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ABSTRACT

Let G be the group of n×n upper-triangular matrices with elements in a finite field and
ones on the diagonal. This paper applies the character theory of Andre, Carter and Yan to
analyze a natural random walk based on adding or subtracting a random row from the row
above.



1. Introduction

For a prime p, let Gn(p) = G be the group of unipotent upper-triangular matrices with
elements in the finite field Fp. This group has generating set

(1.0) S = {I ± Eii+1} 1 ≤ i ≤ n− 1.

A natural random walk may be performed, beginning at the identity, each time choosing one
of the 2(n − 1) generators at random, and multiplying. More formally, define a probability
measure on Gn(p) by

(1.1) Q(g) =

{
{1/2(n− 1) if g = I ± Eii+1 1 ≤ i ≤ n− 1

0 otherwise .

Let Q∗2(g) = ΣhQ(h)Q(gh−1), Q∗k(g) = Q ∗ Q∗(k−1)(g). These convolution powers give the
chance that the walk is at g after k steps. Denote the uniform distribution by

(1.2) π(g) = 1/pn(n−1)/2 .

If p is an odd prime, Q∗k(g) → π(g) as k →∞. To study the speed of convergence let

(1.3) ‖Q∗k − π‖ = max
A

|Q∗k(A)− π(A)| = 1

2

∑
g

|Q∗k(g)− π(g)| .

Given ε > 0, how large must k be so ‖Q∗k − U‖ < ε? Partial results due to Zack, Diaconis,
Saloff-Coste, Stong and Pak are described at the end of this introduction. There are good
answers if n is fixed and p is large but the general problem is open.

The present paper develops an approach to the problem using character theory as de-
scribed in Diaconis and Saloff-Coste [1993], Diaconis [2003]. This involves bounding the rate
of convergence of a random walk driven by a probability measure that is constant on the
union of the conjugacy classes containing the generating set. Then, a comparison theorem is
used to bound the original walk. The character theory of Gn(p) is a well known nightmare.
In recent work, Carlos Andre, Roger Carter and Ning Yan have developed a theory based
on certain unions of conjugacy classes (here called super-classes) and sums of irreducible
characters (here called super characters). The present paper gives a sharp analysis of the
conjugacy class walk and gives partial results for the original walk.

Here is one of our main results. The conjugacy class containing I + aEii+1 consists of
upper triangular matrices with a in position (i, i+1), arbitrary field elements α1, α2, . . . , αi−1.
In column i+1 above this a, arbitrary field elements β1, β2, . . . , βn−(i+1) in row i to the right
of the a. In the block bounded by these αj, βk, the (j, k) entry is a−1αjβk.

Call this class Ci(a), 1 ≤ i ≤ n− 1. Thus |Ci(a)| = pn−2. Define

(1.4) Q̃(g) =

{
1/[2(n− 1)pn−2] if g ∈ Ci(±1) 1 ≤ i ≤ n− 1

0 otherwise
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Theorem 1 Let p be an odd prime. For the random walk (1.4) on the group of uniupper-
triangular matrices Gn(p), there are universal constants γ̃i so that for all n ≥ 2 and all
k,

(1.5) γ̃1e
−γ̃2k/(p2n logn) ≤ ‖Q̃∗k − π‖ ≤ γ̃3e

−γ̃4k/(p2n logn)

Remarks

1. Theorem 1 holds as stated if and p = 2 provided that the identity is added to Q̃. See
Section 3A.

2. The natural analog of the walks (1.1) and (1.4) over the finite field Fq use generators
{I +ajEi,i+1} and Ci(aj) where aj are an additive basis for Fq over Fp. If q = pa, then
(1.5) holds with p2(n log n) replaced by p2(na log(na)). See Section 3B.

3. The walk (1.4) is easy to implement as a series of ’rank one steps’. To choose an
element of the conjugacy class Ci(a) uniformly, form a random vector V by choosing
field elements V1, V2, . . . , Vi−1 uniformly in Fp, setting Vi = a and Vj = 0 for j > i.
Form a random vector W by setting Wk = 0, 1 ≤ k ≤ i, Wi+1 = 1, Wj = a−1Uj
with Uj-chosen uniformly in Fp, i + 2 ≤ j ≤ n. The matrix I + VW T is uniformly
distributed in Ci(a).

Section Two below reviews the super-class theory needed. As new results, it derives
the basic upper bound lemma, proves that super-class functions form a commutative, semi-
simple algebra indexed by set partitions and derives a closed formula for the value of a
super-character on a super-class with no restrictions on n and q. Theorem one is proved
in Section Three in a stronger norm than (1.3). This is needed for comparison theorems.
Section Four gives a character-free proof of Theorem One using a new form of stopping time
arguments which may be of independent interest. Section Five gives our analysis of the
original walk (1.1) by comparison. The main novelty in the present paper is showing that
super-class theory can be used to solve problems usually solved by character theory.

Literature Review For background on random walk on finite groups see Diaconis [1988],
Saloff-Coste [1997], [2003]. The comparison approach is developed in Diaconis and Saloff-
Coste [1993] with recent developments surveyed in Diaconis [2002]. There have been previous
applications of comparison theory in the symmetric group and for finite groups of Lie type.
The present paper is the first serious incursion into p-groups.

When n = 3, the random walk (1.1) on the Heisenberg Group was studied by Zack
[1984]. For fixed n ≥ 3 and large p, sharp rates of convergence are given in joint work
with Saloff-Coste [1993A, 1994A,B]. Roughly, order p2 steps are necessary and sufficient for
convergence. The solution was achieved by three quite different routes. In [1994B], geometric
volume growth arguments are used. In [1994A], the walk is realized as a projection of a walk
on the free nilpotent group. Decay bounds of [Hebisch and Saloff-Coste] along with Harnack
inequalities are used. The implicit constants depend badly on n. They are of order en

2
.
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Perhaps the earliest large n-results follow from work of Ellenberg [1993]. If γ is the
diameter of Gn(p) in the generating set S of (1.0) he shows there are explicit constants c, C
such that

c(np+ n2 log p) ≤ γ ≤ C(np+ n2 log p).

From this, standard bounds (see e.g. Diaconis and Saloff-Coste [1993A]) show that there are
constants α, β such that

‖Q∗k − π‖ ≤ pn(n−1)/2(1− β/γ2)αk.

Thus, for p fixed and n large, order n6 steps suffice.

Richard Stong [1995] has given sharp estimates of the second eigenvalue of the walk
(1.1). He showed there are universal constants ci such that the second eigenvalue λ1 satisfies
1− c1

p2n
≤ λ1 ≤ 1− c2

p2n
. He also showed that the smallest eigenvalue satisfies

λmin ≥ − 1 +
c3
p2

.

Using these, he shows that if k = c4p
2n3 log p+ p2nθ then

‖Qk − π‖ < e−c5θ

Stong also shows that at least order n2 steps are needed

Pak [2000] treats the case of n large, with steps I + aEi, i+1 for a chosen uniformly.
Using an elegant stopping time argument he shows that order n2.5 steps are necessary and
suffice for this case. The arguments are extended to Nilpotent groups in Atashkevich and
Pak [2001]. Coppersmith and Pak [????] showed that order n2 steps suffice provided P � n.

To conclude this survey we note that the parallel walk on the generating class of trans-
positions in the symmetric group Sn had many applications through projections to quotient
walks on subgroups. The subgroup Sk × Sn−k yields the Bernoulli-Laplace Model of diffu-
sion. The subgroup SnwrS2 yields a walk on perfect matchings, the walk projected onto
conjugacy classes gives an analysis of congulation-fragmentation process appearing in chem-
istry. These and many further applications are surveyed in Diaconis [2003]. For the walk on
upper-triangular matrices, the projection onto the Frattini quotients gives the basic product
walk on Fn−1

p analyzed in Diaconis and Saloff-Coste [1993]. The group Gn(q) is a semi-direct
project of Gn−1(q) and Fn−1

q with F n−1
q seen as all matrices in Gn(q) which are zero except in

the last column and Gn−1(q) seen as all matrices in Gn(q) which are zero in the last column.
The quotient walk on Gn(q)/Gn−1(q) is an example of a facilitated kinematics model where
a site can turn on or off only if its left most neighbor is on. See Aldous and Diaconis [2002]
or Ritort and Sollich [2002] for extensive references. At this writing we do not have a simple
interpretation of the projection of the walk (1.4) on super classes but we presume it will give
a natural walk on set partitions.

2. Background Throughout, q = pa for a prime p. The group Gn(q) of n × n matrices
which are upper triangular with ones on the diagonal is the Sylow p-subgroup of the general
linear group GLn(Fq). Throughout, we write G for Gn(q). As is well known, G has center
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Z(G) consisting of matrices in G which are zero in all coordinates except (1, n). The com-
mutator G′ equals the Frattini subgroup Φ(G) which consists of matrices in G which are
zero along the super diagonal. It follows that the matrices (I ±Eii+1) 1 ≤ i ≤ n− 1 form a
minimal generating set for Gn(p) and that there are qn−1 distinct linear characters.

The character theory and conjugacy classes of G have been a persistent thorn in the
side of group theorists. They are not known for n ≥ 7 and considered unknowable. Indeed,
Poljak [1966] shows that a nice description of the conjugacy classes leads to a nice description
of wild quivers. Presumably, this does not exist. The difficulty of applying the orbit method
to G is reviewed by Kirilov in [1995, 1999]. Further study is in Issacs [1995] who shows that
the degree of nonlinear character is a power of q. Thompson [2003] studies the apparently
difficult problem of proving that the number of conjugacy classes is a polynomial in q.

In a series of papers [1995A,B, 1996, 1996], Carlos Andre has developed what Roger
Carter calls super-class and super-character theory. Super classes are certain unions of
conjugacy classes and super-characters are sums of irreducible characters. These have nice
duality and orthogonality properties and a very useful super-character formula.

We follow an elegant elementary approach of Ning Yan [2001]. This does not have the
restrictions of earlier work that p > n. It also contains all that we need to analyze the
random walks of interest.

In Section A, super classes are defined. The algebra A of super-class functions is in-
troduced. Section B defines super characters and gives their dimension and intertwining
numbers. Section C gives the Andre-Carter-Yan Character formula. Section D shows these
objects are naturally associated to Bell numbers and set partitions. Section E derives a
Plancherl formula and the basic upper bound lemma needed to prove Theorem 1.

A. Super-Classes Let Un(q) denote the set of upper triangular matrices with zero diag-
onal. The product group G×G acts on Un(q) by left/right multiplication. Let Ψ index the
orbits of this action. The orbits indexed by Ψ will be called transition orbits below. Yan [Th
3.1] shows that each transition orbit contains a unique element with at most one non-zero
entry in each row and each column. If D denotes the positions of the non-zero entries and
φ : D → F∗

q denotes the entries, Ψ may be represented by pairs (D,φ). For example, when
n = 3, there are five possible choices of D shown in Figure 1 below

INSERT FIGURE 1 HERE

In Section D below we show that the number of allowable configurations D is the Bell number
B(n). Here B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, B(5) = 52, . . . is the number of set
partitions of n.

5



Figure 1 also shows two combinatorial features of D that figure prominently in later
developments. The Dimension Index d(D) denote the sum of the vertical distances from the
boxes in D to the super diagonal {(i, i+ 1)}1≤i≤n−1. Thus if all of the boxes in D are on the
super diagonal d(D) = 0. The Intertwining Index i(D) counts the number of pairs of boxes
in D, that is, (i, j), (k, `) in D, with 1 ≤ i < k < j < ` ≤ n so that the ‘corner’ (k, j) is
above the diagonal. Pictorially

(i, j)

(k, j) (k, `)

The n = 3 example above was close to trivial. Here is another with n = 5 As will emerge
in Section B, the super-characters are also indexed by pairs (D,φ). The associated super
character has dimension of qd(D) and intertwining number qi(D).

INSERT FIGURE HERE

Following Kirilov [1995] and Yan [2001] we may map transition orbits in Un(Fq) into
the group G by adding the identity to each matrix in the orbit. These will be called super-
classes and labeled C(D,φ). Subtracting the identity from each element of C(D,φ) gives
the transition class K(D,φ). It is clear that C(D,φ) is a union of conjugacy classes. As an
example, the super class corresponding to transition orbit for a single box consists of matrices
in G with a fixed, non-zero field element a where the box is; arbitrary field elements αi in
the column above the box, arbitrary field elements βj in the row to the right of the box.
In the rectangle above and to the right of the box it has element a−1αiβj. Note that the
super class with one box containing a in position (i, i+ 1) contains the generator I + aEii+1.
Clearly, the size of the super-class corresponding to one box is qs(D) with S(D) equal to the
number of places above and to the right of the box. Yan shows that any transition class is
a sum or one box classes:

K(D,φ) =
∑
d∈D

K(d, φ)

and further each x ∈ K(D, d) can be written in exactly qi(d) ways as such a sum.

Define the super-class functions A via

(2.1) A = {f : G→ C with f constant on super classes}

Thus f ∈ A if and only if f(g) = f(g′) whenever g − I = h1(g
′ − I)h2. We show below that

A is a commutative, semi-simple sub-algebra of the class functions on G under convolution

(2.2) f1 ∗ f2(g) =
∑
h∈G

f1(h)f2(gh
−1).
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B. Super-Characters Let U∗
n(Fq) be the space of linear maps from Un(q) to Fq. The

group G acts on the left and right of U∗
n(q) via

g ∗ λ(m) = λ(mg), λ ∗ g(m) = λ(gm), g ∈ G, λ ∈ U∗
n(Fq), m ∈ Un(Fq).

The orbits of the product group G×G on U∗
n(Fq) are called cotransition orbits and indexed

by Ψ∗. Fix a non-trivial homomorphism θ : Fq to C∗. For λ ∈ U∗
n(Fq), define vλ : G → C∗

by
vλ(g) = θ[λ(g − I)]

Yan [2001, sec. 2] shows that {vλ}λ ∈ U∗
n is an orthonormal basis of C[G] with the usual

inner product 〈f1|f2〉 = 1
|G|

∑
g

f1(g)f2(g).

By direct computation,
gvλ(·) = vλ(g)vgλ(·).

It follows that if L is a left orbit of G acting on U∗
n, the linear span of {vλ}λ∈L is a submodule

of C[G]. Let χλ be the character of this representation for any λ ∈ L. Yan [2001, R.2] shows
that if λ and λ′ are in the same right orbit of G acting on U∗

n then χλ = χλ′ . The characters
{χλ}λ∈Ψ∗ are called super-characters. Yan [2001, 2.6] shows that the super-characters are in
fact super-class functions, that they are orthogonal and

(2.3) 〈χD,φ|χD′,φ′〉 =

{
0 if (D,φ) 6= (D′, φ′)

qi(d) if (D,φ) = (D′, φ′)

Here, the set Ψ∗ is identified with Ψ and the labeling of (D,φ) pairs will be used.

One further useful fact Yan [2001, 2.4],

(2.4) The character of the regular representation of G equals∑
D,φ

|ψ(D,φ)|
χD,φ(1)

χD,φ(·),

where χD,φ(1) = qd(D) is the character degree and |ψ(D,φ)| = q2d(0)−i(0) is the size of the
G×G orbit in U∗

d indexed by (D,φ). The sum is over all cotransition orbits.

These facts allow us to prove an apparently new result.

Proposition 1 The space A of super-class functions defined at (2.1) is a commutative
semi-simple algebra.

Proof We will show that A is closed under convolution. It is thus a sub-algebra of the
class functions on G and so commutative. Further, it has a basis of orthogonal idempotents,
the super-characters, so it is semi-simple.

For each (D,φ), let S(D,φ) be the labels of the irreducible characters of G contained
in χD,φ. By orthogonality of χD,φ, the S(D,φ) are disjoint. From (2.4), every irreducible
character appears in a unique S(D,φ). Since each irreducible character χs appears in the
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regular character χs(1) times, (2.4) yields that the multiplicity of χs in the appropriate χD,φ
is qi(D)−d(D)χs(1). Thus

(2.5) χD,φ(1) = qi(D)−d(D)
∑

s∈S(D,φ)

χs(1)χs(·).

It is classical that for two irreducible characters

χs ∗ χt = δst
|G|
χs(1)

· χs(·)

See e.g. Isaacs (1976, 2.13). Thus, χD,φ ∗ χD′,φ′ is zero unless (D,φ) = (D′, φ′) and then

(2.6) χD,φ ∗ χD,φ(·) = q2(i(D)−d(D))
∑

s∈S(D,φ)

χ2
s(1)

|G|
χs(1)

χs(·) = qi(D)−d(D)|G|χD,φ(·) �

C. The Character Formula

There is a remarkable closed form formula for the value of a super-character on a super-
class. Andre [1996] gave such a result for p sufficiently large compared to n. Using tools
developed by Yan, we are able to show that Andre’s formula holds for all values of n and p.

Theorem 2 On the group Gn(q) of upper-triangular matrices, with ones on the diagonal
and entries in Fq, the value of the super-character χD,φ on the super-class C(D′, φ′) equals

(2.7)

qp(D,D
′) θ

( ∏
φ(i,j)∈D∩D′

(i, j)φ′(i, j)

)
if D ⊆ R(D′)

0 Otherwise

where R(D′) is the complement in {1 ≤ i < j ≤ n} of the positions directly above and
to the right of positions in D′ (thus D′ ⊆ R(D)) and p(D,D′) is the number of positions
directly below positions in D which are also in R(D′). Finally, θ is an isomorphism from Fq

(additively) to C.

Remarks and Examples. 1. The identity is the super class of size one indexed by the empty
set (D′ = φ). Then, R(D′) is the full upper triangle, the product in (2.7) is one, and
p(D,D′) = d(D) defined in Section 2A above. Thus

dim χD,φ = χD,φ(I) = qd(D)

2. The random walk Q̃ of (1.4) is supported on the union of 2(n− 1) super-classes C((i, i+
1); ±1), 1 ≤ i ≤ n− 1. For such a class, R(D′) consists of all positions in the upper-triangle
which are not strictly above or strictly to the right of (i, i + 1). The product in (2.7) has
a single term and p(D,D′) counts the distance from the entries in D down to the super
diagonal counting only positions in R(D′). Thus, if Di is the set of positions in D in the
rectangle strictly above and to the right of (i, i+ 1)

χDφ(C(i, i+ 1), ±1)

χDφ(∅)
= q−|Di|θ(±φ(i, i+ 1))δ(D,(i, i+1))δ(R(i, i+ 1), D)
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we make careful use of this in Section 3. We begin the proof of the theorem with a duality
lemma. The super characters of G = Gn(q) are indexed by orbits of G × G on U∗

n(q) the
set of Fq valued linear functions of Un(q) taken as a vector space over Fq. Yan shows these
may also be indexed by Pairs (D,φ) as above. Call the set of orbits Φ∗ with typical element
ψ(D,φ).

Lemma 1 Fix λ ∈ ψ(D,φ) and g ∈ C(D′, φ′). Then,

(2.8) χD,φ(g) =
qd(D)

|ψ(D,φ)|
∑

λ′∈ψ(D,φ)

θ(λ′(g − I)) =
qd(D)

|C(D′, φ)|
∑

h∈C(D′,φ′)

θ(λ(h− I)).

Proof The first equality in (2.8) is 2.5 of Yan [2001]. Write the first sum as∑
λ′∈ψ(D,d)

θ(λ′(g − I)) =
1

|G|2
∑
s,t∈G

∑
λ′∈ψ(D,φ)

θ(s ∗ λ′ ∗ h(g − I)) =
1

|G|2
∑

λ′∈ψ(D,φ)

∑
s,t∈G

θ(s ∗ λ′ ∗ t(g − I))

=
|ψ(D,φ)|
|G|2

∑
s,t∈G

θ(s ∗ λ ∗ t(g − I))

=
|ψ(D,φ)|
|G|2

∑
s,t∈G

θ(λ(t(g − I)s)

The last sum equals
|G|2

|C(D′, φ′)|
∑

h∈C(D′,φ′)

θ(λ(h− I))

combing formulae gives the second equality in (2.8) 2

Proof of Theorem Two Observe first that the claimed formula (2.7) is multiplicative: If
D = {d1, d2, . . . , dr} and the formula is known, then

χD,φ =
r∏
i=1

χdiφ.

Now, Yan [2001, th 6.1] has shown the super characters χD,φ is multiplicative. Thus it is
enough to verify for any position d

χd,φ(C(D′, φ′)) =


qp(d,D

′)θ(φ(d)φ(d)) if d ∈ D′

qp(d,D
′) if d ∈ R(D′) \D′

0 if d 6∈ R(D′)

It will be convenient to use the correspondence g ↔ g−I which takes C(D′, φ′) toK(D′, φ′) ⊆
U∗
n(q). As explained in Section 2A above, every transition class K(D′, φ′) can be written as

a sum of classes: K(D′, φ′) =
∑
d′∈D′

K(d′, φ′) with each x ∈ K(D′, φ′) expressible in exactly

qi(D
′) ways. Thus

|d(D′, φ′)| =
∏
d′∈D′

|K(d′, φ′)|/qi(D′).
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Using (2.8), for any λ ∈ ψ∗(d, φ)

χd,φ(C(D′, φ′)) =
qd({d})

|d(D′, φ′|
∑

x∈k(D′,φ′)

θ(λ(x)).

Using the decomposition of x as a sum

(2.10)
∑

x∈k(D,φ′)

θ(λ(x)) = q̄i(D
′)
∏
d′∈D′

∑
x∈k(d′,φ′)

θ(λ(x)).

Using properties of trigonometric sums

∑
x∈k(d′,φ′)

θ(λ(x)) =


|k(d′, φ′)|θ(φ(d)φ′(d)) if d = d′

|k(d′, φ′)| if d ∈ R(d′)/R+(d′)

|k(d′, φ′)|q−1 if d ∈ R+(d′)

0 if d 6∈ R(d′)

where we use the notation

INSERT GRAPH HERE

The solid square is in position d′, the hatched strips are R(d′)C and all above and to the
right is denoted R+(d′). It follows that the sum (2.10) is

q−i(D
′)
∏
d′∈D′

|k(d′, φ′)|q−
P

d′∈D′ δ(R+(d′),d)θ(φ(d)ψ(d))δD′ (d).

The theorem folows from this, (2.9) and the obvious fact

p(d,D′) = d(d)−
∑
d′∈D′

δ(R+(d′), d) �

D. Set Partitions and Bell Numbers The algebra A of Proposition 1 has a close
connection with set partitions and Bell numbers. Indeed, the allowable sets D corre-
spond to set partitions of [n] by declaring i and j to be in the same block if D contains
(i, j). For example, when n = 3, the five subsets D displayed in Figure 1 correspond to
1/2/3, 12/3, 1/23, 13/2, 123. Given a set partition, we associate D, a set of pairs (i, j) with
1 ≤ i < j ≤ n, by beginning with 1 and adding a box (1, j) to D for the smallest distinct
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entry j in the same block with one (if one is a singleton,no box is added). Then add a box
(2, j) if j is the smallest entry in the block with 2 (no box is added if there is no larger entry)
continue with 3, 4, . . . , n− 1. As an example, 25/14/3 corresponds to

INSERT FIGURE ABOUT HERE

Under this correspondence, partitions with b blocks map to patterns with n− b boxes.

There is an extensive enumerative theory of set partions, see e.g. Fristed [1987] or Pitman
[2003] for authoritative surveys. We have not seen previous study of the statistics d(D) or
i(d). From the decomposition of the regular representation (2.4) we have the generating
function.

qn(n−1)/2 =
∑
D

q2d−i(q − 1)|D|.

Andre [1996] had earlier proved a dual formula corresponding to the decomposition into
super-classes.

The number B(n, q) of super classes equals the dimension of the algebra A. Yan [2001,
4.1] gives the following recurrence

B(n+ 1, q) =
n∑
k=0

(n
k
)
(q − 1)n−kB(k, q), B(0, q) = 1.

This is easy to see: a configuration counted by B(n+1, q) contains some number of boxes on
the super diagonal. Call this n− k, 0 ≤ k ≤ n. Any choice rules out n− k rows and columns
and leaves at most k boxes to be further placed. This can be done in B(k, q) ways; of course
the (q − 1) factor accounts for the labeling by F∗

q. Note that when q = 2, this becomes the
usual recurrence for Bell numbers.

Lehrer [1974] has shown that the irreducible characters of maximal degree are also super-
characters corresponding to Boxes (1, n), (2, n−1), (3, n−2), . . . along the main anti-diagonal.
He shows that ‘most’ representations (according to Plancherl measure) have maximal degree.

Finally, Borodin [1995] has derived elegant probabilistic limit theorems for the number of
Jordan Blocks in a random element of G. These and other results are described in Fulman’s
Survey [2002, Sec. 4].

E. Some Fourier Analysis Throughout, G = Gn(q) and A is the algebra of super-class
functions of G. The Fourier Transform of f ∈ A at the class indexed by D,φ is

f̂(D,φ) =
∑
g

f(g)χ̄D,φ(g) = |G|〈f |χD,φ〉.

11



From the convolution formula (2.4) and linearity we have, for f , h ∈ A,

(2.11) f̂ ∗ h(D,φ) = q−d(D)f̂(D,φ)ĥ(D,φ).

As usual, the Fourier transform of the uniform distribution π(g) = 1/|G| is

π̂(D,φ) =

{
1 if D is empty

0 otherwise.

Also, for any probability distribution Q ∈ A, Q̂ (empty) = 1. The following version of the
Plancherel Theorem is basic to what follows.

Proposition 3 Let Q ∈ A be a probability distribution. Then

‖Q∗k − π‖2
2 =

1

|G|2
∑
D,φ

Non−empty

q−i(D)

∣∣∣∣∣Q̂(D,φ)

qd(D)

∣∣∣∣∣
2k

.

Proof For any h ∈ A, h = ΣD,φ
〈h|χD,φ〉

〈χD,φ|χD,φ〉
χD,φ. Thus

‖h‖2 =
∑
D,φ

|〈h|χD,φ〉|2q−i(D).

This implies

‖Q∗k − π‖2
2 =

1

|G|
∑
g

|Q∗k(g)− π(g)|2 =
∑
D,φ

Non−empty

|〈Q∗k|χD,φ〉|2q−i(D).

Now use (2.11). �

Corollary (Upper Bound Lemma) Let Q ∈ A be a probability distribution, then

4‖Q∗k − π‖2
TV ≤

∑
D,φ

Non−empty

q−i(D)

∣∣∣∣∣Q̂(D,φ)

qd(D)

∣∣∣∣∣
2k

.

Proof 4‖Q∗k − π‖2
TV =

(∑
g

|Q∗k(g)− π(g)|
)2

≤ |G|
∑
g

|Q∗k(g)− π(g)|2

= |G|2‖Q∗k − π‖2
2 �

Remark Let us relate the analysis of this section to the class-function analysis of Diaconis
[2003]. If G is any finite group and h is a class function of G,

h =
∑
ρ

〈h|χρ〉χρ

12



where the sum is over all irreducibles representations and χρ(g) = Trρ(g).

Orthonormality of characters implies ‖h‖2
2 =

∑
ρ

|〈h|χρ〉|2.

If G = Gn(q) and h is a super-class function, Proposition 3 gives h as a sum of super
characters.

(2.12) h =
∑
ψ

〈h|χψ〉
〈χψ|χψ〉

χψ.

Thus ‖h‖2
2 =

∑
ψ

|〈h|χψ〉|2q−i(ψ) where ψ runs over (D,φ) pairs. Decompose the super-

character χψ into irreducibles as in (2.7)

(2.13) χψ =
∑
ρ∈S(ψ)

m(ρ, ψ)χρ.

using (2.12), (2.13)

(2.14) 〈h|χρ〉 =
〈h|χψ〉
〈χψ|χψ〉

m(ρ, ψ)

thus ∑
ρ

|〈h|χρ〉|2 =
∑
ψ

∑
ρ∈S(ψ)

∣∣∣ 〈h|χψ〉〈χψ|χψ〉
m(ρ, ψ)

∣∣∣2 =
∑
ψ

|〈h|χψ〉|2

|χψ|χψ〉|2
∑
ρ∈S(ψ)

m2(ρ, ψ)

=
∑
ψ

|〈h|χψ〉|2

〈χψ|χψ〉
.

Thus, as must be, the two formulae for ‖h‖2
2 agree.

From (2.14) we see that if h ∈ A and ĥ(ψ) = 0 then ĥ(ρ) = 0 for each ρ in S(ψ).

3. Proof of Theorem One and Extensions

In this section we use the Fourier transform of the probability measure Q̃ of (1.4) together
with the upper bound lemma of Section 2E to prove Theorem 1. Throughout, the L2 norms
are bounded. We first treat the case when q = 2 with holding at the identity, both to have
a theorem for this case and because the analysis is easiest here. We then treat the case of a
general finite field Fq; Theorem 1 is the special case where q = p. Finally we give the lower
bounds which show our upper bounds are essentially sharp.

A. q = 2. On GLn(2) define a probability measure Q (not to be confused with the Q at
(1.1)) by

(3.1) Q(g) =


1/n if g = id

1/[n2n−2] if g ∈ Ci(1) 1 ≤ i ≤ n− 1

0 otherwise.

13



The Fourier transform at the super-character indexed by (D,φ) is

(3.2)
Q̂(D)

2d(D)
=

1

n
+

1

n

n−1∑
i=1

2−|Di|(−1)δ(D,i)δ(Ri, D).

When q = 2, φ doesn’t enter. We write Di for the number of positions in D strictly inside the
rectangle with lower left corner at (i, i+ 1). The indicator δ(D, i) is one or zero as (i, i+ 1)
is in D or not and δ(Ri, D) is one or zero as D is disjoint from positions in the row (and
column) strictly to the right (above) (i, i+ 1).

From proposition three, the L2 or chi-square distance is given by

(3.3) |G|2‖Q∗k − π‖2
2 =

∑
D

non−empty

2−i(d)
∣∣∣Q̂(D)

2d(D)

∣∣∣2k
This is an upper bound for the total variation distance (1.3). Thus the following theorem
proves the upper bound for Theorem One when q = 2.

Theorem Three On Gn(2), with Q defined by (3.1), let m = n(3 log n + c), for c > 0.
Then

|G|2‖Q∗m − π‖2
2 ≤ e−c.

Proof Fix a non-empty set of positions D and consider the transform Q̂(D)/2d(D) at (3.2).
Let k be the number of positions in D strictly above the super-diagonal and let ` be the
number of positions in D on the super-diagonal. We may upper bound the transform by
replacing negative terms in the sum by zero and positive terms in the sum by one. Each of
the ` super diagonal positions in D contributes a zero and each of the k non-super-diagonal
positions contributes a zero. This shows that

Q̂(D)/2d(D) ≤
(
1− k + `

n

)
.

Replacing the negative terms in the sum by −1 and the positive terms by zero shows

|Q̂(D)/2d(D)| ≤
(
1− k+`

n

)
. To bound the sum in (3.3) note that there are at most(

n2

k

)(
n
`

)
≤ n2(k+`)

such sets D. Summing these bounds gives

∑
1≤k+`≤n−1

n2(k+`)
(
1− k + `

n

)2m

≤ n
n−1∑
s=1

n2s
(
1− s

n

)2m

using 1− x ≤ e−x, this last sum is bounded above by e−c for m = n(3 log n+ c) 2

Remarks The constant 3 can be slightly improved (our estimates were made simple for
didactic purposes). The lower bound in Section 3C shows they cannot be improved by much.

14



3B. Proof of Theorem 1 (Upper Bound). Let p be an odd prime. We want to provide
an Upper Bound for

Sm =
∑
D,φ

∣∣∣∣∣Q̃(D,φ)

pd(D)

∣∣∣∣∣
2m

.

We implicitly extend φ to all (i, j) by zero outside D.

Let D be a set of “positions”. Decompose it into D = on(D) ∪ off(D), where on (D)
(resp. off(D)) are the positions in D that are on (resp. off, i.e. above) the super-diagonal.

We know from Theorem Two that

(3.4)
Q̃(D,φ)

pd(D)
=

1

n− 1

n−1∑
i=1

wi(D)cos(2πφ(i, i+ 1)/p),

where the “weights” wi(D) satisfy 0 ≤ wi(D) ≤ 1 and wi(D) = 0 whenever there is s such
that (i, s) ∈ D or (s, i+1) ∈ D. Let Z(D) be the set of i = 1, . . . , n−1 such that wi(D) = 0.
Also, notice that the transform does not depend on the values that φ takes on off(D).

Let I+(φ) (resp. I−(φ)) be the set of i = 1, . . . , n− 1 such that cos(2πφ(i, i+ 1)/p) > 0
(resp. < 0). Then,

Q̃(D,φ)

pd(D)
≥ 1

n− 1

∑
i∈I−(φ)∩Z(D)c

cos(2πφ(i, i+ 1)/p), and,

Q̃(D,φ)

pd(D)
≤ 1

n− 1

∑
i∈I+(φ)∩Z(D)c

cos(2πφ(i, i+ 1)/p).

Hence, Sm ≤ S+
m + S−

m, where

S+
m =

∑
D,φ

(
1

n− 1

∑
i∈I+(φ)∩Z(FD)c

cos(2πφ(i, i+ 1)/p)

)2m

, and,

S−
m =

∑
D,φ

(
1

n− 1

∑
i∈I−(φ)∩Z(D)c

cos(2πφ(i, i+ 1)/p)

)2m

.

Let us focus on S+
m. What we are summing does not depend on the values that φ takes

on off(D)∪(on (D)∩I−(φ)). Let a(D) be the cardinality of Z(D) and b(B) be the cardinality
of off(D). Notice that a(D) > b(D). Also, let c±(D) be the cardinality on (D) ∩ I±(φ).

Replacing φ(i, i+ 1) by hi, we thus get

S+
m =

∑
D

(p− 1)b(D)[p/2]c
−(D)

∑
h1,...,hc+(D)

(
1

n− 1

c+(D)∑
i=1

cos(2πhi/p)

)2m

,

where the hi runs through {−p/4, . . . , p/4}, excluding the case where all hi are zero. In the
sum, pb(D) (resp. [p/2]c

−(D)) comes from summing over all possibilities for the values of φ on
off(D) (resp. on(D) ∩ I−(φ)).
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Rewrite as

S+
m =

∑
D

(p− 1)b(D)[p/2]c
−(D)

(
c+(D)

n− 1

)2m ∑
h1,...,hc+(D)

(
1

c+(D)

c+(D)∑
i=1

cos(2πhi/p)

)2m

,

where D runs through sets of positions satisfying c+(D) ≥ 1.

First, we claim that, for all 1 ≤ c ≤ n− 1, and the range of the hi restricted as above,

∑
h1,...,hc

(
1

c

c∑
i=1

cos(2πhi/p)

)2m

≤ αe−β/(p
2n logn),

for universal α, β, uniformly in p, n and c. Indeed, this follows from Theorem One in [Diaconis
and Saloff-Coste, Section 5] with an explicit bound. See in particular, example two of Section
5. Saloff-Coste [2003, Th 8.10], gives another proof

Second, we prove that,

∑
D

(p− 1)b(D)[p/2]c
−(D)

(
c+(D)

n− 1

)2m

≤ 1 + ηm,

where ηm → 0 as n→∞, also for m = λp2n log(n) with λ large enough, uniformly in p. (All
we need here is to bound by a constant.)

Call the sum T . Since a(D) + c+(D) + c−(D) ≤ n− 1 and a(D) > b(D), we have

T ≤
∑
D

pb(D)+c−(D)

(
1− b(D) + c−(D)

n− 1

)2m

.

There are at most
(
n2

b

)
×
(
n−1
c

)
sets of positions with b(D) = b and c−(D) = c. This

number is bounded by n2(b+c). Hence,

T ≤ 1 +
∑

1≤b+c≤n−1

n2(b+c)pb+c

(
1− b+ c

n− 1

)2m

.

(The 1 takes care of the case b+ c = 0.) call T ′ the sum on the right. We have

T ′ ≤ n
n−1∑
`=1

(pn)2`

(
1− `

n− 1

)2m

≤ n

n−1∑
`=1

(pn)2`exp{−2m`/(n− 1)}.

Now,

(pn)2`exp{−2m`/(n−1)} ≤ exp{−2`(λp2 log(n)−log(p)−log(n))} ≤ exp{−2` log(n)(λp2−log(p))}.
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Choose λ > 0 so that λp2 − log(p) ≥ 1, for all p ≥ 3. Then,

T ′ ≤ n
exp{−2 log(n)}

1− exp{−2 log(n)}
≤ 2/n,

and that tends to zeros as n increases. This completes the proof of the upper bound for
Theorem One.

Remark. It is straight-forward to give a bound for the analogous walk over Fq. Let
q = pa. Let α1, α2, . . . , αa ∈ Fq be a basis for Fq as a vector space over Fp. For α ∈ Fq,
define Tr(α) = α + αp + αp

2
+ . . . + αp

a−1
. As in Lidl and Niederreiter [1997, 2.30], let

β1, β2, . . . , β1 ∈ Fq be a dual basis, thus Tr(αiβj) = δij. Choose θ in Theorem 2 as

θ(α) = e
2πiTr(α)

p .

In Theorem Two, field elements φ(i, j) =
a∑
a=1

akαk are written in basis αk and transform

variables φ′(i, j) =
a∑
a=1

bkβk are written in basis βk. Then θ(φ(i, j)φ′(i, j)) = e
2πi
p

P
akbk .

From here, the analysis follows more or less as above with n replaced by na. If a probability
Q is defined on Gn(q) by

Q(g) =


1

2a(n−1)
if g = I ± ajEi, i+1 1 ≤ j ≤ a, 1 ≤ i ≤ n− 1

0 Otherwise

Theorem 1 holds as stated provided q is odd and m = p2na log(na). Further details are
omitted.

3C. Lower Bounds A lower bound on the L2 or chi-squared distance which matches the
upper bound of Theorems 2 and 3 can be obtained from the expression for |G|2‖Q̃∗m − π‖2

2

in terms of the Fourier transform (3.4). Keep only terms corresponding to D having a single
position on the super diagonal and φ = 1 on that entry. Then

|G|2‖Q̃∗m − π‖2
2 ≥ (n− 1)

[
1− 1

n− 1

(
1− cos

(
2π

p

))2m]
.

Elementary calculus estimates show that the right side is not small when m ≥ cp2n log n for
c fixed.

A lower bound for total variation comes from considering the quotient walk on G/Φ. As
explained in the introduction, this evolves as the walk on Fn−1

p which proceeds by picking
a coordinate at random and adding ±1 to this coordinate. For this walk a p2n log n lower
bound (for total variation) is well known. See e.g. Saloff-Coste [2003, Th 8.10]. Further
details are omitted.
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4. A Probabilistic Argument.

In this section we give a conceptually simple probabilistic proof of Theorem 1 for the
walk based on generating conjugacy classes. The argument is a hybrid of strong stationary
times as in Aldous and Diaconis [1986], Diaconis and Fill [1990] and Fourier analysis on
Fn−1
p . It is related to the stopping time arguments used by Pak [2000] and Uyemura-Reyes

[2002].

Consider the measure Q̃ defined at (1.4). As explained there, the random walk based on

multiplying by successive choices from Q̃ may be described as follows: If the current position
of the walk is Xn ∈ Gn(p), the next position is determined by multiplying on the left by a
matrix having ε = ±1 in position (i, i+ 1), independent, uniformly chosen field elements αa
in the column above (i, i+ 1), independent uniformly chosen field elements βb in the row to
the right of (i, i+1). The entries in the (a, b) position in the rectangle with corner at (i, i+1)
are εαaβb. The first proposition shows that the elements in the row above (i, i + 1) and in
the column to the right of (i, i+ 1) in Xn+1 are independent and identically distributed and
remain so in successive steps of the walk.

Proposition 1 Let S be a subset of {(i, j), 1 ≤ i < j ≤ n}. Let M be a random matrix in
Gn(q) with {Mij}(i,j)∈S uniformly distributed and independent of each other and other other
entries in M . Let N be a second random matrix independent of M . Then, the entries in
positions of S in the product MN (or NM) are uniformly distributed, and independent of
each other and the other entries in the product.

Proof (MN)ij =
∑
k

MikNkj = Mij + Tij where Tij is a term involving elements of M

and N distinct from Mij. It follows that (MN)ij is uniform for all (i, j) ∈ S. To prove
independence, argue column by column, working from the right. Entries in (MN) with the
largest values of j occurring in S have unique entries which do not occur in other terms in S.
These are thus independent of each other and the rest of the entries. Then consider entries
with the second largest value of j in S, and so on. The argument for NM is similar. �

The above proposition says, once an entry is random, it stays random. Returning to the
random walk generated by Q̃, let T be the first time each position (i, i + 1) 1 ≤ i ≤ n − 1
has been chosen at least once. It follows from the proposition that at time T = k, all the
entries at or above the second diagonal are independent and uniformly distributed, even
given T = k. This last is a partial analog of strong stationarity.

Let Φ = Φ(Gn(q)) be the Frattini subgroup. This consists of matrices M in G with
Mi,i+1 = 0 1 ≤ i ≤ n − 1. We thus see that for any m, k with n − 1 ≤ m ≤ k, P{Xk ∈
A|T ≤ m} is right Φ invariant. The following proposition gives a precise sense in which the
distribution of T and the rate of convergence of the the induced walk on G/Φ combine to
give a bound on the rate of convergence of the walk on Gn(p) to the uniform distribution π.
The proposition is a variation of proposition (2.2) of Uyemura-Reyes (2002).

Proposition 2 Let H be a normal subgroup of the finite group G. Let Q be a probability
on G with Xk, 0 ≤ k < ∞ the associated random walk. Let Q̄ be the induced probability
on G/H with Zk, 0 ≤ k <∞ the associated random walk. Suppose T is a stopping time for
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Xk, with
P{Xk ∈ A|T ≤ k}

right H invariant. Then for 1 ≤ k <∞,

‖Q∗k − π‖TV ≤ ‖Q̄∗k − π̄‖TV + 2P{T > k}.

Proof Choose coset representatives zi 1 ≤ i ≤ |G/H|. Write the walk as Xk = (Zk, Hk).
Observe

P{Zk = z,Hk = h} − 1

|G|
= P{T ≤ k}[P{Zk = z,Hk = h|T ≤ k} − 1

|G| ] +

P{T > k}[P{Zk = z,Hk = h|T > k} − 1
|G| ].

Thus,

2‖Q∗k −π‖TV ≤ P{T ≤ k}
∑

z,h |P{Zk = 3, Hk = h} − 1
|G| |+

P{T > k}
∑

3,h |P{Zk = z,Hk = h|T > k} − 1
|G| .

The second term is bounded by 2P{T > k}. For the first sum use

(P{Zk = z|T ≤ k} − 1/|G/H|)P (T ≤ k) =
(
P (Zk = z)− 1

|G/H|

)
−

(P (Zk = z|T > k)− 1/|G/H|)P (T > k)

combining bounds (and dividing by two) gives the result �

Propositions one and two lead to the main result of this section.

THEOREM 2 Let Q̃ on Gn(p) be defined by (1.3). There are universal constants a, b
such that for any odd p and k = cp2n log n with c ≥ 1,

‖Q̃∗k − π̃‖TV ≤ ae−bc.

Proof Use Proposition 2 with k as given. For the stopping time T take the first time all
positions (i, i + 1) have been chosen at least once. The classical coupon collectors problem
(Feller [1968]) gives P{T > k} ≤ e−c. The process Zi on G/Φ was analyzed in Diaconis and
Saloff-Coste [1993A, Sec. 6.1]. They show universal α, β with

‖P{Zm ∈ ·} − πG|φ‖TV ≤ αe−βm/p
2n logn.

Combining bounds completes the proof. �

Remarks Theorem two gives the same upper bound as Theorem 1. The elementary lower
bound of Theorem 1 shows that the result is sharp. The difference is that our first proof of
Theorem 1 used character theory to prove an approximation in L2(π). This allows the walk
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to stand as a base of comparison. There is no sharp comparison based on total variation
bounds.

5. A Comparison Argument

This section uses comparison techniques and the bounds on the conjugacy walk Q̃ in
Theorem 1 to get rates for the original walk Q supported on generators I ±Ei, i+1, 1 ≤ i ≤
n−1, as at (1.1). Throughout, p is an odd prime, G isGn(p), and π is the uniform distribution

on G. Let L2(π) be the real functions of G with inner product 〈f1f2〉 =
∑
g

f1(g)f2(g)π(g).

We caution the reader that we use results from Diaconis and Saloff-Coste [1993] which uses
this inner product multiplied by |G|.

The quadratic forms Ê and E associated with Q̂ and Q are

Ê(f |f) =
∑
s,t

(f(s)− f(t))2π(s)Q̂(ts−1)

with E similarly defined. Lemma 5 of Diaconis and Saloff-Coste [1993A] shows that if there

is a constant A such that Ê ≤ AE then

(5.1) |G|2‖Q∗k − π‖2
2 ≤ |G|2(λ2k

min + e−k/A + ‖Q̃∗bk/2Ac − π‖2
2)

with λmin the smallest eigenvalue of the Q-walk. To give a suitable A, write each element in
the support of Q̂ as a product of generators (I ±Ei, i+1). Let |g| be the length of g ∈ G and
N(±i, g) the number of times I±Ei, i+1, is used in the chosen representation for g. Theorem
1 of Diaconis and Saloff-Coste [1993A] shows that

(5.2) Ê ≤ AE with A = max
s

1

Q(s)

∑
g

|g|N(s, g)Q̂(g)

with the maximum taken over s = (I ± Ei,i+1) 1 ≤ i ≤ n− 1.

Lemma 1 Any element g ∈ supp(Q̂) can be written with |g| ≤ 2np with N(±1, g) ≤ 4p.

Proof The elements of the conjugacy classes Ci(±1) are described in Remark Three follow-
ing Theorem 1. They are matrices in G with ±1 in position (i, i+1), arbitrary field elements
α1, α2, . . . , αi−1 in the column above (i, i+1), arbitrary field elements βj i+2 ≤ j ≤ n in the
row to the right of (i, i+ 1) and entry ±αaβb in position (a, b) 1 ≤ a ≤ i− 1, x+ 2 ≤ b ≤ n,
with zeros elsewhere.

It is straight-forward to write such an element as a product of generators. Begin by
writing down I +Ei, i+1. Conjugating this by I −Ei−1, i puts a one in position (i− 1, i+ 1)
leaving remaining entries unperturbed. Next conjugating by I − Ei−2, i−1 puts a one in
position (i − 2, i + 1). Continuing, gives a matrix with ones above entry (i, i + 1). With
these ones, general entries α1, α2, . . . αi−1 can now be built up, working from the top down.
This results in a matrix with ±1 in position (i, i+ 1), α1, . . . , αi−1 in the column above this
entry and zeros elsewhere.
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From here, conjugate by (I + Ei+1, i+2), . . . , (I + En−1, n) to put ones in the ith row.
Then, working from the right, build up the required pattern of βj. The remaining entries in
the matrix are all as they need to be to give the general entry of Ci(±1).

Each conjugation uses two generators so the final representing word has length at most
2np. Further, any fixed generator is used at most four times. 2

Using the bounds in Lemma 1 in (5.2) gives

(5.3) Ê ≤ AE with A = 8n2p2.

The final ingredient needed is a bound of Stong for the smallest eigenvalue. Using basic
path arguments, Stong [1995] shows

λmin ≥ −1 +
2

p2

combining bounds we see

|G|2‖Q∗k − π‖2
6 ≤ |G|2

{
1− 2

p2

}2k

+ ēk/8n
2p2 + ‖Q̂+bk/16n2p2c − π‖2

2

this is small provided k � n4p2 log p.

Remarks 1) The final result is “off”. Stong’s results show order n3 steps suffice for fixed
p, and Pak [2000] shows that n2.5 steps suffice when p = 2. It is possible to improve the
dependence on p by building up αa/βb in Lemma 1 more cleverly. An indication of the
problem can be seen in the bound (5.3). From our work on Theorem 1, we know that

the second eigenvalue of the Q̃ chain is from the super-character with D = {(1, 2)} and

φ(1, 2) = 1; this eigenvalue is λ̂1 = 1 − 1
n−1

(
1 − cos

(
2π
p

))
= 1 − 2π2(1+o(1))

np2
. The minimax

characterization of eigenvalues shows that (5.3) implies λi ≤ 1− (1−eλi)
A

this gives λ1 ≤ 1− c
n3p4

while Stong’s results show 1 − c1
np2

≤ λ1 ≤ 1 − c2
np2

. This suggests that the paths we have
chosen can be improved, perhaps by randomization.

We have included this section to show what a straight-forward use of comparison yields
as well as in the hope that someone will be motivated to improve our results.
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