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We study the Gilbert-Shannon-Reeds model for riffle shufflesand ask ’How many times must a deck of cards be
shuffled for the deck to be in close to random order?’. In 1992,Bayer and Diaconis gave a solution which gives
exact and asymptotic results for all decks of practical interest, e.g. a deck of 52 cards. But what if one only cares
about the colors of the cards or disregards the suits focusing solely on the ranks? More generally, how does the
rate of convergence of a Markov chain change if we are interested in only certain features? Our exploration of this
problem takes us through random walks on groups and their cosets, discovering along the way exact formulas leading
to interesting combinatorics, an ’amazing matrix’, and newanalytic methods which produce a completely general
asymptotic solution that is remarkable accurate.
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1 Introduction
A basic question in scientific computing is ‘How many times must an iterative procedure be run?’. A
basic answer is ‘It depends.’. In this paper we study the mixing properties of the Gilbert-Shannon-Reeds
model [10, 12] for riffle shuffling a deck ofn cards and ask how many times the deck must be shuffled for
the cards to be in close to random order. Our answer depends not only on the metric we use to measure
distance to uniformity, but also on the particular properties of the deck that are of interest.

To be precise, we consider a ‘deck’ to be a multiset ofn cards. We shuffle the deck by first cutting it
into two piles according to the binomial distribution, and then riffling the piles together by successively
dropping cards from either pile with probability proportional to the size. This process defines a measure,
denotedQ2(σ), on the symmetric groupSn. Repeated shuffles are defined byconvolution powers

Q∗k
2 (σ) =

∑

ω·τ=σ

Q2(τ)Q
∗(k−1)
2 (ω). (1)
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This shuffling model, which accurately models how most people actually shuffle a deck of cards, was
introduced by Gilbert and Shannon [10] and independently byReeds [12].

Bayer and Diaconis [3] generalized this toa-shuffles, which is the natural extension to shuffling witha
hands: the deck is cut intoa packets by multinomial distribution and cards are successively dropped from
packets with probability proportional to packet size. Letting Qa(σ) denote this measure, they show that
convolution of generala-shuffles is as nice as possible, namely

Qa ∗ Qb = Qab. (2)

Thus it is enough to study a singlea-shuffle of the deck.
To that end, denote theuniform distributionby U = U(σ). For a deck withn distinct cards,U = 1/n!,

and for a more general deck withD1 1’s, D2 2’s, up toDm m’s, we haveU = 1/
(

D1+···+Dm

D1,...,Dm

)

. There are
several ways to measure the distance betweenQa andU , though for the purposes of this paper we restrict
our attention to total variation distance and separation distance.

Thetotal variation distanceis defined by

‖Qa − U‖TV = max
subsetsA

|Qa(A) − U(A)| =
1

2

∑

σ

|Qa(σ) − U(σ)|. (3)

In general, the formulas forQa(σ) may be quite complicated, making calculations of total variation
intractable. Therefore we will also consider theseparation distancedefined by

SEP(a) = max
σ

1 −
Qa(σ)

U(σ)
. (4)

Here, only a single probability needs to be computed, thoughas we shall see even that can be difficult.
From the formulas above, one can easily see that separation provides an upper bound for total variation,
which makes separation a good measure to use when total variation becomes too complicated to compute.

In widely cited works, Aldous [1] and Bayer and Diaconis [3] show that32 log2(n)+ c shuffles are nec-
essary and sufficient to make the total variation distance small, while 2 log2(n) + c shuffles are necessary
and sufficient to make separation small. These results, however, look at all aspects of a permutation, i.e.
consider a deck with distinct cards. In many card games, onlycertain aspects of the permutation matter.
For instance, in Baccarat, suits are irrelevant and all10’s and picture cards are equivalent, and in ESP card
guessing experiments, a Zener deck of25 cards with each of5 symbols repeated five times is used. It is
natural, therefore, to ask how many shuffles are required in these situations, and so we consider a deck to
have repeated cards.

Many results are known for how long it takes certain featuresof a permutation, e.g. longest cycle,
descent structure, etc, to become random; for a thorough treatment of such results see [7]. The particular
problem we address in this paper has also been addressed by Conger and Viswanath [5, 6] who derive
remarkable numerical procedures giving useful answers forcases of practical interest.

In this paper, we present many of our main results from [2], giving exact formulae and asymptotics for
a deck ofn cards withD1 cards labelled1, D2 cards labelled2, . . ., Dm cards labelledm. Our results
are proved from the deck starting ‘in order’, i.e. with1’s on top throughm’s at the bottom. In Section 2,
we show that the processes we study are Markov by framing the problem in the context of random walks
on cosets. We derive a formula for the transition matrix following a single card in Section 3, and show
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that this matrix shares many properties with Holte’s ‘Amazing Matrix’ [11]. In Section 4, we consider
a general deck, limiting our metric to the separation distance, and derive new formulae and asymptotic
approximations which we unify into our ‘rule of thumb’ formula. Section 5 shows that our results depend
on the initial configuration of the deck. This extended abstract contains precise statements of our main
results along with the main ideas of the proofs; for full details see [2].

2 Random walks on Young subgroups
In this section, we reformulate shuffling in terms of random walks on a finite group, so that our investiga-
tion of particular properties of a deck becomes a quotient walk on Young subgroups ofSn.

Let G be a finite group, and letQ be a probability onG, i.e. Q(g) ≥ 0 and
∑

g∈G Q(g) = 1. Take
a random walk onG by repeatedly choosing elements independently fromG with probability Q, say
g1, g2, g3, . . ., and, beginning with the identity element1G, multiply on the left bygi. This generates the
following sequence of elements, the left walk,

1G, g1, g2g1, g3g2g1, . . . .

By inspection, the chance that the walk is atg afterk steps is given by convolution formula (1)Q∗k(g),
whereQ0(g) = δ1G,g.

To focus on certain aspects of the walk, we choose a subgroup and consider thequotient walkas follows.
LetH ≤ G be a subgroup ofG, and letX denote the set of left cosets ofH in G, i.e.X = G/H = {xH}.
The quotient walk onX is derived from the left walk onG by reporting the coset to which the current
position of the walk belongs. This defines a Markov chain onX with transition matrix given by

K(x, y) = Q(yHx−1) =
∑

h∈H

Q(yhx−1). (5)

Note thatK is well-defined (i.e. independent of the choice of coset representatives) and doubly stochastic.
Thus the uniform distribution onX , U = |H |/|G|, is a stationary distribution forK. The following result,
showing that powers ofK correspond precisely to convolving and taking cosets, is intuitively obvious with
a straightforward proof.

Proposition 2.1 For Q a probability distribution on a finite groupG andK as defined in (5), we have

K l(x, y) = Q∗l(yHx−1).

We may identify permutations inSn with arrangements of a deck ofn cards by settingσ(i) to be the
label of the card at positioni from the top. For instance, the permutation2 1 4 3 is associated with four
cards where “2” is on top, followed by “1”, followed by “4”, and finally “3” is on the bottom. Therefore
the random walk onSn with probabilityQ2 corresponds precisely to riffle shuffles of a deck ofn distinct
cards. If we consider the firstD1 cards to be labelled “1”, the nextD2 cards to be labelled “2”, and so
on up to the lastDm cards labelled “m”, then this corresponds precisely to the coset space of a Young
subgroup,

X = Sn/ (SD1
× SD2

× · · · × SDm
) .

Thus Proposition 2.1 shows that the processes studied in thebody of this paper are Markov chains.
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3 A new ‘amazing’ matrix
Suppose the ace of spades is on the bottom of a deck ofn cards. How many shuffles does it take until this
one card is close to uniformly distributed on{1, 2, . . . , n}? We analyze this problem by writing down the
transition matrix following a single card through an otherwise indistinguishable deck.

Proposition 3.1 Let Pa(i, j) be the chance that the card at positioni moves to positionj after ana-
shuffle. For1 ≤ i, j ≤ n, Pa(i, j) is given by

1

an

a
∑

k=1

u
∑

r=l

(

j−1

r

)(

n−j

i−r−1

)

kr(a − k)j−1−r(k − 1)i−1−r(a − k + 1)(n−j)−(i−r−1)

wherer ranges froml = max(0, (i + j) − (n + 1)) to u = min(i − 1, j − 1).

Proof: Consider the number of ways that an inversea-shuffle can bring the card at positionj to position
i. First, the card at positionj must have come from some pile, sayk, 1 ≤ k ≤ a. Sayr of the cards above
this came from piles1 to k, and so the remainingj − 1 − r came from pilesk + 1 to a. Thoser cards
all must appear before the card at positionj in

(

j−1
r

)

ways. This leavesi − 1 − r cards below positionj
which came from piles1 to k − 1 in

(

n−j
i−r−1

)

ways, and the remaining cards must be from pilesk to a. 2

For example, then × n transition matrices forn = 2, 3 are given below.

1

2a

(

a + 1 a − 1
a − 1 a + 1

)

1

6a2





(a + 1)(2a + 1) 2(a2 − 1) (a − 1)(2a − 1)
2(a2 − 1) 2(a2 + 2) 2(a2 − 1)

(a − 1)(2a − 1) 2(a2 − 1) (a + 1)(2a + 1)





These matrices share many properties, given in Proposition3.2, with the ‘amazing matrix’ discovered
by Holte [11] in his study of the ‘carries process’ of ordinary addition. Diaconis and Fulman [8] show that
Holte’s matrix is also the transition matrix for the number of descents in repeateda-shuffles. We have not
been able to find a closer connection between the two matrices.

Proposition 3.2 The transition matrices following a single card have the following properties:

1. they arecross-symmetric, i.e. Pa(i, j) = Pa(n − i + 1, n − j + 1);

2. they are multiplicative, i.e.Pa · Pb = Pab;

3. the eigenvalues form the geometric series1, 1/a, 1/a2, . . . , 1/an−1;

4. the right eigen vectors are independent ofa and have the simple form:
Vm(i) = (i − 1)i−1

(

m−1
i−1

)

+ (−1)n−i+m
(

m−1
n−i

)

for 1/am, m ≥ 1.

Proof: The cross-symmetry (1) follows from Proposition 3.1, and the multiplicative property (2) follows
from the shuffling interpretation and equation (2). Property (1) implies that the eigen structure is quite
constrained. Properties (3) and (4) follow from results of Cuicu [4]. 2

The following Corollary also follows as a special case of Theorem 2.2 in [5].
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Corollary 3.3 Consider a deck ofn cards with the ace of spades starting at the bottom. The chance that
the ace of spades is at positionj from the top after ana-shuffle is

Qa(j) = Pa(n, j) =
1

an

a
∑

k=1

(k − 1)n−jkj−1. (6)

From the explicit formula, we are able to give exact numerical calculations and sharp asymptotics
for any of the distances to uniformity. The results below show that log2 n + c shuffles are necessary
and sufficient for both separation and total variation (and there is a cutoff for these). This is surprising
since, on the full permutation group, separation requires2 log2 n+c steps whereas total variation requires
3
2 log2 n + c. Of course, for any specificn, these asymptotic results are just indicative.

Tab. 1: Distance to uniformity for a deck of52 cards. The upper table assumes distinct cards, and the lowertable
follows a single card starting at the bottom of the deck.

1 2 3 4 5 6 7 8 9 10 11 12

TV 1.00 1.00 1.00 1.00 .924 .614 .334 .167 .085 .043 .021 .010

SEP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .996 .931 .732 .479 .278

1 2 3 4 5 6 7 8 9 10 11 12

TV .873 .752 .577 .367 .200 .103 .052 .026 .013 .007 .003 .002

SEP 1.00 1.00 .993 .875 .605 .353 .190 .098 .050 .025 .013 .006

Remarks on Table 1.We use Proposition 3.1 to give exact results whenn = 52. For comparison, the
upper table gives exact results for the full deck using [3]. The lower table shows that it takes about half
as many shuffles to achieve a given degree of mixing for a card at the bottom of the deck. For example,
the widely cited ‘7 shuffles’ for total variation drops this distance to.334 for the full ordering, but this
requires only4 shuffles to achieve a similar degree of randomness for a single card at the bottom.

For asymptotic results, we first derive an approximation to separation, which also serves as an upper
bound for total variation. Finally, we derive a matching lower bound for total variation. Proofs have been
omitted for brevity, but again full details are available in[2].

Proposition 3.4 After ana-shuffle, the probability that the bottom card is at positioni satisfies

1

a

αn−i+1

1 − αn
≤ Qa(i) ≤

1

a

αn−i

1 − αn−1
,

where for brevity we have setα = 1 − 1/a. In particular, the separation distance satisfies

1 −
n

a

αn

1 − αn
≤ SEP(a) ≤ 1 −

n

a

αn−1

1 − αn−1
.
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If a = 2log
2
(n)+c = n2c, then our result shows that theSEP(a) is approximately

1 −
1

2c

e−2−c

1 − e−2−c
,

and for largec this is≈ 2−c−1. The fit to the data in Table 1 is excellent: for example after ten shuffles
of a fifty-two card deck we have2−c−1 = 26

1024 which is very nearly the observed separation distance of
0.025.

Remark 3.5 Proposition 3.4 gives a local limit for the probability thatthe original bottom card is at
positionj from the bottom. When the number of shuffles islog2 n+c, the density of this (with respect to the
uniform measure) is asymptoticallyz(c)e−j/2c

, with z a normalizing constant (z(c) = 1/2c(ej/2c

− 1)).
The result is uniform inj for c fixed,n large.

Proposition 3.6 Consider a deck ofn cards with the ace of spades at the bottom. Withα = 1 − 1/a, the
total variation distance for the mixing of the ace of spades after ana-shuffle is at most

αn+1

1 − αn
−

aα2(1 − αn−1)

n(1 − αn)
+

1

n log(1/α)
log

(

a

n

1 − αn

αn+1

)

,

and at least
αn

1 − αn−1
−

a(1 − αn)

nα(1 − αn−1)
+

1

n log(1/α)
log
( a

n

1 − αn−1

αn−1

)

.

After log2 n + c shuffles, that is whena = 2cn, Proposition 3.6 shows that the total variation distance
is approximately (withC = 2c)

C log
(

C(e1/C − 1)
)

+
1 − C log(e1/C − 1)

(e1/C − 1)
.

Thus whenc is ‘large and negative,’ the total variation is close to1, and whenc is large and positive,
the total variation is close to0. Thus total variation and separation converge at the same rate. This is an
asymptotic result and, for example, Table 1 supports this.

Similar, but more demanding, calculations show that if the ace of spades starts at positioni, and
max(i/n, (n − i)/n) ≥ A > 0 for some fixed positiveA, then 1

2 log2 n shuffles suffice for convergence
in any of the metrics. We omit further details.

4 Separation distance for the general case
A main result of Bayer and Diaconis [3] is the simple formula for ana-shuffle of a deck ofn distinct
cards:

Qa(σ) =
1

an

(

n + a − r

n

)

, (7)

wherer = r(σ) is the number of rising sequences inσ, equivalently one more than the number of
descents inσ−1. This formula allows simple closed form expressions for a variety of distances as well as
asymptotic analysis.
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In this section we work with general decks containingDi cards labelledi, 1 ≤ i ≤ m. The formulae of
this section hardly resemble the elegant expression above.Further, we only give precise formula for the
least likely deck. The following lemma shows that this deck,where the separation distance is achieved, is
the reverse the initial deck configuration. This is equivalent to Theorem 2.1 from [5].

Proposition 4.1 LetD be a deck as above. After ana-shuffle of the deck with1’s on top down tom’s on
bottom, the least likely configuration is the reverse deckw∗ with m’s on top down to1’s on the bottom.

Proof: The only cuts of the initial deck resulting inw∗ are those containing no pile with distinct letters.
For all such cuts, each rearrangement of the deck is equally likely to occur. 2

While finding a completely general formula forQa(w) for arbitraryw is infeasible, below we do this
for w∗.

Theorem 4.2 Consider a deck withn cards andDi cards labeledi, i = 1, . . . , m. Then the separation
distance after ana-shuffle of the sorted deck (1’s followed by2’s, etc) is given by

SEP(a) = 1−
1

an

(

n

D1 . . .Dm

)

∑

0=k0<···<km−1<a

(a−km−1)
Dm

m−1
∏

j=1

(

(kj−kj−1)
Dj −(kj−kj−1−1)Dj

)

.

Proof: From the analysis in the proof of Proposition 4.1,Qa(w∗) is given by

Qa(w
∗) =

∑

A1+···+Aa=n
A refines D

1

an

(

n

A1, . . . , Aa

)

1
(

n
D1,...,Dm

) ,

where ‘A refinesD’ means there exist indicesk1, . . . , km−1 such thatA1 + · · · + Ak1
= D1 and, for

i = 2, . . . , m − 1, Aki−1+1 + · · · + Aki
= Di. Taking theki’s to be minimal, the expression forQa(w∗)

simplifies to

1

an

∑

0=k0<···<km−1<a

(a−km−1)
Dm

m−1
∏

j=1

(

(kj−kj−1)
Dj − (kj−kj−1−1)Dj

)

. (8)

The result now follows from Proposition 4.1. 2

Remarks on Table 2.We calculateSEP after repeated2-shuffles for various decks using Theorem 4.2:
(blackjack)9 ranks with4 cards each and another rank with16 cards; (♣♦♥♠) 4 distinct suits of13 cards
each; (A♠) the ace of spades and51 other cards; (redblack) a two color deck with26 of either color; and
( ) a deck with 5 cards in each of 5 suits. The missing entries in Table 2 highlight the limitations
of exact calculations using Theorem 4.2.

Remark 4.3 Comparing the data in Table 2 forA♠ andredblack shows that these two cases are remark-
ably similar. Indeed, both cases exhibit the same asymptotic behavior, which is remarkable since theA♠
has a state space of size52 while redblack has a state space of size around5 × 1014.
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Tab. 2: Separation distance fork shuffles of52 cards.
k 1 2 3 4 5 6 7 8 9 10 11 12

BD-92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .995 .928 .729 .478 .278

blackjack 1.00 1.00 1.00 1.00 .999 .970

♣♦♥♠ 1.00 .997 .997 .976 .884 .683 .447 .260 .140 .073

A♠ 1.00 1.00 .993 .875 .605 .353 .190 .098 .050 .025 .013 .006

redblack .890 .890 .849 .708 .508 .317 .179 .095 .049 .025 .013 .006

1.00 1.00 .993 .943 .778 .536 .321 .177

Now we derive a basic asymptotic tool which allows asymptotic approximations for general decks.

Proposition 4.4 Let m ≥ 2 anda be natural numbers, letξ1, . . ., ξm be real numbers in[0, 1]. Let r1,
. . ., rm be natural numbers all at leastr ≥ 2. Let

Sm(a; ξ, r) =
∑

a1,...,am≥0
a1+...+am=a

(a1 + ξ1)
r1 · · · (am + ξm)rm .

Then
∣

∣

∣Sm(a; ξ, r) −
r1! · · · rm!

(r1 + . . . + rm + m − 1)!
(a + ξ1 + . . . + ξm)r1+...+rm+m−1

∣

∣

∣

≤ r1! · · · rm!
m−1
∑

j=1

(

m − 1

j

)

( 1

3(r − 1)

)j (a + ξ1 + . . . + ξm)r1+...+rm+m−1−2j

(r1 + . . . + rm + m − 1 − 2j)!
.

Consider a general deck ofn cards withDi cards labelledi. We use Proposition 4.4 to find asymptotics
for the separation distance given in Theorem 4.2. The following is our ‘rule of thumb.’

Theorem 4.5 For a deck ofn cards as above, supposeDi ≥ d ≥ 3 for all 1 ≤ i ≤ m. Then we have

SEP(a) = 1 − (1 + η)
am−1

(n + 1) · · · (n + m − 1)

m−1
∑

j=0

(−1)j

(

m − 1

j

)

(

1 −
j

a

)n+m−1

,

whereη is a real number satisfying

|η| ≤
(

1 +
n2

3(d − 2)(a − m + 1)2

)m−1

− 1.

Proof: To evaluate the expression in Theorem 4.2, we require an understanding of

∑

a1+...+am=a
aj≥1

aDm
m

m−1
∏

j=1

(a
Dj

j − (aj −1)Dj ) =

∫ 1

0

· · ·

∫ 1

0

∑

a1+...+am=a
aj≥1

aDm
m

m−1
∏

j=1

(

Dj(aj −1+ ξj)
Dj−1dξj

)

.
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We now invoke Proposition 4.4. Thus the above equals for some|θ| ≤ 1

m
∏

j=1

Dj!

∫ 1

0

· · ·

∫ 1

0

( (a − (m − 1) + ξ1 + . . . + ξm−1)
n

n!
+

+θ

m−1
∑

j=1

(

m−1

j

)

( 1

3(d−2)

)j (a−(m−1)+ξ1+. . .+ξm−1)
n−2j

(n − 2j)!

)

dξ1· · ·dξm−1.

We may simplify the above as

(

1+θ
{(

1+
n2

3(d−2)(a−m+1)2

)m−1

−1
})D1! · · ·Dm!

n!

∫ 1

0

. . .

∫ 1

0

(a−m+1+ξ1+· · ·+ξm−1)
ndξ1 · · ·dξm−1,

and evaluating the integrals above this is

(

1 + θ
{

(

1 +
n2

3(d − 2)(a − m + 1)2

)m−1

− 1
}

)

D1! · · ·Dm!

n!

m−1
∑

j=0

(−1)j

(

m − 1

j

)

(a − j)n−m+1.

The Theorem follows. 2

For simplicity we have restricted ourselves to the case wheneach pile has at least three cards. With
more effort we could extend the analysis to include doubleton piles. The case of some singleton piles
needs some modifications to our formula, but this variant canalso be worked out. Below we use our rule
of thumb to calculate separation for the same decks as in Table 2.

Tab. 3: Rule of Thumb for the separation distance fork shuffles of52 cards.
k 1 2 3 4 5 6 7 8 9 10 11 12

BD-92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .995 .928 .729 .478 .278

blackjack 1.00 1.00 1.00 1.00 .999 .970 .834 .596 .366 .204 .108 .056

♣♦♥♠ 1.00 1.00 .997 .976 .884 .683 .447 .260 .140 .073 .037 .019

redblack .962 .925 .849 .708 .508 .317 .179 .095 .049 .025 .013 .006

1.00 1.00 .993 .943 .778 .536 .321 .177 .093 .048 .024 .012

Remarks on Table 3.The first row gives exact results from the Bayer-Diaconis formula for the full per-
mutation group. The other numbers are from the rule of thumb.Roughly, the single card or red-black
numbers suggest that half the usual number of shuffles suffice. The Black-Jack (equivalently Baccarat)
numbers suggest a savings of two or three shuffles, and the suit numbers lie in between. The final row is
the rule of thumb for the Zener deck with 25 cards, 5 cards for each of 5 suits.

While asymptotic, Theorem 4.5 is astonishingly accurate for decks of practical interest. For instance,
comparing exact calculations in Table 2 with approximations using this rule of thumb in Table 3 shows
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that after only3 shuffles, the numbers agree to the given precision. Moreover, the simplicity of the formula
in Theorem 4.5 allows much further computations than are possible using the formula in Theorem 4.2.

We now give a heuristic for why our rule of thumb is numerically so accurate. Fork ≥ 0, define

fk(z) =

∞
∑

r=0

rkzr =
Ak(z)

(1 − z)k+1
,

whereAk(z) denotes thek-th Eulerian polynomial. The sum overa1, . . ., am appearing in our proof of
Theorem 4.5 is simply the coefficient ofza in the generating function(1−z)m−1fD1

(z) · · · fDm
(z). Our

rule of thumb may be interpreted as saying that

(1 − z)m−1fD1
(z) · · · fDm

(z) ≈
D1! · · ·Dm!

(n + m − 1)!
(1 − z)m−1fn+m−1(z). (9)

To explain the sense in which (9) holds, note thatfk(z) extends meromorphically to the complex plane,
and it has a pole of orderk + 1 at z = 1. Moreover it is easy to see thatfk(z) − k!/(1 − z)k+1 has a
pole of order at mostk at z = 1. Therefore, the LHS and RHS of (9) have poles of ordern + 1 at z = 1,
and their leading order contributions match. Therefore thedifference between the RHS and LHS of (9)
has a pole of order at mostn at z = 1. But in fact, this difference can have a pole of order at mostn − d
at z = 1, and thus the approximation in (9) is tighter than what may beexpecteda priori. To obtain our
result on the order of the pole, we record that one can show

fk(z) =
k!

(1 − z)k+1

( (z − 1)

log z

)k+1

+ ζ(−k) + O(1 − z).

5 Gilbreath principle at work
Conger and Viswanath note that the initial configuration canaffect the speed of convergence to stationary.
Perhaps this is most striking in the case of Section 3 where a single card is tracked. Recall Table 1, giving
calculations for the distinguished card beginning at the bottom of a deck of52 cards. In contrast, Table 4
gives calculations for the distinguished card starting in the middle, at position26. For the latter, both total
variation and separation are indistinguishable from zero after only four shuffles.

Tab. 4: Distance to uniformity for a single card starting at the middle of a52 card deck.
1 2 3 4

TV .494 .152 .001 .000

SEP 1.00 .487 .003 .000

Consider next a deck withn red andn black cards. First take the starting condition of all reds atop all
blacks. If the initial cut is atn (the most likely value) then the red-black pattern is perfectly mixed after a
single shuffle. More generally, the chance of the deckw resulting from a single2-shuffle of a deck withn
red cards atopn black cards is given by

Q2(w) =
1

22n

(

2h(w) + 2t(w) − 1
)

,
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whereh(w) is the number of red cards before the first black card andt(w) is the number of black cards
after the final red card; see [2]. In particular, the total variation after a single2-shuffle is

‖Q2 − U‖TV =
1

2





(

2n+1−1

22n
−

1
(

2n
n

)

)

+

n−1
∑

i=0

n−1
∑

j=0

∣

∣

∣

∣

∣

2i+2j−1

22n
−

1
(

2n
n

)

∣

∣

∣

∣

∣

(

2n− (i+j+2)

n− (i+1)

)



 (10)

Evaluating this formula for2n = 52 give a total variation of0.579.
Now take the starting condition to alternate red black red black, etc. As motivation, we recall a popular

card trick: Begin with a deck of2n cards arranged alternately red, black, red, black, etc. Thedeck may be
cut any number of times. Have the deck turned face up and cut (with cuts completed) until one of the cuts
results in the two piles having cards of opposite color uppermost. At this point, ask one of the participants
to riffle shuffle the two piles together. The resulting arrangement has the top two cards containing one
red and one black, the next two cards containing one red and one black, and so on throughout the deck.
This trick is called the Gilbreath Principle after its inventor, the mathematician Norman Gilbreath. It
is developed, with many variations, in Chapter 4 of [9]. Fromthe trick we see that beginning with an
alternating deck severely limits the possibilities. Analyzing the trick reveals the following formula,

22n · Q2(w) =















2n−1 + 2n if w is the initial alternating deck,
2n−1 if w can result from an odd cut,
2n if w can result from an even cut,
0 otherwise,

(11)

where an odd (resp. even) cut refers to the parity of cards in either pile. From this we compute

‖Q2 − U‖TV =
1

2

(

1 −
2n + 2n−1 − 1

(

2n
n

)

)

, (12)

which goes to.5 exponentially fast asn goes to infinity, and indeed is already.500 for 2n = 52. In
contrast, starting with reds above blacks, asymptotic analysis of (10) shows that the total variation tends
to 1 after a single shuffle whenn is large. Thus again an alternating start leads to faster mixing.
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