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ABSTRACTPortable systems require long battery lifetime while still de-livering high performance. Dynamic voltage scaling (DVS)algorithms reduce energy consumption by changing proces-sor speed and voltage at run-time depending on the needsof the applications running. Dynamic power management(DPM) policies trade o� the performance for the power con-sumption by selectively placing components into low-powerstates. In this work we extend the DPM model presentedin [2, 3] with a DVS algorithm, thus enabling larger powersavings. We test our approach on MPEG video and MP3audio algorithms running on the SmartBadge portable de-vice [1]. Our results show savings of a factor of three in en-ergy consumption for combined DVS and DPM approaches.
1. INTRODUCTIONBattery-operated portable systems impose tight constraintson energy consumption. Portable systems often consist ofone or more microprocessors and a set of devices with mul-tiple low-power states. Many microprocessors support dy-namic clock frequency adjustment, and some newer devicesalso support dynamic supply voltage setting [4]. Thus atsystem level it is possible to reduce energy by changing thefrequency and voltage level of the microprocessor (dynamicvoltage scaling) and by transitioning components into low-power states (dynamic power management).In this work we extend the DPM model presented in [2, 3]with a DVS algorithm, thus enabling larger power savings.The algorithm is implemented for the SmartBadge portabledevice [1]. The SmartBage consists of a StrongARM proces-sor, memory, RF link and display. All components have fourmain power states: active, idle, standby and o�. In addition,the processor can operate over a range of frequencies. Foreach frequency, there is a minimum allowed voltage of op-eration. If the processor is run at the minimum frequencyand voltage required to sustain the performance level re-quired by the application, it is possible to save power evenwhen the system is active, in addition to the savings that

can be obtained by DPM during idle periods. This principleis exploited by the recently announced Transmeta's Crusoeprocessor [4].A DVS algorithm sets the microprocessor voltage and fre-quency at run time depending on the behavior of applica-tions currently running. Early DVS algorithms set processorspeed based on the processor utilization of �xed intervals [5,6]. The individual requirements of the tasks running werenot considered, resulting in poor behavior for more complexworkloads [13]. There has been a number of voltage scalingtechniques proposed for real-time systems. The approachespresented in [7, 9, 8, 10] assume that all tasks run at theirworst case execution time (WCET). The workload variationslack times are exploited on task-by-task basis in [11], andare fully utilized in [12]. Work presented in [14] introduces avoltage scheduler that determines the operating voltage byanalyzing application requirements. The scheduling is doneat task level, by setting processor frequency to the mini-mum value needed to complete all tasks. For applicationswith high frame-to-frame variance, such as MPEG video,schedule smoothing is done by scheduling tasks to completetwice the amount of work in twice the deadline.In all DVS approaches presented in the past, scheduling wasdone at the task level, assuming multiple threads. The pre-diction of task execution times was done either using worstcase execution times, or heuristics. Such approaches neglectthat DVS can be done within a task or for single-applicationdevices. For, instance, in MPEG decoding, the variance inexecution time on frame basis can be very large: a factor ofthree in the number of cycles [15], or a range between 1 and2000 IDCTs per frame [16] for MPEG video.The �rst contribution of this work is to develop and ver-ify a stochastic model for prediction of execution times forstreaming multimedia applications on a frame-by-frame ba-sis. Our model is based on the change-point detection the-ory used for ATM tra�c detection among other applica-tions [17]. We compare our model to prefect prediction andto exponential moving average used in [14]. The predictionalgorithm developed is then used as a part of a power controlstrategy that merges DVS and DPM.As opposed to DVS, power management algorithms aimat reducing energy consumption at the system-level by se-lectively placing components into low-power states duringidle periods. DPM algorithms presented in the past can



be classi�ed into deterministic and stochastic (for more de-tailed overview see [3]). Deterministic algorithms includebasic timeout and predictive schemes. Stochastic modelscan give optimal DPM policies, as long as the basic assump-tions made in the formulation of the model are true. Asimple stochastic model for DPM assumes that idle timesfor system resources follow exponential distributions. Un-fortunately, it has been shown in [2] that approaches purelybased on exponential distributions do not model well realsystem behavior.Two stochastic approaches recently presented allow usageof general distributions instead of just exponential. As aresult, large power savings were observed. The �rst ap-proach is based on renewal theory [2]. This model assumesthat the decision to transition to low power state can bemade in only one state. Another method developed is basedon the Time-Indexed Semi-Markov Decision Process model(TISMDP) [3]. This model is more complex, but also haswider applicability because it assumes that a decision totransition into a lower-power state can be made from anynumber of states. Both approaches assume a single systemactive state and assume that energy consumption in thatstate is constant.The second contribution of this work is to merge the DPMand the DVS approaches, by expanding the active state de�-nition to include multiple settings of frequency and voltage,thus resulting in a range of performance and power con-sumptions available for tradeo� at run time. In this way,the power manager can control performance and power con-sumption levels both by using DVS when the system is ac-tive, and by transitioning components into low-power stateswhen the system is idle.The rest of the paper is organized as follows. Section 2describes the stochastic models of the system components.The models are based on experimental observations. In Sec-tion 3 we present the theoretical basis for detection of ratechange together with dynamic selection of CPU frequencyand voltage. We show simulation and measurement resultsfor MPEG video and MP3 audio running on the Smart-Badge in Section 4. Finally, we summarize our �ndings inSection 5.
2. SYSTEM MODELThe systems can be modeled with three components: theuser (a source of external events), the device (SmartBadge)and the queue (the bu�er associated with the device) asshown in Figure 1. The power manager observes all eventoccurrences of interest and takes decisions on what state thesystem should transition to next, in order to minimize en-ergy consumption for a given performance constraint. Whilethe device is active, the power manager selects the most ap-propriate execution frequency and voltage for the processor.As our work was motivated by a real design of the Smart-Badge, in all our examples we use the SmartBadge hardwarewith MPEG video and MP3 audio.Each system component is described probabilistically. Theuser behavior is modeled by a request interarrival distribu-tion. For streaming multimedia applications, requests rep-resent frame arrivals from the network. Similarly, the ser-
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Figure 1: System Modelvice time distribution describes the behavior of the device inthe active state. In multimedia case, it represents the timeneeded for processing a frame (decompressing it and send-ing to the output interface). The transition time distributionmodels the time taken by the device to transition betweenits power states. Finally, the combination of interarrivaltime distribution (incoming frame arrivals) and service timedistribution (frame decoding times) characterizes well thebehavior of the queue (frame bu�er). The details of eachsystem component are described in the next sections.
2.1 Portable DevicePortable devices typically have multiple power states. Eachdevice has one active state in which it services user requests,and one or more inactive low-power states. The active statecan further be characterized by a set of sub-states di�er-entiated by performance (e.g. CPU frequency) and powerconsumption (e.g. CPU voltage). In addition, the powermanager can trade o� power for performance by placingthe device into low-power states. Each low power state canbe characterized by the power consumption and the per-formance penalty incurred during the transition to or fromthat state. Usually higher performance penalty correspondsto lower power states.
2.1.1 The SmartBadge DeviceThe SmartBadge, shown in Figure 2, is an embedded sys-tem consisting of Sharp's display, Lucent's WLAN RF link,StrongARM-1100 processor, RAM, FLASH, sensors, andmodem/audio analog front-end on a PCB board poweredby the batteries through a DC-DC converter. Note that theSmartBadge has two types of data memory { slower SRAM(1MB, 80ns) from Toshiba and faster DRAM (4MB, 15ns)from Micron that is used only during audio or video decode.Components in the SmartBadge, the power states and thetransition times of each component from standby (tsby) ando� (toff) state into active state are shown in the Table 1.
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Figure 2: SmartBadge



The initial goal in designing the SmartBadge was to allowa computer or a human user to provide location and envi-ronmental information to a location server through a het-erogeneous network. The SmartBadge could be used as acorporate ID card, attached (or built in) to devices such asPDAs and mobile telephones, or incorporated in computingsystems. In this work we focus on using the SmartBadge asa PDA capable of MPEG video and MP3 audio playback.Table 1: SmartBadge componentsComponent Active Idle Stdby tsby toffP (mW) P (mW) P (mW) (ms) (ms)Display 1000 1000 100 100 240WLAN RF 1500 1000 100 40 80SA-1100 400 170 0.1 10 35FLASH 75 5 0.023 0.6 160SRAM 115 17 0.13 5.0 100DRAM 400 10 0.4 4.0 90Total 3500 2200 200 110 705The StrongARM processor on the SmartBadge can be con-�gured at run-time to execute at a set of di�erent frequen-cies. We measured the transition time between two di�erentfrequency settings at 150 microseconds. Since typical de-coding time for MPEG video or MP3 audio is much longerthan the transition time, it is possible to change the CPUfrequency without perceivable overhead. For each frequency,there is a minimum voltage the SA-1100 needs in order torun correctly, but with lower energy consumption. Figure 3shows the frequency-voltage tradeo�.
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Figure 3: Frequency vs. Voltage for SA-1100In addition to the active state, the SmartBadge supportsthree lower power states: idle, standby and o�. The idlestate is entered immediately by each component in the sys-tem as soon as that particular component is not accessed.The standby and o� state transitions can be controlled bythe power manager. The transition from standby or o� stateinto the active state can be best described using the uniformprobability distribution.
2.1.2 The Active State ModelService times (decoding times for video or audio frames) onthe SmartBadge in the active state are modeled by an ex-ponential distribution. The average service time is de�nedby 1�D where �D is the average service rate (measured in

frames/second for MPEG video and MP3 audio). Equa-tion 1 de�nes the cumulative probability of the device ser-vicing a user request within time interval t.FD(t) = 1� e��Dt (1)
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Figure 4: Performance and energy for MP3 audioFigure 4 shows the tradeo� between performance and en-ergy when running MP3 audio decode on the SmartBadgehardware at allowable frequency and voltage setting for theSA-1100 processor, and Figure 5 shows the same results forMPEG video. The shape of the performance curve versusprocessor frequency setting depends on the application andon the underlying hardware. MP3 audio was decoded usingslower SRAM on the SmartBadge. Since memory accesstime does not depend on processor clock frequency, per-formance improvements at high processor frequencies arememory-bound, and speedup is not linear. MPEG video de-code ran on much faster SDRAM and thus its performancecurve is almost linear as it is more limited by the processorspeed. In both �gures all values are normalized to the datapoints obtained for the fastest frequency.The basic rationale for DVS is that for frames that take ashorter time to decode, processor frequency and voltage canbe lowered, and for longer frames, increased. In addition,the decoding speed needs to be adjusted to frame arrival fre-quency, so that the frame bu�er does not contain too manyor too few frames. The detection of changes in decodingspeed and arrival frequency are thus critical for optimal set-ting of CPU frequency and voltage. We present an optimalway for detection in section 3.
2.2 User ModelUser is a source of external events to the device. The re-quests to the multimedia application during the decoding arein form of audio or video frame arrivals through the WLAN.Thus, the user's stochastic model in the active state can bede�ned by the frame interarrival time distribution. We mea-sured MPEG video and MP3 audio frame arrival times (userrequests in the abstract systemmodel) by monitoring the ac-cesses to the WLAN card. The frame interarrival times inthe active state for both applications can be approximatedwith an exponential distributions. Figure 6 shows exponen-tial cumulative distribution �tted to the measured resultsfor the MPEG video. Similar results have been observedfor the MP3 audio. Frame arrival rate in the active state is
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Figure 5: Performance and energy for MPEG video
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Figure 6: MPEG video arrival time distributionde�ned as �U and the mean frame interarrival time is 1�U .The probability of the SmartBadge receiving a frame withintime interval t follows the cumulative probability distribu-tion shown below. FU (t) = 1� e��U t (2)Note that the exponential distribution is not used to modelthe arrivals in the idle state. In the idle state, audio or videoframes have all been decoded and no new requests have ar-rived yet from the user. This is when the power manager canmake a decision on what low-power state to place the devicein as discussed in [2]. Remember that the full optimizationmodel should not only decide when to transition the deviceinto one of the low-power states (standby or o�) but shouldalso perform dynamic voltage scaling in the active state.
2.3 QueuePortable devices normally have a bu�er for storing requeststhat have not been serviced yet. For multimedia requestssuch as MPEG video and audio it is convenient to describequeue in terms of the number of frames waiting in the framebu�er. As the frames arriving to the SmartBadge do nothave priority, our queue model contains only the numberof frames waiting service (decoding). In the active state,where the exponential distributions is used to describe framearrivals and service times, the behavior of the system canbe modeled using M/M/1 queue model. More details onthis model and its application to dynamic voltage scalingare given in the following section.

3. THEORETICAL BACKGROUNDIn the work presented in [2, 3], the power manager's onlyjob is to decide when to transition the device into one of thelow-power states. Power management policies are obtainedusing one of two models: renewal theory model [2] and time-indexed semi-markov process model [3]. It was observed thatin the idle state we need to accurately model the tail of theinterarrival time distribution, which does not follow a per-fect exponential distribution. As a result, the time elapsedsince the last entry into the idle state had to be accountedfor in the model in order to obtain the optimal power man-agement policy. Renewal theory naturally accounts for thetime elapsed in the idle state through formulation of thesystem renewal time. In the TISMDP model, instead of thesimple state model shown on the left in Figure 7, it wasnecessary to expand the idle and the sleep states with timeindex representing elapsed time since the last entry into theidle state as shown on the right. Note that in both renewaland TISMDP models there is only one active state (withone or more elements in the queue).

Original system model


Arrival


Departure


Arrival


Sleep

No Arrival


Sleep

Arrival


Idle State

queue = 0


Sleep State

queue > 0


Sleep State

queue = 0


Active State

queue > 0


Time-indexed system model


Arrival


Departure


Arrival


Sleep

No Arrival


Sleep

Arrival


Active State

queue > 0


Sleep State

queue > 0


Idle State

queue = 0


t> n    t


Idle State

queue = 0


t < t < 2      t


Idle State

queue = 0


t<    t


No

Arrival


No

Arrival


Sleep State

queue = 0

t> n    t+U


Sleep State

queue = 0

t+U < t &


t< 2    t +U


Sleep State

queue = 0


U< t<     t + U


No

Arrival


No

Arrival


Sleep

No Arrival


Figure 7: Time-indexed SMDP statesIn this work we have extended the function of power man-ager (PM) to include decisions on the CPU frequency andvoltage setting while in the active state. Thus, instead ofhaving only one active state as shown in Figure 7, now thereis a set of active states, each characterized by di�erent per-formance (CPU frequency) and power consumption (CPUvoltage) as shown in Figure 8. Since TISMDP and renewalmodels both assumed that active state can be described us-ing the exponential distribution, the transformation fromone active into multiple active states is completely compat-ible with the rest of the model. As a result, the power man-agement policies we develop can make decisions for both dy-namic voltage setting and the transition into the low-powerstates.At run-time, the PM observes user request arrivals and ser-vice completion times (in our case frame arrivals and decod-ing times), the number of jobs in the queue (the number offrames in the bu�er) and the time elapsed since last entryinto idle state. When in the active state, the PM checks ifthe rate of incoming or decoding frames has changed, andthen adjusts the CPU frequency and voltage accordingly.
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Figure 8: Expansion of the active stateOnce the decoding is completed, the system enters idle state.At this point the power manager observes the time spent inthe idle state, and depending on the policy obtained usingeither renewal theory or TISMDP model, it decides whento transition into one of the sleep states. When a requestfrom the user arrives for more audio or video decoding, thepower manager transitions the system back into the activestate and starts the decoding process.We next present the optimal approach for detecting a changein the frame arrival or decoding times. Once a change is de-tected, a decision has to be made on how to set the CPUfrequency and voltage. We present results based on M/M/1queue theory that enable power manager to make this deci-sion.
3.1 Dynamic Voltage Scaling AlgorithmThe DVS algorithm consists of two main portions: detectionof the change in request arrival or servicing rate, and thepolicy that then adjusts the CPU frequency and voltage.The detection is done using maximum likelihood ratio thatguarantees optimal detection for exponential distributions.Policy is implemented using M/M/1 queue results to ensureconstant average delay experienced by bu�ered frames.Detecting the change in rate is a critical part of optimallymatching CPU frequency and voltage to the requirements ofthe user. For example, the rate of MP3 audio frames com-ing via RF link can change drastically due to changes in theenvironment. The servicing rate can change due to variancein computation needed between MPEG frames [15, 16], orjust by changing the audio source currently decoded by theMP3 audio. The request (frame) interarrival times and ser-vicing (decoding) times follow exponential distribution asdiscussed in the previous section. The two distributions arecharacterized by the arrival rate, �U , and the servicing rate,�D.The change point detection is performed using maximumlikelihood ratio, Pmax, as shown in Equation 3. Maximumlikelihood ratio computes the ratio between the probabilitythat a change in rate did occur (numerator in Equation 3)and the probability that rate did not change (denominator).

The probability that the rate changed is computed by �t-ting the exponential distribution with an old rate, �o, to the�rst k � 1 interarrival or decoding times (xj), and anotherexponential distribution with a new rate, �n, to the rest ofthe points observed in window of size m. The probabilitythat the rate did not change is computed by �tting the inter-arrival or decoding times with the exponential distributioncharacterized by the current (or old) rate, �o.Pmax = �k�1j=1�oe��oxj�mj=k�ne��nxj�mj=1�oe��oxj (3)A more e�cient way to obtain the maximum likelihood ratiois to calculate the natural log of Pmax as shown below:ln(Pmax) = (m� k + 1)ln�n�o � (�n � �o) mXj=k xj (4)Note that in this equation, only the sum of interarrival (ordecoding) times needs to be updated upon every arrival(or service completion). A set of possible rates, �, where�n; �o 2 � is prede�ned, as well as the size of the windowm. Variable k is used to locate the point in time when therate has changed. Stochastic simulation is done to obtainthe value of ln(Pmax) that is su�cient to detect the changein rate. The results are accumulated in a histogram, andthen the value of maximum likelihood ratio that gives veryhigh probability that the rate has changed is chosen. Inour work we selected 99.5% likelihood. At run time the in-terarrival time sums are collected and maximum likelihoodratio is calculated. We found that a window of m = 100 islarge enough. Larger windows will cause longer executiontimes, while much shorter windows do not contain statis-tically large enough sample and thus give unstable results.In addition, the change point can be checked every k = 10points. Larger values of k interval mean that the changedrate will be detected later, while with very small values thedetection is quicker, but also causes extra computation. Ifthe maximum likelihood ratio computed is greater than theone obtained from the histogram, then there is 99.5% like-lihood that the rate change occurred, and thus the CPUfrequency and voltage need to be adjusted.The adjustment of frequency and voltage is done using M/M/1queue model. Using this model we try to keep the aver-age total delay for processing frames in the queue constant(Equation 5). Framedelay = �D�U(�U � �D) (5)When either interarrival rate, �U , or the servicing rate,�D, change, the frame delay is evaluated and the new fre-quency and voltage are selected that will keep the framedelay constant. For example, if the arrival rate for MP3audio changes, Equation 5 is used to obtain required decod-ing rate in order to keep the frame delay (and thus perfor-mance) constant. The decoding rate can be related back tothe processor frequency setting using Figure 4 or an equiva-lent table. On the other hand, if a di�erent frame decodingrate is detected while processor is set to the same frequency,then piece-wise linear approximation based on the applica-tion frequency-performance tradeo� curve (Figures 4 and 5)is used to obtain the new processor frequency setting. In



either case, when CPU frequency is set to a new value, theCPU voltage is always adjusted according to Figure 3.
4. RESULTSWe implemented the change point detection algorithm asa part of the power manager for both MPEG video andMP3 audio examples. When the system is in the activestate (the state where audio and video decoding occur), thepower manager (PM) observes changes in the frame arrivaland decoding rates using change point detection algorithmdescribed in the previous section. Once a change is de-tected, the PM evaluates the required value of the processorfrequency that would enable the frame delay expressed inEquation 5 to remain constant. The CPU voltage is setusing results shown in Figure 3. Figure 9 shows the rela-tionship between CPU frequency and MPEG video framearrival and decoding rates for average bu�ered frame delayof 0:1 seconds, which then corresponds to an average of 2extra frames of video bu�ered. This example is for a clip offootball video decoded on the SmartBadge. Similar resultscan be obtained for other clips, but with di�erent decod-ing rates, as the rates depend on the content and on thehardware architecture.
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Figure 9: MPEG Frame Rates vs. CPU FrequencyWe compare our rate change detection algorithm to idealdetection and to exponential moving average algorithm. Ex-ponential moving average can be de�ned as follows:Ratenewave = (1� g)Rateoldave + gRatecur (6)where Ratenewave is the new average rate, Rateoldave is the oldaverage, Ratecur is the current measured rate and g is thegain. Figure 10 shows the comparison results for detectinga change from 10 fr/sec to 60 fr/sec. Our algorithm detectsthe correct rate within 10 frames and is more stable thanthe exponential moving average algorithm.Table 2: MP3 audio streamsMP3 Audio Bit rate Sample Rate Decoding RateClip Label (Kb/s) (KHz) (frames/s)A 16 16 51.35B 16 32 27.30C 32 16 49.80D 32 32 26.05E 64 16 47.95F 64 32 25.25
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Figure 10: Rate Change Detection AlgorithmsIn the following set of results we compare (i) the ideal detec-tion algorithm, (ii) the exponential average approximationused in previous work and (iii) the maximum processor per-formance to (iv) the change point algorithm presented inthis paper. For this purpose we use six audio clips totaling653 seconds of audio, each running at a di�erent set of bitand sample rates as shown in Table 2. We have found thatthere was very little variation on frame-by-frame basis indecoding rate within a given audio clip, but the variation indecoding rate between clips can be large as shown in Table 2(the decoding rates are for 202.4MHz processor frequency).Table 3: MP3 audio DVSMP3 Audio Change Exp.Sequence Result Ideal Point Ave. MaxACEFBD Energy 196 217 225 316Fr.Delay 0.1 0.09 0.1 0BADECF Energy 189 199 231 316Fr.Delay 0.1 0.09 0.1 0CEDAFB Energy 190 214 232 316Fr.Delay 0.1 0.04 0.1 0During decoding, the DVS algorithm detects changes in botharrival and decoding rates for the MP3 audio sequences. Theresulting energy (kJ) and average total frame delay (s) aredisplayed in Table 3. Each sequence consists of a combina-tion of six audio clips. For all sequences, the frame arrivalrate varied between 16 and 44 frames/sec. Our change pointalgorithm performs well, its results are very close to theideal, with no performance loss as compared to the ideal de-tection algorithm that allows an average 0:1s total frame de-lay (corresponding to 6 extra frames of audio in the bu�er).Table 4: MPEG video DVSMPEG Video Change Exp.Clip Result Ideal Point Ave. MaxFootball Energy 214 218 300 426(875s) Fr.Delay 0.1 0.11 0.16 0Terminator2 Energy 280 294 385 570(1200s) Fr.Delay 0.1 0.11 0.16 0The next set of results are for decoding two di�erent videoclips. In contrast to MP3 audio, for MPEG video there isa large variation in decoding rates on frame-by-frame basis(this has been shown in [15, 16] as well). We again reportresults for ideal detection, exponential average, maximumprocessor performance and our change point algorithm. The



ideal detection algorithm allows for 0.1s average total framedelay equivalent to 2 extra frames of video in the bu�er.The arrival rate varies between 9 and 32 frames/second.Energy (kJ) and average total frame delay (s) are shownin Table 4. The results are similar to MP3 audio. Theexponential average shows poor performance and higher en-ergy consumption due to its instability (see Figure 10). Ourchange point algorithm performs well, with signi�cant sav-ings in energy and a very small performance penalty (0.11sframe delay instead of allowed 0.1s).Table 5: DPM and DVSAlgorithm Energy (kJ) FactorNone 4260 1.0DVS 3142 1.4DPM 2460 1.7Both 1342 3.1Finally, we combine the dynamic voltage scaling detectionwith power management algorithms presented in [2, 3]. Weuse a sequence of audio and video clips, separated by idletime. During longer idle times, the power manager hasthe opportunity to place the SmartBadge in the standbystate. The optimal power management policy can be ob-tained by either of the two approaches presented in [2, 3]as the only decision point is upon the entrance into the idlestate. Table 5 shows the energy savings if we implementedonly dynamic voltage scaling (and thus did not transitioninto standby state during longer idle times), or if only powermanagement is implemented (and thus processor runs atmaximum frequency and voltage in the active state) and �-nally also for the combination of the two approaches. Weobtain savings of a factor of three when expanding the powermanager to include dynamic voltage scaling with our changepoint detection algorithm.
5. CONCLUSIONSWe presented a new approach for dynamic voltage scalingthat can be used as a part of a power managed system, suchas systems presented in [2, 3]. Our dynamic voltage scalingalgorithm is based on two critical portions: (i) change pointdetection algorithm that detects the change in arrival or de-coding rates, and (ii) the frequency setting policy that setsthe processor frequency and voltage based on the currentarrival and decoding rates in order to keep constant perfor-mance. We tested our approach on MPEG video and MP3audio algorithms running on the SmartBadge portable de-vice [1]. Our change point detection algorithm is very stableas compared to the exponential moving average algorithmpresented previously. As a result, it gives large energy sav-ings at a small performance penalty for both MPEG videoand MP3 audio applications. Finally, we implemented ourDVS algorithm together with power management algorithmsand show factor of three savings in energy due to thecombined approach.
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