Probability in the Engineering and Informational Sciencé§ 2002 289-307 Printed in the US.A.

OPTIMAL CONTROL OF PARALLEL
QUEUES WITH BATCH SERVICE

CATHY H. Xia
IBM T.J. Watson Research Center

Yorktown, NY 10598
E-mail: cathyx@us.ibm.com

GEORGE MICHAILIDIS
Department of Statistics
University of Michigan
Ann Arbor, M/
E-mail: gmichail@umich.edu

NicHOLAS BAMBOS
Departments of Electrical Engineering and
Management Science & Engineering
Stanford University
Stanford, CA
E-mail: bambos@stanford.edu

PETER W. GLYNN
Department of Management Science & Engineering
Stanford University
Stanford, CA
E-mail: glynn@Ieland.stanford.edu

We consider the problem of dynamic allocation of a single server batoh pro-
cessingcapability to a set of parallel queuek®bs from different classes cannot be
processed together in the same baldte arrival processes are mutually indepen-
dent Poisson flows with equal raté&&atches have independent and identically dis-
tributed exponentially distributed service tim@sdependent of the batch size and
the arrival processe# is shown that for the case of infinite bufferslocating the
server to the longest queustochastically maximizes the aggregate throughput of
the systemFor the case of equal-size finite buffers the same policy stochastically
minimizes the loss of jobs due to buffer overflawénally, for the case ofinequal

size buffersa threshold-type policy is identified through an extensive simulation
study and shown to consistently outperform other conventional paliEfesgood
performance of the proposed threshold policy is confirmed in the heavy-traffic
regime using a fluid model

© 2002 Cambridge University Press 0269-96@8 $1250 289

290 C. H. Xia et al.

1. THE MODEL

We consider the problem of dynamic allocation of a single server latieh pro-
cessingcapability to a set of parallel queuekbs from different classes cannot be
processed together in the same bafcbanonical application of the model is in the
area of flexible manufacturing where a factory workstation has batch-processing
capabilities and is able to work on multiple classes of production procésgesn
oven in a semiconductor manufacturing plahtowever each production process
has its own set of specificationherefore prohibiting the mixing of jobs from dif-
ferent processe®ther applications can also be found in transportation systems or
communication system# typical example in communication systems is a serial-
to-parallel buswhere messages arrive to some serial input port and need to be
forwarded toB slower output portsThe batch capability of the server captures this
essential feature of such a devide all of these applicationgmportant perfor-
mance measures are the system throughputiamigde presence of finite bufferthe
job loss due to overflows

To make things concrete about the mqaed consider a system composed\bf
parallel queues served by a single serVbe queues have buffersizési=1,..., N,
that could be infinite or finiteThe job arriving stream to thigh queue is a Poisson
processA; = {A;i(t);t € R}, whereA(t) is the number of attempted arrivals to
queusd inthetime interval0, t). The arrival processes,, ..., Ay are assumed to be
mutually independent and have equal ratédsymmetric arrivals We next specify
the batching mechanism employed by the server

« Each batch must be formed from jobs belonging to the same queue

* The maximum batch size Bjobs whereB < C;, i =1,...,N; howeveythe
server is allowed to pick any number of jois8 (from the same quegahen
forming a batch

e Batches have independent and identically distributaed.) exponentially
distributed service timesndependent of the batch size and the arrival
processes

Finally, it is assumed that the resetting cost of the server for switching to a different
class is essentially zero

At certain time instants the server must decide from which oNtigieues to
form a batch for processindhe decision mechanism employed by the server de-
fines aserver allocation policyln this article we restrict attention to the depf
nonanticipativenonpreemptiveandnonidlingpolicies The nonanticipative restric-
tion implies that the server utilizes only present and past system state information
when making decision¥Ve are interested in dynamically allocating the server so as
to stochastically maximize the system’s throughput, amthe case of finite buffers
to minimize the long-term average loss fl@gdue to buffer overflows

The parallel queuing scheduling problem for a single server wiitlgle job
processingcapability has received considerable attention in the literafoeper-
fectly symmetric systemgqual rate Poisson arrivald.d. exponential service times
and equal-size buffeyst has been shown in previous artic[d$,18] that the Long-

OPTIMAL CONTROL OF PARALLEL QUEUES 291

est Queue firstLQ) policy stochastically maximizes the total departure process
and in the case of finite bufferstochastically minimizes the number of total job
losses due to overflow among all preemptive and nonidling polidiles result has
been extended ifl7] to the case of unequal buffers and geneial.iservice dis-
tribution. By using a coupling argument has been shown that the fewest empty
space first(FES policy stochastically minimizes the total-loss process among all
nonpreemptive and nonidling policies

On the other handhe problem ofbatch processingor a single queue with
Poisson arrival and general renewal service proce@sdspendent of the batch
size) has been studied {2], where Markov decision theory is used to establish the
optimality of a threshold-type policy with idling alloweA similar problem is con-
sidered i 1], where the batch-processing time is a function of the individual jobs’
processing timeslt is shown that a threshold-type policy optimizes a long-run
average-cost criteriorin [4], structural properties of the optimal policy that mini-
mizes the makespan and the flow time are derived for the above prolol¢8i, the
static (no future arrivals and dynamic problems of the optimal scheduling of in-
compatible classes of jobs on a batch-processing machine are exaanidedchar-
acterization of the optimal policy is provided along with an easy-to-implement
heuristic scheduling schem@ther heuristic scheduling policies for the static prob-
lem are presented {15].

The batch capability of the server fundamentally alters the queuing dynamics of
the system and introduces a dilemma not present in the case of single job processing
This can be best explained by considering the following exantiple system com-
prised of two parallel queues with buffer capady =5, C, = 10 and maximum
batch sizeB = 4, suppose that at some decision instéme queue lengths are 3 and
5, respectivelylf the server decides to serve the first queue because it is closer to
overflowing it would result in an underutilization of resourcés on the other hand
it decides to serve the second qugitieisks losing jobs due to a possible overflow
of the first queueThus in generalthe server needs to strike a fine balance between
these two objectives-or systems with single job processing capabilitibss is not
an issue because no matter which queue the server is allocaitathtoonly process
one joh

In this article we show thatfor the case of infinite buffetsllocating the server
to the longest queue stochastically maximizes the aggregate throughput of the sys-
tem For the case of equal-size finite buffetie same policy stochastically mini-
mizes the loss of jobs due to buffer overflasnally, for the case ofinequalsize
buffers a threshold-type policy is identified through an extensive simulation study
and shown to consistently outperform other conventional polidiee good per-
formance of the proposed threshold policy is confirmed in the heavy-traffic regime
using a fluid model

To show the results we make extensive use of the coupling method to establish
desired stochastic orderifi§]. These techniques have proved to be powerful tools
in solving optimal scheduling or routing problertesg., see[5,7,9,11-13 and the
references cited thereirBuilding on this basisthis article contributes in the fol-
lowing two directions First, the classical parallel queuing model is extended by

292 C. H. Xia et al.

adding the batch-processing capability of the seiSecondthe presence of a batch
service mechanism introduces complications both at the technical and at the con-
ceptual levels in making pathwise comparisons between alternative policies under
various coupling structureoreover the case of unequal buffers introduces new
sample path dynamics that are not present in the single job processing capability
case The emerging complications are then successfully resolved

The remainder of this article is organized as folloBsction 2 covers the no-
tations and some preliminary resul®ections 3 and 4 present the detailed proofs
using coupling arguments for systems with infinite buffer capacities and for systems
with equal-size finite buffersrespectivelyln Section 5 the case of unequal-size
finite buffers is discussedNe present selected simulations that help identify a
threshold-type policywhich is then shown to be optimal using a fluid model ap-
proach in heavy trafficFinally, concluding remarks are given in Section 6

2. NOTATIONS AND PRELIMINARIES

Before proceeding with the results we define some notations that will be used later
For a system operating under server allocation pojic& T, let {X?(t);t = 0}
denote thgoint queue lengtiprocesswhereX” (t) = (X{ (t),..., XZ(t)), with X7 (t)
being the number of jobs in queugnot including the jobs in serviget timet.
Define thetotal-lossprocesqL?(t); t = 0}, whereL”(t) gives the total number of
lost jobs due to buffer overflows in the time interyal t) for policy y € T. Simi-
larly, define thetotal-departureprocesgD”(t); t = 0}, whereD”(t) gives the total
number of jobs that have departed from the systef,it). Finally, denote byb” (t)
the batch size that policy allocates to the server at decision instant

In addition we introduce the following partial ordering of random variables and
processedMore details on stochastic orderings can be fourfd i 3] for example

DEerFINITION 2.1: Given two random vectors, X € R", X is said to be stochastically
smaller than (X =Y) if E[f(X)] = E[f(Y)] for all increasing £ R" — R.

Given two stochastic processps(t)} and{Y(t)},t € R, the proces$X(t)} is
said to be stochastically smaller thaiY(t)}, ({X(t)} = {Y(t)}) if O n €N,
0 (tg, b, ..., t,) € R,

(x(tl)’ x(tZ)’ LRRS} X(tn)) SSt (Y(tl)’Y(t2)7 e ,Y(tn))~

The next two lemmas identify some important properties of the scheduling
policies which are needed later

LemMmA 2.2: Given two initial statesa(0) = (a;(0),...,ay(0)) and b(0) =
(by(0),...,bN(0)), suppose that

b(0)=a(0), i=1..,N, (1)

For an arbitrary policya € T that operates on a system starting wéf0), there
exists a policy3 € T which starts withb(0), such that

{XP(t);t= 0} =5 {X*(t);t =0},)

OPTIMAL CONTROL OF PARALLEL QUEUES 293

whereX *(t) denotes thgqueudength vector of the system operating under poticy
at time t, and similarly foiX#(t). When all buffers are of finite sizes, this implies

{LA(t);t = 0} =, {L(t);t= 0.

Proor: Inorderto show?2), we simply neg:d to con%truct acouplifg®, X#) of the
random processéX®, X#), such thatX® = X¢ X# = X# and for allt = 0,

)ZIB(t) =)A(ia(t)7 I :17"'7N7 (3)
and in the finite buffer case
LA(t) = L«(1), (4)

where the “hat” symbol denotes the coupled versions of the proceamizg de-
notes the equality of their finite dimensional distributioRefer tq for example[6]
for details about coupling and stochastic comparison techniques

Because all of the arrival processes are Poisson of equahyatee can uni-
formize the input flows and assume equivalently that there exists a single Poisson
input process of rathlA, and every arrival can join each of thequeues with equal
probability I/N.

We now couple the system operating under pofg;ywith the one operating
under policyx in the following way First, we give the two systems the same arrival
processesSecondletting §¢ be the service time of theth batch to complete service
undera, we setS? = §7 (since the service times arédl. exponentially distributed
independent of the batch sizasd hencewith identical statistics in all queug$-or
ease of expositigrwe denote queuiein the system operating under poliayby i ¢,
and similarly we define indei®.

Note that the queue length vector will only change at an arrival epoch or at a
decision epocBecause the arrival processes of both systems are perfectly synchro-
nized at an arrival epoch the same queue in both systems will simultaneously in-
crease by iin the finite buffer casghe arrival may be lost by both systems or only
by the system under, given relation(3) holds before the arrivaln both cases
relation(3) continues to holdinductively).

Supposé3) holds fort € [0, 7], wherer = 0 is a decision epoch under policy
a. At this instanf suppose policy allocates the server to quekiand serves a batch
of sizeb*(7). We examine next the following three cases

If X,°() > 0, then let policyB also allocate the server to quekiand serve a
batch of sizeb?(7) = b*(7) OX(7), wherea Ob := min{a, b}; that is policy 8 is
mimicking « as much as possihle

If XZ(7) = 0 and there exist some other buffers wk{f(r) > 0, then letg
choose arbitrarily such a queuand serve a batch of arbitrary size<0b?(7) <
BOX”(r).

If all X”(7) = 0, then policyB does nothing until the next arrivadf upon this
arrival, policy « is still serving a batcfand becausg needs to be nonidlingve then
let 8 immediately start a batch of size 1 with a service time equal to the remaining
service time of the batch being served by policyNote that this is feasible because

294 C. H. Xia et al.

the batch service time is exponentially distribytadd therefore the random vari-
ableS— u|S> uis still exponentially distributed

Under the above constructigihis easy to check thaB) continues to hold from
7+ until the next decision epoch

By inductively applying the above argumepblicy 8 is then constructed in a
pathwise fashion with relationshi@) holding for all timeswhereg is clearly non-
idling, nonpreemptiveand nonanticipativeBecause losses only occur at arrival
epochs as long aq3) holds (4) follows easily This completes the proof of the
lemma n

Note that the scheduling decision is twofofist, to decide which queue to
serve next andthen how many jobs to be included in a batcfhe next lemma
addresses the second issue and establishes the optimal batt¢hisizased on the
observation that a larger batch is always preferred because service times are inde-
pendent of the batch sizthat is at each decision epogance the queue to serve is
determinedsay queue, the server should always form a batch of size

BOX,)

whereX; is the number of jobs present in quau&Ve denote by * (C I') the set of
all policies that follow this batching rule

Lemma 2.3: For an arbitrary policyB € T, there exists a policg* € I'* such that
{XP'(1);t = 0} = {XP(t);t = 0O}. (6)
When all buffers are finite, this implies
{LP (1)t = 0} = {LP(1);t = O}
hence, relationship (5) gives the optimal batching rule.

Proor: SetBy,= B.If By € I'*, then the proof is complete

If By & T'*, let ty be the first decision instant that it does not foll¢®) when
forming a batchSuppose at that instant that the server is allocated to qu&ve
then construct a coupled system by giving it the same arrival and service processes
(asin the proof of Lemma.2) and define policy3; as follows During time interval
[0, tp), let B, follow By; at decision epoch, let B, allocate the server also to queue
j, but form a batch according {®). This then gives

Xjﬁl(tg) = XjBO(tJ),
XL (tg) = XPo(tg).
Now, simply apply Lemma 2 to define the actions ¢#, for t > t,. We then have

{XP(t);t = 0} = {XPo(t);t = O}.

OPTIMAL CONTROL OF PARALLEL QUEUES 295

By inductively applying the above argumemte can improve the policies se-
guentially Clearly, the limit 8* is a policy that followg5) at each event instarthus
it belongs tal'*. |

Given the result of Lemma.2, we can now simply focus on the problem to
which queue to allocate the processing power of the server while assuming that the
server always obeys the optimal batching rule giveri®y

3. THE CASE OF INFINITE BUFFERS

In this section we prove the optimality of the Longest QueL@) first policy for the
case of infinite buffers

ProrosiTioN 3.1: The Longest Queue first policy (allocating the server to the long-
est queue and forming a batch as large as possible) stochastically minimizes the
total backlog and maximizes the aggregate throughput of a system with infinite buff-
ers; that is,

{2 XtR(t);t = o} = {2 X7 (t);t = o}

and
{DR(t);t = 0} = {D”(1);t =0}
for all nonpreemptive and nonidling € T, with X-2(0) = X”(0).

Proor: From Lemma 2 we can simply restrict our attention to policiedin Let

v €' be an arbitrary policywithout loss of generalityett = 0 be the first decision
instant that policyy differs from the LQ policylt then suffices to show that there
exists a policyr € T', which follows LQ att = 0 (and is appropriately defined at all
other decision instantssuch that

{2 X7 (1);t= 0} =5 {2 X7 (0t = 0} 7)

and
{D7(t);t =0} =,{D”(t);t =0} (8)

provided thatX”(0) = X”(0). Based on Lemma.3, we can then find an improved
policy 7* € I'* that satisfie$7) as well The proposition can then be established by
inductively applying the above argument

In order to show(7) and(8), again we use the coupling argumeane construct
two coupled(hat systemsone operating undey and the other unde#, where
X™(0) = X”(0), and they have the same arrival and service processes as described in
the proof of Lemma 2. LetX”, X, andD 7, D” be the corresponding queue lengths
and departure processesspectivelyunder this construction

296 C. H. Xia et al.

Let{A”(t);t= 0} be the total number of arrivals in the time interf@lt) in the
system under policy. Based on the structural relations

N
XE(0) + Af(t) = D XE(t) + DE(t), é=r,m,
i=1

it can be seen th&8) follows immediately from{(7) due to the coupling of the initial
gueue lengths and the arrival processes of the two systdaree it suffices to
establish that

S X =3 X (©)

forallt=0.

Suppose that quelibas the maximum number of jobs at titrre 0. Then policy
 allocates the server to quelyserving a batch of siZe™ (0) = X7 (0) OB, whereas
v assigns the server to some other nonempty qii@tith Xj (0) < X,(0), serving a
batch of sizen”(0) = X,- (0) OB (becausey € I'*). The queue lengths immediately
after timet = 0, in the systems operating under policesandy respectivelyare
then given by

X7(0%) = X/ (0") — b™(0), (10)
X7(07) = X7(0%) + b”(0), (11)
X7(07) = X7 (0%), i#j,l. (12)

We now consider the following two cases

Case a: SupposeX,(0) > B; then b™(0) = B. Fromt = 0* on, let policy 7 follow
policy y exactly(i.e., serving the same queue with the same batch sizgl the first
time 7 it cannot do spthat is 7 is the first decision instant thatallocates the server
to queud to serve a batch of siz& (7) > X7 (7). If there is no such instanive then
simply setr = co.

In the caser = oo, relation(9) follows immediatelyass has served more jobs
thany in the first decision epoch and then followsxactly afterward

Now suppose < co. Becauser follows y exactly in the time interva(0, 7),
relations(10)—(12) continue to holdAt timet = 7, let 77 allocate the server to queue
j and serve a batch of siz&(0). We then get

X7 (%) = X'(7%) = b™(0) + b7 (7) = X/(77), (13)
Xjﬁ(7+) = ij(7+), (14)
X7 (7)) = X (r+), i#j,l (15)

Now simply apply Lemma 2 to construct actions of policy for t > 7; the
results of Lemma 2 then imply(9) immediately

OPTIMAL CONTROL OF PARALLEL QUEUES 297

Case b: SupposeX; (0) = B. We then have thai” (0) = X,(0) > X;(0) = b?(0). The
queue lengths of both systems after the allocation are then given by

X7(0") = 0=X7(0"),
X7 (0%) = b?(0) < b7 (0) = X/ (0%),
)Z;’(O*) =)ZK(O*), i#j,l.

We now switch the roles of queukandj in the system operating under policy
7r; that is queuel (resp j) in the system operating under polieywill be coupled
with queuej (resp |) in the system operating under poligy The above switch
implies that whenever there is an arrivallto(resp j?), there is also an arrival to
queuej™ (resp | ™). This is permissible because each arrival of the uniformized
Poisson input stream is equally likely to join each of bhgueuesThe switch then
gives

X71(0%) = X7(0%), (16)

X{,(07) < X7(0%), 17)

Xm(0*) = X7 (0%), i#],l, (18)
where the subscripfs], i = 1,..., N, denote the new labels of the buffers in the

system operating under poliey.

Now simply apply Lemma 2 to construct actions of policy for t > 0; the
results of Lemma 2 then imply(9) immediately

In both caseswve have established tha X7 (t) =3, X7 (t) for all t = 0. This
completes the proof of the proposition u

4. OPTIMALITY OF FES TO FINITE BUFFERS WITH EQUAL SIZES

In this sectionwe establish the optimality of the Fewest Empty Spdeges first

policy for the case of equal-size finite buffeta particular we show that it mini-
mizes the average long-run loss of jobs due to buffer overfldis worth noting
that due to the fact that all queues have equal buffer capab#yFES policy is
equivalent to the LQ policy

ProrosiTION 4.1: For systems with equal-size finite buffers, the FES policy (allo-
cating the server to the Fewest Empty Space queue first and forming a batch as large
as possible) stochastically minimizes the average long-run loss of jobs due to buffer
overflows; that is,

{LFE(t);t = 0} =g {L7(1);t = 0} (19)
for all nonpreemptive and nonidling € T provided XES(0) = X7(0).

Proor: From Lemma 23, we can simply restrict our attention to policiedih. Let
v € T'* be an arbitrary policy and lét= 0 be the first decision instant that it differs
from the FES policy(if there is no such instanthen the proof is complete It

298 C. H. Xia et al.

suffices to show that there exists a polieye T" which follows policy FES at = 0
(and is appropriately defined afterwarslich that

{L7(t);t = 0} =4 {L”(t);t = 0}. (20)

Based on Lemma.3, we can then find an improved poliey* € I'* also satisfying
(20). By inductively applying the argumenwe then establish the proposition

In order to show(20), we will again make use of the coupling argumefitst
assume thaX™(0) = X?(0). We couple the arrival processé@ssp the service pro-
cessepof the two systems operating under policjesnds in the same way as in the
proof of Lemma 22. In addition definen” (resp ™) to be the first time that buffer
i” (respi™) overflows

At t = 0, suppose that quedas the longestHowever policy y allocates the
server to some other nonempty quguéth X;(0) < X,(0) and forms a batch of size
b”(0)=B0O Xj (0) (becausey e I'*) (see Figl). Let policy 7 allocate the server to
queud instead and form a batch of sib&(0) = B 0 X,(0). Clearly, b™(0) = b”(0),
and the queue length relationships between the two systems immediately after time
0 are given by

X7(0*) = X7(0%) — b7 (0), (21)
X7(0%) = X”(0%) + b (0), (22)
X7(0%) = X7(07), i+, (23)

We now consider the following two casd$) X,(0) > B and(ll) X;(0) = B.

Case |: Suppose thak(0) > B, which immediately implies thab™(0) = B. We
must then have for= 0,

X7(t) < X7 (th), (24)
C— X (t%) < C—X7(t"). (25)

Note that as long as relatioi24) and(25) are maintainedbufferj ™ will not
overflow and the total overflow of the system under polcgannot be larger than
that of the system under poligy

b7 (0)— c

Queue ! 5 T
hllllllllllhllll[::::::: v
Queue j I T
hllllll : ¥

ke 570}

Ficure 1. Queue lengths dt= 0.

OPTIMAL CONTROL OF PARALLEL QUEUES 299

Fort > 0, let policy 7 follow policy vy (serving the same queue with the same
batch size¢ until time T := min(o,{, 7), whereo, ¢, andr are defined as follows

a. Leto be the first time thatr can no longer come up with the same batch size
asy. At this instanfpolicy y must be serving queudevith batch sizéy” (t) >

b. Let ¢ be the first time thaty serves queué after " (i.e., after bufferl”
overflowed.

c. Letr be the firsttime that25) no longer holdsThis could be either because
more jobs arrived at buffgror because more service effort was allocated to
queus.

To define the actions of policy for t =T, we discuss the three cases separately

Case a: Suppose that = o. We must haver < n/, otherwises overlaps with/

(which is covered by Case Because inequalit{25) holds during(0, T), we also
haveo < 7. Hence during(0, T), there are no overflows from bufféor bufferj

in either systenand policysr has followedy exactly Thereforerelations(21)—(23)

continue to hold in this periadBecausey € I'*, relation(21) implies thath”(T) =

B andX"(T) < B.

AttimeT, let policy 7 allocate the server to quepmstead and serve a batch of
sizeb?(0). We then haveX™(T*) = X (T*), foralli =1,...,N. Fort > T, let =
follow y and the two systems are essentially the sdtriken follows immediately
thatL™(t) = L7(t) for all t = 0.

Case b: Suppose thal = £. This implies thatX(T) = C; thus b¥(T) = B. In
addition becaus&25) holds during0, T), it follows thatn™ > T. Thereforethere is
no overflow from bufferj in either of the two systems ar@2) continues to hold
during (0, T).

LetAL(t) := L7(t) — LT (t) be the difference between the total number of lost
jobs from bufferl under the two policies in the time intervé, t). From (21), we
then have

X (T) = X7(T) = b™(0) + AL,(T). (26)
Clearly 0 = AL,(t) = Bduring(0,T], andX7 (t) = X/ (t) in this time interval
AttimeT, let policy 7 allocate the server to quepmstead and serve a batch of
sizeb”(0). From(26) and(22), we then have
X|W(T+) = >A<|Y(T+) +A I:| (T),
X7 (TH) = X (TH), (27)
Xi#(T+) = Xiy(T+), i#j, 1

Fort > T, let 7 follow policy y exactly Because queU¢€ is no less than queue
|7, 7r should always be able to come up with the same batch sigeNte that from

300 C. H. Xia et al.

T on, buffer |™ would lose at mostL,(T) more jobs than buffel”. Therefore
L7(t) = L7(t) for all t = 0, and the overflow from other buffers are the same

Case c: Suppose that = r. Note that timer could correspond to either an arrival
epoch for queugor a decision instant for queli@nder policyy. In the latter case
we would have thaX? (r) — b”(7) = X7 (r), which would destroy relatiof25) at
time r*. We examine the two cases separately

Case c.1:Suppose that is a decision instantVe must have) > 7, otherwise/
overlaps withr (which is covered by Casg.dn addition % > 7 becaus¢25) holds
during (0, 7). Therefore (21)—(23) continue to hold during this time interval and
bY(7) = Bbecausey € T*.

At t = 7, let policy 7 allocate the server to queji@nd serve a batch of size
b7(0). It then follows thatX7(7+) = X? (v %), foralli =1,...,N. Fort > 7, let 7
follow y exactly and the two systems are essentially the saimes L7 (t) = L?(t)
forallt=0.

Case c.2:Suppose that is an arrival instantBecauser is the first instant that
bufferj™ reaches the same empty space léupbn arriva) as buffed 7, regardless
of whether this arrival occurs before timg or after we must have < 5. Thus
relation(22) must hold for queug¢at timer. We then have

X7 (r) = X7 (), (28)
X7 (r*) = X7(r*) — b¥(0),
= X)(r%) =b7(0) = X7(r+) — AL, (7), (29)

where in (29), the inequality is becaug®8) andb™(0) = b”(0), whereas the last
equality is directly from(26).

From timer* on, we switch the roles of queu¢andj in the system operating
under policyr in the couplingso that queug(respj) in the system under will be
coupled with queug(resp I) in the system undey for both the arrival and service
processeghatis whenever there is an arrival to queueespj) in the system under
v, there is also an arrival to quepé&esp |) in the system under; similarly for the
service processe$he switch then gives

XV (1) = Xy(r),

X7 (1%) = X75y(r+) — ALp(7), (30)
XN (r%) = X@y(r"), i#jl, (31)
where the subscripfs], i = 1,..., N, denote the new labels of the buffers in the

system operating under poliey, andAL1(r) := AL,(7) € [0,B].

In (30), if X?(r*) = X7(7*), simply apply Lemma 2 to constructr for
t > 7, which then giveX 7 (t) = X”(t) for all t > 7. It then follows immediately that
L7(t) = L7(t) forallt= 0.

OPTIMAL CONTROL OF PARALLEL QUEUES 301

If X7'(r*) < X7j3(r "), then policy can always followy exactly fort > 7.
Fromtimer and afterwardqugue{ il inAthe system under will lose atmost\ L 1(7)
more jobs thary. Therefore L™(t) = L”(t) forallt = 0.

Case II: Suppose that” (0) = B. We then have thdt” (0) = X;(0) < X,(0) = b™(0).
Immediately after time& = O, the queue lengths of both systems are given by

)zjy(0+) = >A(|7T(0+) =0,
X7(0%) = b7(0) > b”(0) = X7(0"),
X7(0%) = X7(0"), i#j,l.

This can be considered simply as a special case of Cas@/e just switch the
role of queud and queug in the system operating undet so that queu&™ (resp
j™) will be coupled with queug” (resp 17) for both the arrival and service pro-
cessesThis then gives relatiofil) at time 0". Again apply Lemma 2; it immedi-
ately follows that.7(t) = L”(t) forall t = 0.

Hencein all caseswe have_"(t) = L”(t) for allt = 0. This completes the proof
of the proposition u

5. FINITE BUFFERS OF UNEQUAL SIZES

In many practical situationghe buffers of the various queues may have unequal
sizesFor obvious reasonwe assume that mifC; } > B. As mentioned in Section 1
Wasserman and Bambfk7] showed that théewest empty space firdEES policy
stochastically minimizes the total-loss process among all nonpreemptive and non-
idling policies in the case of single-job processiftpwever this is no longer the
case in the presence of batch processilig reexamine a variation of a situation
presented in Section Consider the following situatiorin a system composed of
two parallel queues with buffer siz€ = 50 andC, = 100 respectivelyand max-
imum batch capaciti = 25, suppose that at some decision instant the queue lengths
are given by(Xy, X,) = (1,25). The FES policy would then allocate the server to the
first queue which contains a single jaithough both buffers are far from overflow-
ing. This decision results in a clear underutilization of the server’s processing power
If the second queue was chosen instehdn the server could have formed a full
batch of 25 jobsThis example clearly demonstrates the server’s dilemmamely
whether to maximize the number of empty spaces in each buffer or maximize its
utilization. Moreover it suggests that a policy attempting to balance these two ob-
jectives should perform well

Thereforewe propose the followinthresholdtype policy Let T be the thresh-
old level for the number of empty spaces in every quéllreen if the remaining
number of empty spaces in some queue is bdiptlven the server is allocated to the
queue with the fewest empty spacés on the other handhe number of empty
spaces in all queues exceeds the threshold [Eweken the server is allocated to the
longest queudn order to maximize its utilizatian

302 C. H. Xia et al.

Asimulation study was undertaken to compare the performance of the proposed
threshold policy against other scheduling policies such as EQSand nonidling
Round Robin(RR), where the latter policy allocates the server to bheueues
sequentially and skips the empty queues with zero switching filme service time
distribution for each queue was exponential of nate 1. The arrival process is
Poisson with different input intensities ranging from light to medium and then to
heavy traffic Each simulation run had no initialization periatiie to the long time
horizon used1 million event epochsAll runs began with a naively given initial
state and were terminated when the number of event epochs reached the given pre-
specified level Moreover the systems operating under the various policies were
coupled so that they were given the same arrival processes and the same service
time processes

Arelated issue was to determine the size of the “optimal” threshold by simula-
tion. We considered systems composed of tthoee and four queues for various ar-
rival rates and various batch and buffer siZefirly large number of threshold levels
were examined in each ca@eg., for the third scenariove usedr = 2,4,6,8; for the
fourthoneT=5,10,15,20,25,30,35,40,45). The results of these simulations are sum-
marized in Table 1laverage over 100 rupwith 1 million event epochs per rorAll
the results suggest that the best threshold level is giveh-bynin;{C;} — B.

The results of the simulation study that compares the various policies for sys-
tems composed of two queues are shown in Figui@2rage over 100 runsThe
top left panel in Figure 2 corresponds to a system in which one of the queues has a
very small number of buffer placels can be seen that in the presence of light traffic
(low total arrival rate to the systepthe FES policy outperformed the remaining
scheduling policies in terms of jobs lost due to buffer overflows andsequently
in terms of jobs departed from the systédnie to the coupling of arrival and service
time processes employed in the simulajidhis worth noting that no large differ-
ences between the “optimal” threshdliH-1, T = 1) and FES policies were ob-
served On the other handhe second threshold poligyfH-0, T = 0) considered
and in particularthe RR and the LQ policigslearly underperformed the remaining
policies However in the presence of heavy traffithe two threshold policies per-
formed considerably better in terms of lost jgbad in terms of departurgthan the

TAaBLE 1. Determination of Optimal Threshold Level

Buffer Capacity Batch Sizes Best Threshold
C=[310] B=2 T=1

C=[8 10| B=3 T=5

C=[10 20 B=4 T=6
C=[50100q B=25 T=25
C=[51020 B=3 T=2
C=[12182030 B=7 T=5

OPTIMAL CONTROL OF PARALLEL QUEUES 303

20r C1=3,C2=10,B=2 1 C1=20,C2=30,B=15

1 20t

151

;\F
@ 12}
@D
3
= 10t
g 10
3 L
= g J
*=TH-5
6 <>=RR
4t 5r +=TH-3
x=LQ
2 o=FES
0 L . " . . L 0 L L . .
0.8 1 1.2 1.4 1.6 1.8 2 4 6 8 10 12 14
Arrival Rate Arrival Rate
12 T T T 15 T T
C1=10,C2=20,B=4 C1=50,C2=100,B =25

Total Loss (%)
(=]

*=TH-6
41 <>=RR
+=TH-4
x=LQ
oL 0=FES
0 . L
1.5 2 25 3 3.5 4

Arrival Rate Arrival Rate

FiGuURE 2. Simulation results for two queues

other three policiesvioreoverthe larger the arrival raj¢he larger the improvement
in their performance

For systems with larger buffer spac@emaining three panels in Fig), the
threshold policies outperformed the other policies in heavy tradfibough for light
traffic, the performance of all the policies under consideration was essentially iden-
tical. However the “optimal” threshold policyi.e., TH-6, TH-5, and TH-25 out-
performed its threshold competitore., TH-4, TH-3, and TH-2Q respectively,
although the differences could be characterized as mardinalworth noting that
the LQ policy exhibited the worst overall performanadereas the performance of
the RR policy improved as the number of buffer spaces incre@ssdparein par-
ticular, the two bottom panels

In Figures 3 and Acomparisons of the various policies for larger systems—
involving up to 20 queues—with a much more unbalanced distribution of buffer
sizes are presentedhe results are fairly similar with those obtained from two-

304 C. H. Xia et al.

sor c1=5'o,cz=éo,c3=7'o,c4=éo, | ’ IC1=1O,KC2=12,IC3=14,IC4=16,' ’
5 C5=90,C6=100,B =25 1 C5=18,C6=20,B=4,

45 o

4 s

35

Total Loss (%)}
N
n w w

o

20 21 22 23 24 25 3 32 3.4 3.6 38 4
Arrival Rate Arrival Rate

Ficure 3. Simulation results for six queues

queue systemslowever it is worth noting the inferior performance of the RR for a
larger system with fairly small buffefsee the right-hand panel of Fi@); similarly,
when the size of the threshold starts deviating markedly from the optiheaper-
formance of a threshold policy deteriorates significarglghough it still outper-
forms the nonthreshold-based policies

5.1. Performance Evaluation of the Threshold Policy

In this subsectionwve examine the performance of the proposed threshold paticy
order to keep things simplave examine the case of two queubst the methodol-

C1=50,..,C20=145B=25

Total Loss (%)

s s L " ' s

20 205 21 215 22 225 23 235 24 245 25
Arrival Rate

FiGURE 4. Simulation results for 20 queues

OPTIMAL CONTROL OF PARALLEL QUEUES 305

ogy generalizes to handle an arbitrary number of queues in a straightforward man-
ner We introduce dluid model| where the queues correspond to reservoirs of size
C;,i =1, 2, containing fluid and the batch capability of the server to a bucket of size
B that is used to empty thenhet A; denote therate at which liquid flows into
reservoin, t; the time required to empty reservajrc; the cost per unit volume for
fluid lost from reservoii, andx; (y;) the volume of fluid in reservoirat the present
(next decision epoch

Here we focus on stationary policies that each control decision depends only on
the currentstate informationThe problem can then be formulated using the stan-
dard stochastic dynamic control approdoéfer tq e.g., [10]).

Let V(xy, X,) be thea-discounted cost function under optimal control with re-
spect to initial reservoir levelg = (xy, X,). At the initial decision epochif we
choose to empty the fluid from reservoirthe dynamics are

y; = ([x, = B]" + Ay ty) OC,, (32)
Vo = (X + Asty) OC,. (33)

The amount of fluid lost from the system is given by
([%1 = B]" + A1ty = C) ' + (X + Aoty — Cy) ™" (34)

Analogous expressions can be written if we decide to drain fluid from reservoir 2
instead We then have

V()?) - . r]tn2|n _{Ci([Xi - B]Jr + Aiti - Ci)+ + CJ(XJ +)\th - C:J)Jr
=12, j#i

+exp(—at) V(Y (X))}, (39)

wherey,(X) = (4, Y») (see(32)—(33)) and analogously foy,(X). Corresponding to

the discrete model we considered in earlier sectimescan assume that = A,

¢ =1,i=12 andt, =t, =1, because service times are independent of the buffer
sizes Problem(35) can be solved by the standard successive approximation method
by settingv(0) = 0 and the discount factor to a value very closefte d., exp(—a) =
0.999]. The numerical results obtained for a number of caseduding those pre-
sented in Table 1 involving two queuese in complete agreement with our simu-
lation results

Remark 5.1:There are other ways to investigate the performance of the threshold
policies for systems with finite buffers of unequal sizéer exampleone can for-
mulate the corresponding problem as a semi-Markov decision prdi@amd then
proceed to establish properties of the optimal scheduling pdtiowever the fluid
formulation presented above captures all of the essential features of the system un-
der consideratigrbut still remains fairly straightforward to analyze and identify the
optimal rule

306 C. H. Xia et al.

6. CONCLUDING REMARKS

In this article the problem of dynamic allocation of a server with batch-processing
capability to incompatible job classes is studigtie main results derived in this
work can be summarized as follows

« Under symmetric loading and all buffers having infinity capagttis shown
that the Longest Queud.Q) first policy maximizes the system'’s aggregate
throughput

* When all buffers are finite and &fqualsizes the LQ policy is equivalent to
the Fewest-Empty-Space queue first palighich is shown to stochastically
minimize the total losses due to buffer overflows

* When all buffers are finite but afnequalsizes there is a nontrivial decision
to be made that balances the immediate benefits of fully utilizing the server
capacity with the potential danger of traffic loss caused by overflow due to
limited buffer spaceThrough simulation studiesve identify a threshold-
type policy that consistently outperforms other scheduling policies that have
been proposed in the literatyrde optimal threshold level is given By=
min,{C;} — B. The results are also verified in the heavy-traffic regime by
evaluating the performance of a fluid model under the threshold policy using
dynamic programming arguments

There are several interesting issues for further investigateonsng them are
(i) whether the LQ antbr the FES policies continue to be optimal for the model
under investigation for general service time distributions éndif, in addition
preemptiveservice disciplines are allowed

Acknowledgments

The authors would like to thank an anonymous reviewer for pointing out an important omission in the
original proof of Lemma 2 and for the helpful comments and suggestions

The work of G Michailidis and N Bambos was supported by the National Science Foundattua
material is based upon work supported dyin part by the U.S. Army Research Office under contrgct
grant number DAAH04-94-G-0214

References

1. Avramidis A.N., Healy, K.J, & Uzsoy, R. (1998. Control of a batch processing machikecom-
putational approachnternational Journal of Production Resear86: 3167-3181

2. Deh R.K. & Serfozg R.F. (1973. Optimal control of batch service queudsdvances in Applied
Probability 5: 340-361

3. Duenyasl. & Nealg JJ (1997). Stochastic scheduling of a batch processing machine with incom-
patible job familiesAnnals of Operations Resear@ld: 191-220

4. Koole, G. & Righter, R. (2001). A stochastic batching and scheduling problémobability in the
Engineering and Informational Sciencés: 465-479

5. Koole, G., SparaggisPD., & Towsley, D. (1999. Minimizing response times and queue lengths in
systems of parallel queue¥ournal of Applied Probabilityd6: 1185-1193

6. Lindvall, T. (1993. Lectures on the coupling methadew York: John Wiley & Sons

7. Nain, P, TsoucasP, & Walrand, 1 (1989. Interchange arguments in stochastic schedullogrnal
of Applied Probability27: 815-826

10.
11

12

13

14.

15

16.
17.

18

OPTIMAL CONTROL OF PARALLEL QUEUES 307

. PuttermanM.L. (1994). Markov decision processeNew York: John Wiley & Sons
. Righter R. & ShanthikumarJG. (1992. Extremal properties of the FIFO discipline in queueing

networks Journal of Applied Probabilit9: 967-978

Ross S. (1983. Introduction to stochastic dynamic programmimgew York: Academic Press
Shakedd & ShanthikumarJG. (1994). Stochastic orders and their applicatiarisew York: Aca-
demic Press

SparaggisP.D., Cassandra€.G., & Towsley, D. (1993. On the duality between routing and sched-
uling systems with finite buffer spacEEE Transactions on Automatic Conti@8(9): 1440-1446
Stoyan D. (1983. Comparison methods for queues and other stochastic madeis.York: John
Wiley & Sons

Towsley D. (1995. Application of majorization to control problems in queueing systems
P. Chretienne et alScheduling Theory and its Applicatiaridew York: John Wiley & Sons

Uzsoy R. (1995. Scheduling batch processing machines with incompatible job familisr-
national Journal of Production Resear@3: 2685-2708

Walrand 1 (1988. An introduction to queueing networksnglewood Cliffs NJ: Prentice-Hall
WassermanK.M. & Bambos N. (1996. Optimal server allocation to parallel queues with finite-
capacity buffersProbability in the Engineering and Informational Sciendés 279-283

Winston W. (1977). Optimality of the shortest line disciplindournal of Applied Probabilityl4:
181-189

