
OPTIMAL CONTROL OF PARALLEL
QUEUES WITH BATCH SERVICE

CAAATTTHHHYYY H. XIIIAAA
IBM T.J. Watson Research Center

Yorktown, NY 10598
E-mail: cathyx@us.ibm.com

GEEEOOORRRGGGEEE MIIICCCHHHAAAIIILLLIIIDDDIIISSS
Department of Statistics
University of Michigan

Ann Arbor, MI
E-mail: gmichail@umich.edu

NIIICCCHHHOOOLLLAAASSS BAAAMMMBBBOOOSSS
Departments of Electrical Engineering and

Management Science & Engineering
Stanford University

Stanford, CA
E-mail: bambos@stanford.edu

PEEETTTEEERRR W. GLLLYYYNNNNNN
Department of Management Science & Engineering

Stanford University
Stanford, CA

E-mail: glynn@leland.stanford.edu

We consider the problem of dynamic allocation of a single server withbatch pro-
cessingcapability to a set of parallel queues+ Jobs from different classes cannot be
processed together in the same batch+ The arrival processes are mutually indepen-
dent Poisson flows with equal rates+ Batches have independent and identically dis-
tributed exponentially distributed service times, independent of the batch size and
the arrival processes+ It is shown that for the case of infinite buffers, allocating the
server to the longest queue, stochastically maximizes the aggregate throughput of
the system+ For the case of equal-size finite buffers the same policy stochastically
minimizes the loss of jobs due to buffer overflows+ Finally, for the case ofunequal-
size buffers, a threshold-type policy is identified through an extensive simulation
study and shown to consistently outperform other conventional policies+ The good
performance of the proposed threshold policy is confirmed in the heavy-traffic
regime using a fluid model+

Probability in the Engineering and Informational Sciences, 16, 2002, 289–307+ Printed in the U+S+A+

© 2002 Cambridge University Press 0269-9648002 $12+50 289

1. THE MODEL

We consider the problem of dynamic allocation of a single server withbatch pro-
cessingcapability to a set of parallel queues+ Jobs from different classes cannot be
processed together in the same batch+A canonical application of the model is in the
area of flexible manufacturing where a factory workstation has batch-processing
capabilities and is able to work on multiple classes of production processes~e+g+, an
oven in a semiconductor manufacturing plant!+ However, each production process
has its own set of specifications, therefore prohibiting the mixing of jobs from dif-
ferent processes+ Other applications can also be found in transportation systems or
communication systems+ A typical example in communication systems is a serial-
to-parallel bus, where messages arrive to some serial input port and need to be
forwarded toB slower output ports+ The batch capability of the server captures this
essential feature of such a device+ In all of these applications, important perfor-
mance measures are the system throughput and, in the presence of finite buffers, the
job loss due to overflows+

To make things concrete about the model, we consider a system composed ofN
parallel queues served by a single server+The queues have buffer sizesCi , i 51, + + + ,N,
that could be infinite or finite+ The job arriving stream to thei th queue is a Poisson
processA i 5 $Ai ~t !; t [R1% , whereAi ~t ! is the number of attempted arrivals to
queuei in the time interval@0, t !+The arrival processesA1, + + + ,AN are assumed to be
mutually independent and have equal ratesl ~symmetric arrivals!+We next specify
the batching mechanism employed by the server:

• Each batch must be formed from jobs belonging to the same queue+
• The maximum batch size isB jobs, whereB , Ci , i 51, + + + ,N; however, the

server is allowed to pick any number of jobs#B ~from the same queue! when
forming a batch+

• Batches have independent and identically distributed~i+i+d+! exponentially
distributed service times, independent of the batch size and the arrival
processes+

Finally, it is assumed that the resetting cost of the server for switching to a different
class is essentially zero+

At certain time instants the server must decide from which of theN queues to
form a batch for processing+ The decision mechanism employed by the server de-
fines aserver allocation policy+ In this article we restrict attention to the setG of
nonanticipative, nonpreemptive, andnonidlingpolicies+The nonanticipative restric-
tion implies that the server utilizes only present and past system state information
when making decisions+We are interested in dynamically allocating the server so as
to stochastically maximize the system’s throughput and, in the case of finite buffers,
to minimize the long-term average loss flow~due to buffer overflows!+

The parallel queuing scheduling problem for a single server withsingle job
processingcapability has received considerable attention in the literature+ For per-
fectly symmetric systems~equal rate Poisson arrivals, i+i+d+ exponential service times,
and equal-size buffers!, it has been shown in previous articles@16,18# that the Long-

290 C. H. Xia et al.

est Queue first~LQ! policy stochastically maximizes the total departure process
and, in the case of finite buffers, stochastically minimizes the number of total job
losses due to overflow among all preemptive and nonidling policies+ The result has
been extended in@17# to the case of unequal buffers and general i+i+d+ service dis-
tribution+ By using a coupling argument, it has been shown that the fewest empty
space first~FES! policy stochastically minimizes the total-loss process among all
nonpreemptive and nonidling policies+

On the other hand, the problem ofbatch processingfor a single queue with
Poisson arrival and general renewal service processes~independent of the batch
size! has been studied in@2# , where Markov decision theory is used to establish the
optimality of a threshold-type policy with idling allowed+A similar problem is con-
sidered in@1# , where the batch-processing time is a function of the individual jobs’
processing times+ It is shown that a threshold-type policy optimizes a long-run
average-cost criterion+ In @4# , structural properties of the optimal policy that mini-
mizes the makespan and the flow time are derived for the above problem+ In @3# , the
static ~no future arrivals! and dynamic problems of the optimal scheduling of in-
compatible classes of jobs on a batch-processing machine are examined, and a char-
acterization of the optimal policy is provided along with an easy-to-implement
heuristic scheduling scheme+Other heuristic scheduling policies for the static prob-
lem are presented in@15# +

The batch capability of the server fundamentally alters the queuing dynamics of
the system and introduces a dilemma not present in the case of single job processing+
This can be best explained by considering the following example+ In a system com-
prised of two parallel queues with buffer capacityC1 5 5, C2 5 10 and maximum
batch sizeB5 4, suppose that at some decision instant, the queue lengths are 3 and
5, respectively+ If the server decides to serve the first queue because it is closer to
overflowing, it would result in an underutilization of resources+ If , on the other hand,
it decides to serve the second queue, it risks losing jobs due to a possible overflow
of the first queue+ Thus, in general, the server needs to strike a fine balance between
these two objectives+ For systems with single job processing capabilities, this is not
an issue because no matter which queue the server is allocated to, it can only process
one job+

In this article,we show that, for the case of infinite buffers, allocating the server
to the longest queue stochastically maximizes the aggregate throughput of the sys-
tem+ For the case of equal-size finite buffers, the same policy stochastically mini-
mizes the loss of jobs due to buffer overflows+ Finally, for the case ofunequal-size
buffers, a threshold-type policy is identified through an extensive simulation study
and shown to consistently outperform other conventional policies+ The good per-
formance of the proposed threshold policy is confirmed in the heavy-traffic regime
using a fluid model+

To show the results we make extensive use of the coupling method to establish
desired stochastic ordering@6# + These techniques have proved to be powerful tools
in solving optimal scheduling or routing problems~e+g+, see@5,7,9,11–13# and the
references cited therein!+ Building on this basis, this article contributes in the fol-
lowing two directions+ First, the classical parallel queuing model is extended by

OPTIMAL CONTROL OF PARALLEL QUEUES 291

adding the batch-processing capability of the server+ Second, the presence of a batch
service mechanism introduces complications both at the technical and at the con-
ceptual levels in making pathwise comparisons between alternative policies under
various coupling structures+ Moreover, the case of unequal buffers introduces new
sample path dynamics that are not present in the single job processing capability
case+ The emerging complications are then successfully resolved+

The remainder of this article is organized as follows+ Section 2 covers the no-
tations and some preliminary results+ Sections 3 and 4 present the detailed proofs
using coupling arguments for systems with infinite buffer capacities and for systems
with equal-size finite buffers, respectively+ In Section 5, the case of unequal-size
finite buffers is discussed+ We present selected simulations that help identify a
threshold-type policy, which is then shown to be optimal using a fluid model ap-
proach in heavy traffic+ Finally, concluding remarks are given in Section 6+

2. NOTATIONS AND PRELIMINARIES

Before proceeding with the results we define some notations that will be used later+
For a system operating under server allocation policyg [G, let $Xg~t !; t $ 0%
denote thejoint queue lengthprocess,whereXg~t !5 ~X1

g~t !, + + + ,XN
g~t !!,with Xi

g~t !
being the number of jobs in queuei ~not including the jobs in service! at time t+
Define thetotal-lossprocess$Lg~t !; t $ 0% , whereLg~t ! gives the total number of
lost jobs due to buffer overflows in the time interval@0, t ! for policy g [G+ Simi-
larly, define thetotal-departureprocess$Dg~t !; t $ 0% , whereDg~t ! gives the total
number of jobs that have departed from the system in@0, t !+ Finally, denote bybg~t !
the batch size that policyg allocates to the server at decision instantt+

In addition,we introduce the following partial ordering of random variables and
processes+More details on stochastic orderings can be found in@11,13# for example+

Definition 2.1: Given two random vectors X,Y[Rn, X is said to be stochastically
smaller than Y~X #stY! if E @ f ~X !# # E @ f ~Y!# for all increasing f:Rn ° R.

Given two stochastic processes$X~t !% and $Y~t !%, t [R1, the process$X~t !% is
said to be stochastically smaller than$Y~t !%, ~$X~t !% #st $Y~t !%! if ∀ n [N,
∀ ~t1, t2, + + + , tn! [R1

n ,

~X~t1!,X~t2!, + + + ,X~tn!! #st ~Y~t1!,Y~t2!, + + + ,Y~tn!!+

The next two lemmas identify some important properties of the scheduling
policies which are needed later+

Lemma 2.2: Given two initial statesa~0! 5 ~a1~0!, + + + ,aN ~0!! and b~0! 5
~b1~0!, + + + ,bN~0!!, suppose that

bi ~0! # ai ~0!, i 5 1, + + + ,N+ (1)

For an arbitrary policya [G that operates on a system starting witha~0!, there
exists a policyb [G which starts withb~0!, such that

$X b~t !; t $ 0% #st $Xa~t !; t $ 0%, (2)

292 C. H. Xia et al.

whereXa~t ! denotes thequeuelength vector of the system operating under policya
at time t, and similarly forX b~t !. When all buffers are of finite sizes, this implies

$Lb~t !; t $ 0% #st $La~t !; t $ 0%+

Proof: In order to show~2!,we simply need to construct a coupling~ ZXa, ZX b! of the
random processes~Xa,X b!, such that ZXa 5

d
Xa, ZX b 5

d
X b , and for allt $ 0,

ZXi
b~t ! # ZXi

a~t !, i 5 1, + + + ,N, (3)

and in the finite buffer case,

ZLb~t ! # ZLa~t !, (4)

where the “hat” symbol denotes the coupled versions of the processes, and5
d

de-
notes the equality of their finite dimensional distributions+Refer to, for example, @6#
for details about coupling and stochastic comparison techniques+

Because all of the arrival processes are Poisson of equal ratel, one can uni-
formize the input flows and assume equivalently that there exists a single Poisson
input process of rateNl, and every arrival can join each of theN queues with equal
probability 10N+

We now couple the system operating under policyb, with the one operating
under policya in the following way+ First, we give the two systems the same arrival
processes+Second, letting ZSn

a be the service time of thenth batch to complete service
undera, we set ZSn

b 5 ZSn
a ~since the service times are i+i+d+ exponentially distributed,

independent of the batch sizes, and, hence,with identical statistics in all queues!+For
ease of exposition, we denote queuei in the system operating under policya by i a ,
and similarly we define indexi b +

Note that the queue length vector will only change at an arrival epoch or at a
decision epoch+Because the arrival processes of both systems are perfectly synchro-
nized, at an arrival epoch the same queue in both systems will simultaneously in-
crease by 1; in the finite buffer case, the arrival may be lost by both systems or only
by the system undera, given relation~3! holds before the arrival+ In both cases,
relation~3! continues to hold~inductively!+

Suppose~3! holds fort [@0,t# , wheret $ 0 is a decision epoch under policy
a+At this instant, suppose policya allocates the server to queuek and serves a batch
of sizeba~t!+We examine next the following three cases+

If Xk
b~t! . 0, then let policyb also allocate the server to queuek and serve a

batch of sizebb~t! 5 ba~t! ∧ Xk
b~t!, wherea ∧ b :5 min$a,b% ; that is, policy b is

mimicking a as much as possible+
If Xk

b~t! 5 0 and there exist some other buffers withXi
b~t! . 0, then letb

choose arbitrarily such a queuei and serve a batch of arbitrary size 0, bb~t! #

B ∧ Xi
b~t!+

If all Xi
b~t! 5 0, then policyb does nothing until the next arrival+ If upon this

arrival, policya is still serving a batch, and becauseb needs to be nonidling,we then
let b immediately start a batch of size 1 with a service time equal to the remaining
service time of the batch being served by policya+ Note that this is feasible because

OPTIMAL CONTROL OF PARALLEL QUEUES 293

the batch service time is exponentially distributed, and therefore the random vari-
ableS2 u6S. u is still exponentially distributed+

Under the above construction, it is easy to check that~3! continues to hold from
t1 until the next decision epoch+

By inductively applying the above argument, policy b is then constructed in a
pathwise fashion with relationship~3! holding for all times, whereb is clearly non-
idling, nonpreemptive, and nonanticipative+ Because losses only occur at arrival
epochs, as long as~3! holds, ~4! follows easily+ This completes the proof of the
lemma+ n

Note that the scheduling decision is twofold: first, to decide which queue to
serve next and, then, how many jobs to be included in a batch+ The next lemma
addresses the second issue and establishes the optimal batch size+ It is based on the
observation that a larger batch is always preferred because service times are inde-
pendent of the batch size; that is, at each decision epoch, once the queue to serve is
determined, say queuei , the server should always form a batch of size

B ∧ Xi , (5)

whereXi is the number of jobs present in queuei +We denote byG * ~, G! the set of
all policies that follow this batching rule+

Lemma 2.3: For an arbitrary policyb [G, there exists a policyb* [G * such that

$X b* ~t !; t $ 0% #st $X
b~t !; t $ 0%+ (6)

When all buffers are finite, this implies

$Lb* ~t !; t $ 0% #st $L
b~t !; t $ 0%;

hence, relationship (5) gives the optimal batching rule.

Proof: Setb0 5 b+ If b0 [G *, then the proof is complete+
If b0 Ó G *, let t0 be the first decision instant that it does not follow~5! when

forming a batch+ Suppose at that instant that the server is allocated to queuej+We
then construct a coupled system by giving it the same arrival and service processes
~as in the proof of Lemma 2+2! and define policyb1 as follows:During time interval
@0, t0!, let b1 follow b0; at decision epocht0, let b1 allocate the server also to queue
j, but form a batch according to~5!+ This then gives

ZXj
b1~t0

1! # ZXj
b0~t0

1!,

ZXi
b1~t0

1! 5 ZXi
b0~t0

1!+

Now, simply apply Lemma 2+2 to define the actions ofb1 for t . t0+We then have

$X b1~t !; t $ 0% #st $X
b0~t !; t $ 0%+

294 C. H. Xia et al.

By inductively applying the above argument, we can improve the policies se-
quentially+Clearly, the limitb* is a policy that follows~5! at each event instant; thus,
it belongs toG *+ n

Given the result of Lemma 2+3, we can now simply focus on the problem to
which queue to allocate the processing power of the server while assuming that the
server always obeys the optimal batching rule given by~5!+

3. THE CASE OF INFINITE BUFFERS

In this section we prove the optimality of the Longest Queue~LQ! first policy for the
case of infinite buffers+

Proposition 3.1: The Longest Queue first policy (allocating the server to the long-
est queue and forming a batch as large as possible) stochastically minimizes the
total backlog and maximizes the aggregate throughput of a system with infinite buff-
ers; that is,

H(
i

Xi
LQ~t !; t $ 0J #st H(

i

Xg~t !; t $ 0J
and

$DLQ~t !; t $ 0% $st $D
g~t !; t $ 0%

for all nonpreemptive and nonidlingg [G, with XLQ~0! 5 Xg~0!.

Proof: From Lemma 2+3 we can simply restrict our attention to policies inG *+ Let
g [G * be an arbitrary policy+Without loss of generality, let t50 be the first decision
instant that policyg differs from the LQ policy+ It then suffices to show that there
exists a policyp [G, which follows LQ att 5 0 ~and is appropriately defined at all
other decision instants!, such that

H(
i

Xi
p~t !; t $ 0J #st H(

i

Xi
g~t !; t $ 0J (7)

and

$Dp~t !; t $ 0% $st $D
g~t !; t $ 0% (8)

provided thatXp~0! 5 Xg~0!+ Based on Lemma 2+3, we can then find an improved
policy p* [G * that satisfies~7! as well+ The proposition can then be established by
inductively applying the above argument+

In order to show~7! and~8!, again we use the coupling argument+We construct
two coupled~hat! systems: one operating underg and the other underp, where
ZXp~0! 5 ZXg~0!, and they have the same arrival and service processes as described in

the proof of Lemma 2+2+ Let ZXp, ZXg , and ZDp, ZDg be the corresponding queue lengths
and departure processes, respectively, under this construction+

OPTIMAL CONTROL OF PARALLEL QUEUES 295

Let $Ag~t !; t $ 0% be the total number of arrivals in the time interval@0, t ! in the
system under policyg+ Based on the structural relations

ZXj~0! 1 ZAj~t ! 5 (
i51

N

ZXi
j~t ! 1 ZDj~t !, j 5 g,p,

it can be seen that~8! follows immediately from~7! due to the coupling of the initial
queue lengths and the arrival processes of the two systems+ Hence, it suffices to
establish that

(
i51

N

ZXi
p~t ! # (

i51

N

ZXi
g~t ! (9)

for all t $ 0+
Suppose that queuel has the maximum number of jobs at timet50+Then policy

p allocates the server to queuel, serving a batch of sizebp~0! 5 ZXl
p~0! ∧ B,whereas

g assigns the server to some other nonempty queuej with ZXj ~0! , ZXl ~0!, serving a
batch of sizebg~0! 5 ZXj ~0! ∧ B ~becauseg [G *!+ The queue lengths immediately
after timet 5 0, in the systems operating under policiesp andg respectively, are
then given by

ZXl
p~01! 5 ZXl

g~01! 2 bp~0!, (10)

ZXj
p~01! 5 ZXj

g~01! 1 bg~0!, (11)

ZXi
p~01! 5 ZXi

g~01!, i Þ j, l+ (12)

We now consider the following two cases+

Case a: Suppose ZXl ~0! . B; then, bp~0! 5 B+ From t 5 01 on, let policy p follow
policy g exactly~i+e+, serving the same queue with the same batch size! until the first
timet it cannot do so; that is, t is the first decision instant thatg allocates the server
to queuel to serve a batch of sizebg~t! . ZXl

p~t!+ If there is no such instant,we then
simply sett 5`+

In the caset 5`, relation~9! follows immediately, asp has served more jobs
thang in the first decision epoch and then followsg exactly afterward+

Now supposet , `+ Becausep follows g exactly in the time interval~0,t!,
relations~10!–~12! continue to hold+At time t 5 t, let p allocate the server to queue
j and serve a batch of sizebg~0!+We then get

ZXl
p~t1! 5 ZXl

g~t1! 2 bp~0! 1 bg~t! # ZXl
g~t1!, (13)

ZXj
p~t1! 5 ZXj

g~t1!, (14)

ZXi
p~t1! 5 ZXi

g~t1!, i Þ j, l+ (15)

Now simply apply Lemma 2+2 to construct actions of policyp for t . t; the
results of Lemma 2+2 then imply~9! immediately+

296 C. H. Xia et al.

Case b: Suppose ZXl ~0! # B+We then have thatbp~0! 5 ZXl ~0! . ZXj ~0! 5 bg~0!+ The
queue lengths of both systems after the allocation are then given by

ZXl
p~01! 5 0 5 ZXj

g~01!,

ZXj
p~01! 5 bg~0! , bp~0! 5 ZXl

g~01!,

ZXi
p~01! 5 ZXi

g~01!, i Þ j, l+

We now switch the roles of queuesl andj in the system operating under policy
p; that is, queuel ~resp+ j ! in the system operating under policyp will be coupled
with queuej ~resp+ l ! in the system operating under policyg+ The above switch
implies that whenever there is an arrival tol g ~resp+ j g!, there is also an arrival to
queuej p ~resp+ l p!+ This is permissible because each arrival of the uniformized
Poisson input stream is equally likely to join each of theN queues+ The switch then
gives

ZX@ j #
p ~01! 5 ZXj

g~01!, (16)

ZX@l #
p ~01! , ZXl

g~01!, (17)

ZX@i #
p ~01! 5 ZXi

g~01!, i Þ j, l, (18)

where the subscripts@i # , i 5 1, + + + ,N, denote the new labels of the buffers in the
system operating under policyp+

Now simply apply Lemma 2+2 to construct actions of policyp for t . 0; the
results of Lemma 2+2 then imply~9! immediately+

In both cases, we have established that(i ZXi
p~t ! # (i ZXi

g~t ! for all t $ 0+ This
completes the proof of the proposition+ n

4. OPTIMALITY OF FES TO FINITE BUFFERS WITH EQUAL SIZES

In this section, we establish the optimality of the Fewest Empty Space~FES! first
policy for the case of equal-size finite buffers+ In particular, we show that it mini-
mizes the average long-run loss of jobs due to buffer overflows+ It is worth noting
that due to the fact that all queues have equal buffer capacity, the FES policy is
equivalent to the LQ policy+

Proposition 4.1: For systems with equal-size finite buffers, the FES policy (allo-
cating the server to the Fewest Empty Space queue first and forming a batch as large
as possible) stochastically minimizes the average long-run loss of jobs due to buffer
overflows; that is,

$LFES~t !; t $ 0% #st $L
g~t !; t $ 0% (19)

for all nonpreemptive and nonidlingg [G provided XFES~0! 5 Xg~0!.

Proof: From Lemma 2+3, we can simply restrict our attention to policies inG *+ Let
g [G * be an arbitrary policy and lett 5 0 be the first decision instant that it differs
from the FES policy~if there is no such instant, then the proof is complete+!+ It

OPTIMAL CONTROL OF PARALLEL QUEUES 297

suffices to show that there exists a policyp [G which follows policy FES att 5 0
~and is appropriately defined afterward! such that

$Lp~t !; t $ 0% #st $L
g~t !; t $ 0%+ (20)

Based on Lemma 2+3, we can then find an improved policyp* [G * also satisfying
~20!+ By inductively applying the argument, we then establish the proposition+

In order to show~20!, we will again make use of the coupling argument+ First
assume thatZXp~0! 5 ZXg~0!+We couple the arrival processes~resp+ the service pro-
cesses! of the two systems operating under policiesg andp in the same way as in the
proof of Lemma 2+2+ In addition, definehi

g ~resp+ hi
p! to be the first time that buffer

i g ~resp+ i p! overflows+
At t 5 0, suppose that queuel is the longest+ However, policy g allocates the

server to some other nonempty queuej with Xj ~0! , Xl ~0! and forms a batch of size
bg~0! 5 B ∧ ZXj ~0! ~becauseg [G *! ~see Fig+ 1!+ Let policyp allocate the server to
queuel instead and form a batch of sizebp~0! 5 B ∧ ZXl ~0!+ Clearly, bp~0! $ bg~0!,
and the queue length relationships between the two systems immediately after time
0 are given by

ZXl
p~01! 5 ZXl

g~01! 2 bp~0!, (21)

ZXj
p~01! 5 ZXj

g~01! 1 bg~0!, (22)

ZXi
p~01! 5 ZXi

g~01!, i Þ j, l+ (23)

We now consider the following two cases: ~I ! Xl ~0! . B and~II ! Xl ~0! # B+

Case I: Suppose thatXl ~0! . B, which immediately implies thatbp~0! 5 B+ We
must then have fort 5 0,

ZXj
g~t1! , ZXl

p~t1!, (24)

C 2 ZXl
g~t1! , C 2 ZXj

p~t1!+ (25)

Note that as long as relations~24! and~25! are maintained, buffer j p will not
overflow and the total overflow of the system under policyp cannot be larger than
that of the system under policyg+

Figure 1. Queue lengths att 5 01+

298 C. H. Xia et al.

For t . 0, let policy p follow policy g ~serving the same queue with the same
batch size! until time T :5 min~s,z,t!, wheres, z, andt are defined as follows:

a+ Let s be the first time thatp can no longer come up with the same batch size
asg+At this instant, policy g must be serving queuel with batch sizebg~t ! .
Xl

p~t !+
b+ Let z be the first time thatg serves queuel after hl

g ~i+e+, after buffer l g

overflowed!+
c+ Let t be the first time that~25! no longer holds+ This could be either because

more jobs arrived at bufferj or because more service effort was allocated to
queuel+

To define the actions of policyp for t $ T,we discuss the three cases separately+

Case a: Suppose thatT 5 s+We must haves , hl
g , otherwises overlaps withz

~which is covered by Case b!+ Because inequality~25! holds during~0,T !, we also
haves , hj

p+ Hence, during~0,T !, there are no overflows from bufferl or buffer j
in either system, and policyp has followedg exactly+Therefore, relations~21!–~23!
continue to hold in this period+ Becauseg [G *, relation~21! implies thatbg~T ! 5
B andXl

p~T ! , B+
At time T, let policyp allocate the server to queuej instead and serve a batch of

sizebg~0!+ We then have ZXi
p~T1! 5 ZXi

g~T1!, for all i 5 1, + + + ,N+ For t . T, let p
follow g and the two systems are essentially the same+ It then follows immediately
that ZLp~t ! 5 ZLg~t ! for all t $ 0+

Case b: Suppose thatT 5 z+ This implies thatXl
g~T ! 5 C; thus, bg~T ! 5 B+ In

addition, because~25! holds during~0,T !, it follows thathj
p . T+ Therefore, there is

no overflow from bufferj in either of the two systems and~22! continues to hold
during~0,T !+

Let D ZLl ~t ! :5 ZLl
g~t ! 2 ZLl

p~t ! be the difference between the total number of lost
jobs from bufferl under the two policies in the time interval~0, t !+ From ~21!, we
then have

ZXl
p~T ! 5 ZXl

g~T ! 2 bp~0! 1 D ZLl ~T !+ (26)

Clearly, 0 # D ZLl ~t ! # B during~0,T # , and ZXl
p~t ! # ZXl

g~t ! in this time interval+
At time T, let policyp allocate the server to queuej instead and serve a batch of

sizebg~0!+ From ~26! and~22!, we then have

ZXl
p~T1! 5 ZXl

g~T1! 1 D ZLl ~T !,

ZXj
p~T1! 5 ZXj

g~T1!, (27)

ZXi
p~T1! 5 ZXi

g~T1!, i Þ j, l+

For t . T, let p follow policy g exactly+ Because queuel p is no less than queue
l g ,p should always be able to come up with the same batch size asg+Note that from

OPTIMAL CONTROL OF PARALLEL QUEUES 299

T on, buffer l p would lose at mostD ZLl ~T ! more jobs than bufferl g + Therefore,
ZLl
p~t ! # ZLl

g~t ! for all t $ 0, and the overflow from other buffers are the same+

Case c: Suppose thatT 5 t+ Note that timet could correspond to either an arrival
epoch for queuej or a decision instant for queuel under policyg+ In the latter case,
we would have that ZXl

g~t! 2 bg~t! # ZXj
p~t!, which would destroy relation~25! at

time t1+We examine the two cases separately+

Case c.1:Suppose thatt is a decision instant+We must havehl
g . t, otherwisez

overlaps witht ~which is covered by Case b!+ In addition, hj
p . t because~25! holds

during ~0,t!+ Therefore, ~21!–~23! continue to hold during this time interval and
bg~t! 5 B becauseg [G *+

At t 5 t, let policy p allocate the server to queuej and serve a batch of size
bg~0!+ It then follows that ZXi

p~t1! 5 ZXi
g~t1!, for all i 5 1, + + + ,N+ For t . t, let p

follow g exactly and the two systems are essentially the same+ Thus, ZLp~t ! 5 ZLg~t !
for all t $ 0+

Case c.2:Suppose thatt is an arrival instant+ Becauset is the first instant that
buffer j p reaches the same empty space level~upon arrival! as bufferl g , regardless
of whether this arrival occurs before timehl

g or after, we must havet , hj
p+ Thus,

relation~22! must hold for queuej at timet+We then have

ZXl
g~t1! 5 ZXj

p~t1!, (28)

ZXj
g~t1! 5 ZXj

p~t1! 2 bg~0!,

$ ZXl
g~t1! 2 bp~0! 5 ZXl

p~t1! 2 D ZLl ~t!, (29)

where, in ~29!, the inequality is because~28! andbp~0! $ bg~0!, whereas the last
equality is directly from~26!+

From timet1 on, we switch the roles of queuesl andj in the system operating
under policyp in the coupling, so that queuel ~resp+ j ! in the system underp will be
coupled with queuej ~resp+ l ! in the system underg for both the arrival and service
processes; that is,whenever there is an arrival to queuel ~resp+ j ! in the system under
g, there is also an arrival to queuej ~resp+ l ! in the system underp; similarly for the
service processes+ The switch then gives

ZXl
g~t1! 5 ZX@l #

p ~t1!,

ZXj
g~t1! $ ZX@ j #

p ~t1! 2 D ZL@ j #~t!, (30)

ZXi
g~t1! 5 ZX@i #

p ~t1!, i Þ j, l, (31)

where the subscripts@i # , i 5 1, + + + ,N, denote the new labels of the buffers in the
system operating under policyp, andD ZL@ j #~t! :5 D ZLl ~t! [@0,B# +

In ~30!, if ZXj
g~t1! $ ZX@ j #

p ~t1!, simply apply Lemma 2+2 to constructp for
t . t,which then gives ZXp~t ! # ZXg~t ! for all t . t+ It then follows immediately that
ZLp~t ! # ZLg~t ! for all t $ 0+

300 C. H. Xia et al.

If ZXj
g~t1! , ZX@ j #

p ~t1!, then policyp can always followg exactly for t . t+
From timet and afterward,queue@ j # in the system underp will lose at mostD ZL@ j #~t!
more jobs thang+ Therefore, ZLp~t ! # ZLg~t ! for all t $ 0+

Case II: Suppose thatbp~0! # B+We then have thatbg~0! 5 ZXj ~0! , ZXl ~0! 5 bp~0!+
Immediately after timet 5 0, the queue lengths of both systems are given by

ZXj
g~01! 5 ZXl

p~01! 5 0,

ZXl
g~01! 5 bp~0! . bg~0! 5 ZXj

p~01!,

ZXi
g~01! 5 ZXi

p~01!, i Þ j, l+

This can be considered simply as a special case of Case c+2+We just switch the
role of queuel and queuej in the system operating underp, so that queuel p ~resp+
j p! will be coupled with queuej g ~resp+ l g! for both the arrival and service pro-
cesses+ This then gives relation~1! at time 01+ Again apply Lemma 2+2; it immedi-
ately follows that ZLp~t ! # ZLg~t ! for all t $ 0+

Hence, in all cases,we have ZLp~t ! # ZLg~t ! for all t $ 0+This completes the proof
of the proposition+ n

5. FINITE BUFFERS OF UNEQUAL SIZES

In many practical situations, the buffers of the various queues may have unequal
sizes+For obvious reasons,we assume that mini $Ci % . B+As mentioned in Section 1,
Wasserman and Bambos@17# showed that thefewest empty space first~FES! policy
stochastically minimizes the total-loss process among all nonpreemptive and non-
idling policies in the case of single-job processing+ However, this is no longer the
case in the presence of batch processing+ We reexamine a variation of a situation
presented in Section 1+ Consider the following situation: In a system composed of
two parallel queues with buffer sizesC1 5 50 andC2 5100, respectively, and max-
imum batch capacityB525, suppose that at some decision instant the queue lengths
are given by~X1,X2! 5 ~1,25!+ The FES policy would then allocate the server to the
first queue which contains a single job, although both buffers are far from overflow-
ing+This decision results in a clear underutilization of the server’s processing power+
If the second queue was chosen instead, then the server could have formed a full
batch of 25 jobs+ This example clearly demonstrates the server’s dilemma, namely
whether to maximize the number of empty spaces in each buffer or maximize its
utilization+ Moreover, it suggests that a policy attempting to balance these two ob-
jectives should perform well+

Therefore, we propose the followingthreshold-type policy+ Let T be the thresh-
old level for the number of empty spaces in every queue+ Then, if the remaining
number of empty spaces in some queue is belowT, then the server is allocated to the
queue with the fewest empty spaces+ If , on the other hand, the number of empty
spaces in all queues exceeds the threshold levelT, then the server is allocated to the
longest queue, in order to maximize its utilization+

OPTIMAL CONTROL OF PARALLEL QUEUES 301

Asimulation study was undertaken to compare the performance of the proposed
threshold policy against other scheduling policies such as FES, LQ, and nonidling
Round Robin~RR!, where the latter policy allocates the server to theN queues
sequentially and skips the empty queues with zero switching time+ The service time
distribution for each queue was exponential of rateµ 5 1+ The arrival process is
Poisson with different input intensities ranging from light to medium and then to
heavy traffic+ Each simulation run had no initialization period, due to the long time
horizon used~1 million event epochs!+ All runs began with a naively given initial
state and were terminated when the number of event epochs reached the given pre-
specified level+ Moreover, the systems operating under the various policies were
coupled, so that they were given the same arrival processes and the same service
time processes+

A related issue was to determine the size of the “optimal” threshold by simula-
tion+We considered systems composed of two, three, and four queues for various ar-
rival rates and various batch and buffer sizes+Afairly large number of threshold levels
were examined in each case~e+g+, for the third scenario,we usedT5 2,4,6,8; for the
fourth one,T55,10,15,20,25,30,35,40,45!+The results of these simulations are sum-
marized in Table 1~average over 100 runs, with 1 million event epochs per run!+All
the results suggest that the best threshold level is given byT5 mini $Ci % 2 B+

The results of the simulation study that compares the various policies for sys-
tems composed of two queues are shown in Figure 2~average over 100 runs!+ The
top left panel in Figure 2 corresponds to a system in which one of the queues has a
very small number of buffer places+ It can be seen that in the presence of light traffic
~low total arrival rate to the system!, the FES policy outperformed the remaining
scheduling policies in terms of jobs lost due to buffer overflows and, consequently,
in terms of jobs departed from the system~due to the coupling of arrival and service
time processes employed in the simulation!+ It is worth noting that no large differ-
ences between the “optimal” threshold~TH-1, T 5 1! and FES policies were ob-
served+ On the other hand, the second threshold policy~TH-0, T 5 0! considered,
and, in particular, the RR and the LQ policies, clearly underperformed the remaining
policies+ However, in the presence of heavy traffic, the two threshold policies per-
formed considerably better in terms of lost jobs~and in terms of departures! than the

Table 1. Determination of Optimal Threshold Level

Buffer Capacity Batch Sizes Best Threshold

C 5 @3 10# B 5 2 T 5 1
C 5 @8 10# B 5 3 T 5 5
C 5 @10 20# B 5 4 T 5 6
C 5 @50 100# B 5 25 T 5 25
C 5 @5 10 20# B 5 3 T 5 2
C 5 @12 18 20 30# B 5 7 T 5 5

302 C. H. Xia et al.

other three policies+Moreover, the larger the arrival rate, the larger the improvement
in their performance+

For systems with larger buffer spaces~remaining three panels in Fig+ 2!, the
threshold policies outperformed the other policies in heavy traffic, although for light
traffic, the performance of all the policies under consideration was essentially iden-
tical+ However, the “optimal” threshold policy~i+e+, TH-6, TH-5, and TH-25! out-
performed its threshold competitor~i+e+, TH-4, TH-3, and TH-20, respectively!,
although the differences could be characterized as marginal+ It is worth noting that
the LQ policy exhibited the worst overall performance,whereas the performance of
the RR policy improved as the number of buffer spaces increased~compare, in par-
ticular, the two bottom panels!+

In Figures 3 and 4, comparisons of the various policies for larger systems—
involving up to 20 queues—with a much more unbalanced distribution of buffer
sizes are presented+ The results are fairly similar with those obtained from two-

Figure 2. Simulation results for two queues+

OPTIMAL CONTROL OF PARALLEL QUEUES 303

queue systems+However, it is worth noting the inferior performance of the RR for a
larger system with fairly small buffers~see the right-hand panel of Fig+ 3!; similarly,
when the size of the threshold starts deviating markedly from the optimal, the per-
formance of a threshold policy deteriorates significantly, although it still outper-
forms the nonthreshold-based policies+

5.1. Performance Evaluation of the Threshold Policy

In this subsection,we examine the performance of the proposed threshold policy+ In
order to keep things simple, we examine the case of two queues, but the methodol-

Figure 3. Simulation results for six queues+

Figure 4. Simulation results for 20 queues+

304 C. H. Xia et al.

ogy generalizes to handle an arbitrary number of queues in a straightforward man-
ner+We introduce afluid model, where the queues correspond to reservoirs of size
Ci , i 51, 2, containing fluid and the batch capability of the server to a bucket of size
B that is used to empty them+ Let l i denote therate at which liquid flows into
reservoiri , ti the time required to empty reservoiri, ci the cost per unit volume for
fluid lost from reservoiri , andxi ~ yi ! the volume of fluid in reservoiri at the present
~next! decision epoch+

Here,we focus on stationary policies that each control decision depends only on
thecurrentstate information+ The problem can then be formulated using the stan-
dard stochastic dynamic control approach~refer to, e+g+, @10# !+

Let V~x1, x2! be thea-discounted cost function under optimal control with re-
spect to initial reservoir levels?x 5 ~x1, x2!+ At the initial decision epoch, if we
choose to empty the fluid from reservoir 1, the dynamics are

y1 5 ~ @x1 2 B#1 1 l1 t1! ∧ C1, (32)

y2 5 ~x2 1 l2 t2! ∧ C2+ (33)

The amount of fluid lost from the system is given by

~ @x1 2 B#1 1 l1 t1 2 C1!1 1 ~x2 1 l2 t2 2 C2!1+ (34)

Analogous expressions can be written if we decide to drain fluid from reservoir 2
instead+We then have

V~ ?x! 5 min
i51,2, jÞi

$ci ~ @xi 2 B#1 1 l i ti 2 Ci !
1 1 cj ~xj 1 l j tj 2 Cj !

1

1 exp~2ati !V~ ?yi ~ ?x!!%, (35)

where ?y1~ ?x! 5 ~ y1, y2! ~see~32!–~33!! and analogously for?y2~ ?x!+ Corresponding to
the discrete model we considered in earlier sections, we can assume thatl i 5 l,
ci 5 1, i 5 1,2, andt1 5 t2 5 1, because service times are independent of the buffer
sizes+ Problem~35! can be solved by the standard successive approximation method
by settingV~ ;0!50 and the discount factor to a value very close to 1@e+g+, exp~2a!5
0+999# + The numerical results obtained for a number of cases, including those pre-
sented in Table 1 involving two queues, are in complete agreement with our simu-
lation results+

Remark 5.1:There are other ways to investigate the performance of the threshold
policies for systems with finite buffers of unequal sizes+ For example, one can for-
mulate the corresponding problem as a semi-Markov decision problem@8# and then
proceed to establish properties of the optimal scheduling policy+ However, the fluid
formulation presented above captures all of the essential features of the system un-
der consideration, but still remains fairly straightforward to analyze and identify the
optimal rule+

OPTIMAL CONTROL OF PARALLEL QUEUES 305

6. CONCLUDING REMARKS

In this article, the problem of dynamic allocation of a server with batch-processing
capability to incompatible job classes is studied+ The main results derived in this
work can be summarized as follows:

• Under symmetric loading and all buffers having infinity capacity, it is shown
that the Longest Queue~LQ! first policy maximizes the system’s aggregate
throughput+

• When all buffers are finite and ofequalsizes, the LQ policy is equivalent to
the Fewest-Empty-Space queue first policy, which is shown to stochastically
minimize the total losses due to buffer overflows+

• When all buffers are finite but ofunequalsizes, there is a nontrivial decision
to be made that balances the immediate benefits of fully utilizing the server
capacity with the potential danger of traffic loss caused by overflow due to
limited buffer space+ Through simulation studies, we identify a threshold-
type policy that consistently outperforms other scheduling policies that have
been proposed in the literature; the optimal threshold level is given byT 5
mini $Ci % 2 B+ The results are also verified in the heavy-traffic regime by
evaluating the performance of a fluid model under the threshold policy using
dynamic programming arguments+

There are several interesting issues for further investigations; among them are
~i! whether the LQ and0or the FES policies continue to be optimal for the model
under investigation for general service time distributions and~ii ! if , in addition,
preemptiveservice disciplines are allowed+

Acknowledgments
The authors would like to thank an anonymous reviewer for pointing out an important omission in the
original proof of Lemma 2+3 and for the helpful comments and suggestions+

The work of G+ Michailidis and N+ Bambos was supported by the National Science Foundation+ This
material is based upon work supported by, or in part by, the U+S+Army Research Office under contract0
grant number DAAH04-94-G-0214+

References

1+ Avramidis, A+N+, Healy, K+J+, & Uzsoy, R+ ~1998!+ Control of a batch processing machine: A com-
putational approach+ International Journal of Production Research36: 3167–3181+

2+ Deb, R+K+ & Serfozo, R+F+ ~1973!+ Optimal control of batch service queues+ Advances in Applied
Probability 5: 340–361+

3+ Duenyas, I+ & Neale, J+J+ ~1997!+ Stochastic scheduling of a batch processing machine with incom-
patible job families+ Annals of Operations Research70: 191–220+

4+ Koole, G+ & Righter, R+ ~2001!+ A stochastic batching and scheduling problem+ Probability in the
Engineering and Informational Sciences15: 465–479+

5+ Koole, G+, Sparaggis, P+D+, & Towsley, D+ ~1999!+ Minimizing response times and queue lengths in
systems of parallel queues+ Journal of Applied Probability36: 1185–1193+

6+ Lindvall, T+ ~1993!+ Lectures on the coupling method+ New York: John Wiley & Sons+
7+ Nain, P+, Tsoucas, P+, & Walrand, J+ ~1989!+ Interchange arguments in stochastic scheduling+ Journal

of Applied Probability27: 815–826+

306 C. H. Xia et al.

8+ Putterman, M+L+ ~1994!+ Markov decision processes+ New York: John Wiley & Sons+
9+ Righter, R+ & Shanthikumar, J+G+ ~1992!+ Extremal properties of the FIFO discipline in queueing

networks+ Journal of Applied Probability29: 967–978+
10+ Ross, S+ ~1983!+ Introduction to stochastic dynamic programming+ New York: Academic Press+
11+ Shaked, J+ & Shanthikumar, J+G+ ~1994!+ Stochastic orders and their applications+ New York: Aca-

demic Press+
12+ Sparaggis, P+D+,Cassandras,C+G+, & Towsley,D+ ~1993!+On the duality between routing and sched-

uling systems with finite buffer space+ IEEE Transactions on Automatic Control38~9!: 1440–1446+
13+ Stoyan, D+ ~1983!+ Comparison methods for queues and other stochastic models.New York: John

Wiley & Sons+
14+ Towsley, D+ ~1995!+ Application of majorization to control problems in queueing systems+ In

P+ Chretienne et al+ Scheduling Theory and its Applications+ New York: John Wiley & Sons+
15+ Uzsoy, R+ ~1995!+ Scheduling batch processing machines with incompatible job families+ Inter-

national Journal of Production Research33: 2685–2708+
16+ Walrand, J+ ~1988!+ An introduction to queueing networks+ Englewood Cliffs, NJ: Prentice-Hall+
17+ Wasserman, K+M+ & Bambos, N+ ~1996!+ Optimal server allocation to parallel queues with finite-

capacity buffers+ Probability in the Engineering and Informational Sciences10: 279–283+
18+ Winston, W+ ~1977!+ Optimality of the shortest line discipline+ Journal of Applied Probability14:

181–189+

OPTIMAL CONTROL OF PARALLEL QUEUES 307

