matrices

Proposition 3.2 The transition matrices following a single card have thédiwing properties:
1. they arecross-symmetrid.e. P,(i,j) = P,(n —i+ 1,n —j+ 1);
2. they are multiplicative, i.eP, - P, = Py;
3. the eigenvalues form the geometric setigs/a, 1/a?,...,1/a"};

4. the right eigen vectors are independent@nd have the simple form:

Vin(i) = (i — 1)1 (7)) + (=1 (M) for 1/a™, m > 1.

Proof: The cross-symmetry (1) follows from Proposition 3.1, argttultiplicative property (2) follows
from the shuffling interpretation and equation (2). Propét) implies that the eigen structure is quite
constrained. Properties (3) and (4) follow from results oidD [4]. i

The following Corollary also follows as a special case of difeen 2.2 in [5].
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Corollary 3.3 Consider a deck of cards with the ace of spades starting at the bottom. The ahtrat
the ace of spades is at positigrirom the top after am-shuffle is

Quli) = Paln, i) = — (k= 1)K ®)
k=1

From the explicit formula, we are able to give exact numénegdculations and sharp asymptotics
for any of the distances to uniformity. The results belowvstibatlog, n + ¢ shuffles are necessary
and sufficient for both separation and total variation (dretd is a cutoff for these). This is surprising
since, on the full permutation group, separation requiies, n + ¢ steps whereas total variation requires
% log, n + c. Of course, for any specifie, these asymptotic results are just indicative.

Tab. 1: Distance to uniformity for a deck df2 cards. The upper table assumes distinct cards, and the tabler
follows a single card starting at the bottom of the deck.
1 2 3 4 5 6 7 8 9 10 11 12

TV (100 1.00 1.00 1.00 .924 .614 .334 .167 .085 .043 .021 .010
SEP | 1.00 100 1.00 1.00 1.00 1.00 1.00 .996 .931 .732 .479 .278

1 2 3 4 5 6 7 8 9 10 11 12
TV | .873 752 577 .367 .200 .103 .052 .026 .013 .007 .003 .002

SEP | 1.00 1.00 .993 .875 .605 .353 .190 .098 .050 .025 .013 .006

Remarks on Table 1We use Proposition 3.1 to give exact results whea- 52. For comparison, the
upper table gives exact results for the full deck using [3je Tower table shows that it takes about half
as many shuffles to achieve a given degree of mixing for a datiteabottom of the deck. For example,
the widely cited 7 shuffles’ for total variation drops this distance.834 for the full ordering, but this
requires onlyt shuffles to achieve a similar degree of randomness for assaagt at the bottom.

For asymptotic results, we first derive an approximationgpagation, which also serves as an upper
bound for total variation. Finally, we derive a matching Emwbound for total variation. Proofs have been
omitted for brevity, but again full details are availablg 2.

Proposition 3.4 After ana-shuffle, the probability that the bottom card is at positicratisfies

n—i+1 n—1
< Q) < -

~al—an 1’

where for brevity we have sat= 1 — 1/a. In particular, the separation distance satisfies

n o n a1
<SEP(a)<1— ———.
al—am — (a) < al—aqn-1
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If a = 2'°82("M)+¢ = n2¢, then our result shows that tS&P (a) is approximately

1 e2°

1--_°
201 —e 27’

and for largec this is~ 27¢~1. The fit to the data in Table 1 is excellent: for example akershuffles
of a fifty-two card deck we havg—¢~! = % which is very nearly the observed separation distance of
0.025.

Remark 3.5 Proposition 3.4 gives a local limit for the probability théte original bottom card is at
position; from the bottom. When the number of shufflésds n+ ¢, the density of this (with respect to the
uniform measure) is asymptoticallyc)e~7/2°, with z a normalizing constanty(c) = 1/2°(e?/?" — 1)).
The result is uniform iny for ¢ fixed,n large.

Proposition 3.6 Consider a deck af cards with the ace of spades at the bottom. Witk 1 — 1/q, the
total variation distance for the mixing of the ace of spad#sraana-shuffle is at most
antt ac?(1 — a7 1) 1 al—a"
- + log ( ~—= ).
1—an n(l —an) nlog(l/a) n antl

and at least
a™ a(l —a™) al—ant

_ log (L——2 ).
1—an1 na(l—a"‘1)+nlog(1/a) Og(n an—1 )

After log, n + ¢ shuffles, that is whea = 2°n, Proposition 3.6 shows that the total variation distance
is approximately (withC' = 2°)

1 —Clog(e'/¢ —1)
@ 1)

C'log (C(el/c — 1)) +

Thus wher is ‘large and negative, the total variation is closeltoand wherk is large and positive,
the total variation is close t0. Thus total variation and separation converge at the satee This is an
asymptotic result and, for example, Table 1 supports this.

Similar, but more demanding, calculations show that if the af spades starts at positionand
max(i/n, (n —i)/n) > A > 0 for some fixed positived, then log, n shuffles suffice for convergence
in any of the metrics. We omit further details.

4 Separation distance for the general case
A main result of Bayer and Diaconis [3] is the simple formuba &na-shuffle of a deck of distinct
cards:
Qa(g)_iﬂ(n—i—a—r)7 @
a n

wherer = r(o) is the number of rising sequencesdn equivalently one more than the number of
descents inr—!. This formula allows simple closed form expressions for e of distances as well as
asymptotic analysis.
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In this section we work with general decks containibgcards labelled, 1 < i < m. The formulae of
this section hardly resemble the elegant expression atawther, we only give precise formula for the
least likely deck. The following lemma shows that this degkere the separation distance is achieved, is
the reverse the initial deck configuration. This is equimate Theorem 2.1 from [5].

Proposition 4.1 Let D be a deck as above. After anshuffle of the deck with's on top down tan’s on
bottom, the least likely configuration is the reverse detlvith m’s on top down td’s on the bottom.
Proof: The only cuts of the initial deck resulting in* are those containing no pile with distinct letters.
For all such cuts, each rearrangement of the deck is eqkaly to occur. O

While finding a completely general formula f@r, (w) for arbitraryw is infeasible, below we do this
for w*.

Theorem 4.2 Consider a deck with cards andD; cards labeled, i = 1,..., m. Then the separation
distance after am-shuffle of the sorted deck’¢ followed by2's, etc) is given by

m—1
1 n .
SEP(a)_1—a—n(D1“_Dm)§ (a— kmleJl;[l ((kj—kjr) P9 — (kj—kj —1)P7) .

0=ko<-<km-1<a

Proof: From the analysis in the proof of Proposition 4, (w*) is given by

o 1 n 1
i 5 Mt )ity

A4+ Ag=n 1,...,Dm)
A refines D
where ‘A refinesD’ means there exist indicés, ..., k,—1 such thatd; + --- + A, = D, and, for

i=2,....m—1,Ag,_,+1+ -+ Ag, = D,. Taking thek;’s to be minimal, the expression fa}, (w*)
simplifies to

m—1

1 Dm D; ) . D
— > (a—km-)" T ((kj—kj—1)" = (kj—k;-1—1)P7). (8)
0=ko<<km-1<a j=1
The result now follows from Proposition 4.1. O

Remarks on Table 2We calculateSEP after repeate@-shuffles for various decks using Theorem 4.2:
(blackjack)9 ranks with4 cards each and another rank withcards; & &) 4 distinct suits ofl 3 cards
each; (AW) the ace of spades aind other cards; (redblack) a two color deck wit of either color; and
(O+/#)Of%) a deck with 5 cards in each of 5 suits. The missing entrieabier2 highlight the limitations
of exact calculations using Theorem 4.2.

Remark 4.3 Comparing the data in Table 2 foxr# andredblack shows that these two cases are remark-
ably similar. Indeed, both cases exhibit the same asynegdtetiavior, which is remarkable since thdh
has a state space of size while redblack has a state space of size aroule 104,
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Tab. 2: Separation distance farshuffles of52 cards.
k 1 2 3 4 5 6 7 8 9 10 11 12

BD-92 | 100 1.00 1.00 1.00 1.00 1.00 1.00 .995 .928 .729 .478 .278
blackjack| 1.00 1.00 1.00 1.00 .999 .970
&OOM | 1.00 997 997 976 .884 .683 .447 .260 .140 .073
Ad 1.00 1.00 .993 .875 .605 .353 .190 .098 .050 .025 .013 .006
recblack | .890 .890 .849 .708 .508 .317 .179 .095 .049 .025 .013 .006

@@@ 1.00 1.00 .993 .943 .778 .536 .321 .177

Now we derive a basic asymptotic tool which allows asymptafiproximations for general decks.

Proposition 4.4 Letm > 2 anda be natural numbers, lef, .. ., &, be real numbers inf0, 1]. Letr,
...,y be natural numbers all at least> 2. Let

Sm(a;évf) = Z (al +€1)T1 (am +§m)rm-
gm0,

Then

rleorp!
) —
= (ri+...4+rm+m—1)

el - : it AT m—1-2j
<rtend 3 (M) (G ) S ) —
J 3(r—1) (ri4...4+rm+m-—1-2j)!

] (a+& + ...+ &) TTrmtm=1

Consider a general deck nfcards withD; cards labelled. We use Proposition 4.4 to find asymptotics
for the separation distance given in Theorem 4.2. The fatigvs our ‘rule of thumb.’

Theorem 4.5 For a deck ofn cards as above, suppogg > d > 3 forall 1 < ¢ < m. Then we have

m—1

SERl) = L= GGy . (ntm—1) mi(_l)j (m]_ 1) (1- %)nm_l,
j=0

wheren is a real number satisfying

2

< (1 s ga s 1)2)%1 -t

Proof: To evaluate the expression in Theorem 4.2, we require arrstagheling of

Z afy)lm nﬁl(afj—(aj—l)Dj)—/ol"'/ol aﬁm e (Dj(aj—l—i—fj)Dj*ldfj),

ai+...+am=a Jj=1 a1+...+am=a Jj=1

ajZI ajZI
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We now invoke Proposition 4.4. Thus the above equals for §6me 1

m

! L la— (m— 14+... m—1)"
HD'// (LRI EHEINEE

mls 1 1 i(a—(m—=1)+& 4. A&n1)" %
Y o

d—2) (n—2j)!

We may simplify the above as

2

(1+9{(1+3(d_2)(z_m+1)2)m71—1}) w /01 . ./Ol(a%1+§1+- 1) dEr - dE,

and evaluating the integrals above this is

<1+9{ (1 + T 2)(:2_m+ 1)2)m_1 - 1}) Wg(_l)j (mj— 1) (a— j)=r+,

The Theorem follows. O

For simplicity we have restricted ourselves to the case wdaah pile has at least three cards. With
more effort we could extend the analysis to include doublgiites. The case of some singleton piles
needs some modifications to our formula, but this variantadsm be worked out. Below we use our rule
of thumb to calculate separation for the same decks as ire Tabl

Tab. 3: Rule of Thumb for the separation distance foshuffles of52 cards.
k 1 2 3 4 5 6 7 8 9 10 11 12

BD-92 |1.00 100 100 1.00 1.00 1.00 1.00 .995 .928 .729 .478 .278
blackjack| 1.00 1.00 1.00 1.00 .999 .970 .834 .596 .366 .204 .108 .056
&O0OM | 1.00 1.00 .997 .976 .884 .683 .447 .260 .140 .073 .037 .019

recblack | 962 .925 .849 708 508 317 .179 .095 .049 .025 .013 .006
O+#o| 1.00 100 993 943 778 536 321 .177 .093 .048 024 012

Remarks on Table 3The first row gives exact results from the Bayer-Diaconisrfolia for the full per-
mutation group. The other numbers are from the rule of thuRMwughly, the single card or red-black
numbers suggest that half the usual number of shuffles suffice Black-Jack (equivalently Baccarat)
numbers suggest a savings of two or three shuffles, and thewubers lie in between. The final row is
the rule of thumb for the Zener deck with 25 cards, 5 cardsdchef 5 suits.

While asymptotic, Theorem 4.5 is astonishingly accuratelérks of practical interest. For instance,
comparing exact calculations in Table 2 with approximagiasing this rule of thumb in Table 3 shows
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that after only3 shuffles, the numbers agree to the given precision. Morethasimplicity of the formula
in Theorem 4.5 allows much further computations than arsiptesusing the formula in Theorem 4.2.
We now give a heuristic for why our rule of thumb is numerigalb accurate. Fdt > 0, define

- Ap(2)
. k_r k
fu@) =2 = e
where Ay (z) denotes thé-th Eulerian polynomial. The sum ovet, .. ., a,, appearing in our proof of

Theorem 4.5 is simply the coefficient of in the generating functiofl — z)" ' fp, (2)--- fp,, (). Our
rule of thumb may be interpreted as saying that

Dil--- Dy

im0 " Frrmea() ©)

(1 =2)""fp,(2) - [, (2) ~
To explain the sense in which (9) holds, note tfigtz) extends meromorphically to the complex plane,
and it has a pole of ordér + 1 atz = 1. Moreover it is easy to see th#t(z) — k!/(1 — 2)**! has a
pole of order at most atz = 1. Therefore, the LHS and RHS of (9) have poles of order 1 atz = 1,
and their leading order contributions match. Thereforedifference between the RHS and LHS of (9)
has a pole of order at mostat z = 1. But in fact, this difference can have a pole of order at mostd
atz = 1, and thus the approximation in (9) is tighter than what magXgecteda priori To obtain our
result on the order of the pole, we record that one can show

B k! (z—1
fu(z) = (1 — z)kt1 ( log z

))k+1 (k) +0(1 - 2).

5 Gilbreath principle at work

Conger and Viswanath note that the initial configurationafect the speed of convergence to stationary.
Perhaps this is most striking in the case of Section 3 wheiregéescard is tracked. Recall Table 1, giving
calculations for the distinguished card beginning at thitdmo of a deck ob2 cards. In contrast, Table 4
gives calculations for the distinguished card startindiarniddle, at positio6. For the latter, both total
variation and separation are indistinguishable from zé&wsr anly four shuffles.

Tab. 4: Distance to uniformity for a single card starting at the ntédof a52 card deck.
1 2 3 4

TV | 494 152 .001 .000
SEP | 1.00 .487 .003 .000

Consider next a deck with red andn black cards. First take the starting condition of all reaspal|
blacks. If the initial cut is ak (the most likely value) then the red-black pattern is pdlyaunixed after a
single shuffle. More generally, the chance of the deaksulting from a singlé-shuffle of a deck wit
red cards atop black cards is given by

1 w w
Q2(w) = > (2h( ) 2M )—1)7
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whereh(w) is the number of red cards before the first black cardt@nd is the number of black cards
after the final red card; see [2]. In particular, the totaiaton after a singl@-shulffle is

L (oo 1 24271 1| 2= (i+j+2
|Q2—U|TV=5<<T‘W>+ZZ e ) <n”—(l<i++jl+> ))> -
n =0 j=0 "

Evaluating this formula fo2n = 52 give a total variation 00.579.

Now take the starting condition to alternate red black redkletc. As motivation, we recall a popular
card trick: Begin with a deck din cards arranged alternately red, black, red, black, etc.dEbk may be
cut any number of times. Have the deck turned face up and dilt ¢wts completed) until one of the cuts
results in the two piles having cards of opposite color upppet. At this point, ask one of the participants
to riffle shuffle the two piles together. The resulting arramgnt has the top two cards containing one
red and one black, the next two cards containing one red aadlack, and so on throughout the deck.
This trick is called the Gilbreath Principle after its in¥en the mathematician Norman Gilbreath. It
is developed, with many variations, in Chapter 4 of [9]. Frthra trick we see that beginning with an
alternating deck severely limits the possibilities. Arzyg the trick reveals the following formula,

2n—1 4 2n jf wis the initial alternating deck
om on—l if w can result from an odd cut
2 if w can result from an even gut
0 otherwise

(11)

where an odd (resp. even) cut refers to the parity of cardshierepile. From this we compute

1 on 4 on—1_ 1
1Q2 = Ullry = 5 (1 - +(27n)> ; (12)

which goes to5 exponentially fast as goes to infinity, and indeed is already00 for 2n = 52. In
contrast, starting with reds above blacks, asymptoticyaisbf (10) shows that the total variation tends
to 1 after a single shuffle whemis large. Thus again an alternating start leads to fasteingnix
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