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Barry C. Mazur

Persi Diaconis is a pal of mine. He’s also someone
who, by his work and interests, demonstrates the
unity of intellectual life—that you can have the
broadest range and still engage in the deepest proj-
ects. Persi is a leading researcher in statistics, prob-
ability theory, and Bayesian inference. He’s done
wonderful work in pure math as well, most notably
in group representation theory. He has the gift of
being able to ask the simplest of questions. Those
are the questions that educate you about a subject
just because they’re asked. And Persi’s research is
always illuminated by a story, as he calls it—that is,
a thread that ties the pure intellectual question to a
wider world.

Persi’s world is indeed wide. It includes discovering
beautiful connections among group-representation
theory, algebraic geometry, card-shuffling proce-
dures, and Monte Carlo algorithms; studying ran-
dom-number generators, both theoretical and very
practical; analyzing and interpreting real-world
applications of statistics, as in voting procedures;
critiquing misrepresentations of science and mathe-
matics, in particular the protocols of experiments

This presentation was given at the 1865th Stated Meeting,
held at the House of the Academy on December 11, 2002.
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regarding extrasensory perception; writing on the
general concept of coincidence; and working on
historical treatises about probability and magic. As
is well known, Persi is also a magician, credited
with, as Martin Gardner once wrote, “inventing
and performing some of the best magic tricks ever.” 

As for honors, there’s a long list. He was, for
example, one of the earliest recipients of the
MacArthur Fellowship. He’s a member of the Na-
tional Academy of Sciences and was president of
the Institute of Mathematical Statistics. On top of
all this, Persi has an exemplary gift for explaining
things, so I should let him do just that. 

Persi Diaconis

Consider the predicament of a centipede who
starts thinking about which leg to move and winds
up going nowhere. It is a familiar problem: Any
action we take has so many unforeseen conse-
quences, how can we possibly choose? 

Here is a less grand example: I don’t like moving
the knives, forks, and spoons from dishwasher to
drawer. There seems no sensible way to proceed. I
frequently catch myself staring at the configura-
tion, hoping for insight. Should I take the tallest
things first, or just grab a handful and sort them at

Barry C. Mazur (Harvard University)
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the drawer? Perhaps I should stop thinking and do
what comes naturally. Before giving in to “thinking
too little,” I recall a friend’s suggestion: you can
speed things up by sorting the silverware as you
put it into the dishwasher. On reflection, though,
this might lead to nested spoons not getting clean.
And so it goes.

I’m not brazen enough to attempt a careful defini-
tion of “thinking” in the face of a reasonably well-
posed problem. I would certainly include mental
computation (e.g., running scenarios, doing back-
of-the-envelope calculations), gathering informa-
tion (e.g., searching memory or the Web, calling
friends), searching for parallels (e.g., recognizing
that the problem seems roughly like another prob-
lem one knows how to solve, or thinking of an eas-
ier special case), and, finally, trying to maneuver
one’s mind into places where one is in tune with
the problem and can have a leap of insight.

The problem is this: We can spend endless time
thinking and wind up doing nothing—or, worse,
getting involved in the minutiae of a partially
baked idea and believing that pursuing it is the
same as making progress on the original problem. 

The study of what to do given limited resources
has many tendrils. I will review work in econom-
ics, psychology, search theory, computer science,
and my own field, mathematical statistics. These
aren’t of much help, but at the end I will note a few
rules of thumb that seem useful. 

An Example 

One of the most satisfying parts of the subjective
approach to statistics is Bruno de Finetti’s solution
of common inferential problems through exchange-
ability. Some of us think de Finetti has solved
Hume’s Problem: When is it reasonable to think
that the future will be like the past? I want to pres-
ent the simplest example and show how thinking
too much can make a mess of something beautiful.

Consider observing repeated flips of a coin. The
outcomes will be called heads (H) and tails (T). In
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a subjective treatment of such problems, one
attempts to quantify prior knowledge into a proba-
bility distribution for the outcomes. For example,
your best guess that the next three tosses yield
HHT is the number P(HHT). In many situations,
the order of the outcomes is judged irrelevant. Then
P(HHT) equals P(HTH) equals P(THH). Such
probability assignments are called “exchangeable.”

Bruno de Finetti proved that an exchangeable prob-
ability assignment for a long series of outcomes can
be represented as a mixture of coin tossing: For any
sequence a, b, . . . , z of potential outcomes,

with A the number of heads and B the number of
tails among a, b, . . . , z. The right side of this for-
mula has been used since Thomas Bayes (1764) and
Pierre-Simon Laplace (1774) introduced Bayesian
statistics. Modern Bayesians call pA (1–p)B the like-
lihood and m the a priori probability. Subjectivists
such as de Finetti, Ramsey, and Savage (as well as
Diaconis) prefer not to speak about nonobservable
things such as “p, the long-term frequency of
heads.” They are willing to assign probabilities to
potentially observable things such as “one head in
the next ten tosses.” As de Finetti’s Theorem shows,

Speaker Persi Diaconis (Stanford University)
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in the presence of exchangeability, the two formula-
tions are equivalent. 

The mathematical development goes further. After
observing A heads and B tails, predictions about
future trials have the same type of representation,
with the prior m replaced by a posterior distribution
given by Bayes’s formula. Laplace and many follow-
ers proved that as the number of trials increases, the
posterior distribution becomes tightly focused on
the observed proportion of heads—that is, A/(A+B)
if A heads and B tails are observed. Predictions of
the future, then, essentially use this frequency; the
prior m is washed away. Of course, with a small
number of trials, the prior m can matter. If the prior
m is tightly focused, the number of trials required to
wash it away may be very large. The mathematics
makes perfect sense of this; fifty trials are often
enough. The whole package gives a natural, elegant
account of proper inference. I will stick to flipping
coins, but all of this works for any inferential task,
from factory inspection of defective parts to evalu-
ation of a novel medical procedure.

Enter Physics 

Our analysis of coin tossing thus far has made no
contact with the physical act of tossing a coin. We
now put in a bit of physics and stir; I promise, a
mess will emerge. When a coin is flipped and leaves
the hand, it has a definite velocity in the upward
direction and a rate of spin (revolutions per sec-
ond). If we know these parameters, Newton’s Laws
allow us to calculate how long the coin will take
before returning to its starting height and, thus,
how many times it will turn over. If the coin is
caught without bouncing, we can predict whether
it will land heads or tails.

A neat analysis by Joe Keller appeared in a 1986
issue of American Mathematical Monthly. The
sketch in Figure 1 shows the velocity/spin plane. A
flip of the coin is represented by a dot on the fig-
ure, corresponding to the velocity and rate of spin.
For a dot far to the right and close to the axis, the
velocity is high, but spin is low. The coin goes up



SPRING 2003 31

like a pizza and doesn’t turn over at all. All the
points below the curve correspond to flips in which
the coin doesn’t turn over. The adjacent region
contains points at which the coin turns over exactly
once. It is bounded by a similar curve. Beyond this,
the coin turns over exactly twice, and so on.

As the figure shows, moving away from the origin,
the curves get closer together. Thus, for vigorous
flips, small changes in the initial conditions make
for the difference between heads and tails. 

The question arises: When normal people flip real
coins, where are we on this picture? I became fasci-
nated by this problem and have carried out a series
of experiments. It is not hard to determine typical
velocity. Get a friend with a stopwatch, practice a
bit, and time how long the coin takes in its rise and
fall. A typical one-foot toss takes about half a sec-
ond (this corresponds to an upward velocity of
about 51⁄2 miles per hour). Determining rate of spin
is trickier. I got a tunable strobe, painted the coin
black on one side and white on the other, and
tuned the strobe until the coin “froze,” showing
only white. All of this took many hours. The coin
never perfectly froze, and there was variation from
flip to flip. In the course of experimenting, I had a
good idea. I tied a strand of dental floss about three
feet long to the coin. This was flattened, the coin
flipped, the flip timed, and then we unwrapped the
floss to see how often the coin had turned over. On

Figure 1. Partition of phase space induced by heads and tails
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the basis of these experiments, we determined that
a typical coin turns at a rate of 35 to 40 revolutions
per second (rps). A flip lasts half a second, so a
flipped coin rotates between 17 and 20 times.

There is not very much variability in coin flips,
and practiced magicians (including myself ) can
control them pretty precisely. My colleagues at the
Harvard Physics Department built me a perfect
coin flipper that comes up heads every time. Most
human flippers do not have this kind of control
and are in the range of 51⁄2 mph and 35 to 40 rps.
Where is this on Figure 1? In the units of Figure 1,
the velocity is about 1⁄5—very close to the zero.
However, the spin coordinate is about 40—way off
the graph. Thus, the picture says nothing about
real flips. However, the math behind the picture
determines how close the regions are in the appro-
priate zone. Using this and the observed spread of
the measured data allows us to conclude that coin
tossing is fair to two decimals but not to three.
That is, typical flips show biases such as .495 
or .503.

Blending Subjective Probability and Physics

Our refined analysis can be blended into the prob-
ability specification. Now, instead of observing
heads and tails at each flip, we observe velocity/spin
pairs. If these are judged exchangeable, a version of
de Finetti’s Theorem applies to show that any
coherent probability assignment must be a mixture
of independent and identically distributed assign-
ments:

The meaning of these symbols is slightly frighten-
ing, even to a mathematical grownup. On the right,
F is a probability distribution on the velocity/spin
plane. Thus m is a probability on the space of all
probabilities. Here, de Finetti’s Theorem tells us
that thinking about successive flips is the same as
thinking about measures for measures. There is a
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set of tools for doing this, but at the present state
of development it is a difficult task. It is even
dangerous. The space of all probability measures
is infinite-dimensional. Our finite-dimensional
intuitions break down, and hardened profession-
als have suggested prior distributions with the
following property: as more and more data come
in, we become surer and surer of the wrong
answer.

This occurs in the age-old problem of estimating
the size of an object based on a series of repeated
measurements. Classically, everyone uses the aver-
age. This is based on assuming that the measure-
ment errors follow the bell-shaped curve. Owning
up to not knowing the distribution of the errors,
some statisticians put a prior distribution on this
unknown distribution. The corresponding poste-
rior distribution can become more and more
tightly peaked about the wrong answer as more
and more data come in. A survey of these prob-
lems and available remedies can be found in my
joint work with David Freedman in the Annals of
Statistics (1986).

What’s the Point?

This has been a lengthy example aimed at making
the following point. Starting with the simple prob-
lem of predicting binary outcomes and then think-
ing about the underlying physics and dynamics, we

Mitchell Rabkin (Beth Israel Deaconess Medical Center), Ruth Rabkin,
Leon Eisenberg (Harvard Medical School), and Carola Eisenberg
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were led from de Finetti’s original, satisfactory
solution to talking close to nonsense. The analysis
led to introspection about opinions on which we
have small hold and to a focus on technical issues
far from the original problem. I hope the details of
the example do not obscure what I regard as its
nearly universal quality. In every area of academic
and more practical study, we can find simple exam-
ples that on introspection grow into unspeakable
“creatures.” The technical details take over, and
practitioners are fooled into thinking they are doing
serious work. Contact with the original problem is
lost.

I am really troubled by the coin-tossing example. It
shouldn’t be that thinking carefully about a prob-
lem and adding carefully collected outside data,
Newtonian mechanics, and some detailed calcula-
tions should make a mess of things.

Thinking About Thinking Too Much

The problem of thinking too much has a promi-
nent place in the age-old debate between theory
and practice. Galen’s second-century attempts to
balance between rationalist and empiricist physi-
cians ring true today. In his Three Treatises on the
Nature of Science (trans. R. Walzer and M. Frode),
Galen noted that an opponent of the new theories
claimed “there was a simple way in which mankind
actually had made enormous progress in medicine.
Over the ages men had learned from dire experi-

Robert Alberty and Stephen Crandall (both, MIT) with George
Hatsopoulos (Pharos L.L.C., Waltham, MA)
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ence, by trial and error, what was conducive and
what was detrimental to health. Not only did he
claim that one should not abandon this simple
method in favor of fanciful philosophical theories,
which do not lead anywhere; he also argued that
good doctors in practice relied on this experience
anyway, since their theories were too vague and too
general to guide their practice.” In my own field of
statistics, the rationalists are called decision theo-
rists and the empiricists are called exploratory data
analysts. The modern debaters make many of the
same rhetorical moves that Galen chronicled. 

Economists use Herbert Simon’s ideas of “satisfic-
ing” and “bounded rationality,” along with more
theoretical tools associated with John Harsanyi’s
“value of information.” Psychologists such as
Daniel Kahneman and Amos Tversky accept the
value of the heuristics that we use when we aban-
don calculation and go with our gut. They have
created theories of framing and support that allow
adjustment for the inevitable biases. These give a
framework for balancing the decision to keep think-
ing versus getting on with deciding. 

Computer science explicitly recognizes the limits
of thinking through ideas like complexity theory.
For some tasks, computationally feasible algo-
rithms can be proved to do reasonably well. Here is
a simple example. Suppose you want to pack two
suitcases with objects of weight a, b, . . . , z. You

Daniel Bell (Harvard University) and Martin Cohn (MIT)
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want to pack them as close to evenly as you can. It
can be shown that this is a virtually impossible
problem. Despite fifty years of effort, we don’t
know how to find the best method of packing, save
for trying all of the exponentially many possibili-
ties. Any progress would give solution to thousands
of other intractable problems. Most of us conclude
that the optimal solution is impossible to find.

Undeterred, my friend Ron Graham proposed the
following: sort the objects from heaviest to lightest
(this is quick to do). Then fill the two suitcases by
beginning with the heaviest item, and each time
placing the next thing into the lighter suitcase.
Here is an example with five things of weight 3, 3,
2, 2, 2. The algorithm builds up two groups as fol-
lows:

This misses the perfect solution, which puts 3, 3 in
one pile and 2, 2, 2 in the other. One measure of
the goodness of a proposed solution is the ratio of
the size of the larger pile to the size of the larger
pile in the optimal solution. This is 7/6 in the
example. Graham proved that in any problem, no
matter what the size of the numbers, this “greedy”
heuristic always does at worst 7/6 compared to the
optimal. We would be lucky to do as well in more
realistic problems. 

An agglomeration of economics, psychology, deci-
sion theory, and a bit of complexity theory is the
current dominant paradigm. It advises roughly
quantifying our uncertainty, costs, and benefits
(utility) and then choosing the course that maxi-
mizes expected utility per unit of time. A lively
account can be found in I. J. Good’s book Good
Thinking (don’t miss his essay on “How Rational
Should a Manager Be?”). 

To be honest, the academic discussion doesn’t shed
much light on the practical problem. Here’s an
illustration: Some years ago I was trying to decide
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whether or not to move to Harvard from Stanford.
I had bored my friends silly with endless discus-
sion. Finally, one of them said, “You’re one of our
leading decision theorists. Maybe you should make
a list of the costs and benefits and try to roughly
calculate your expected utility.” Without thinking,
I blurted out, “Come on, Sandy, this is serious.” 

Some Rules of Thumb

One of the most useful things to come out of my
study is a collection of the rules of thumb my
friends use in their decision making. For example,
one of my Ph.D. advisers, Fred Mosteller, told me,
“Other things being equal, finish the job that is
nearest done.” A famous physicist offered this
advice: “Don’t waste time on obscure fine points
that rarely occur.” I’ve been told that Albert
Einstein displayed the following aphorism in his
office: “Things that are difficult to do are being
done from the wrong centers and are not worth
doing.” Decision theorist I. J. Good writes, “The
older we become, the more important it is to use
what we know rather than learn more.” Galen
offered this: “If a lot of smart people have thought
about a problem [e.g., God’s existence, life on other
planets] and disagree, then it can’t be decided.” 

There are many ways we avoid thinking. I’ve often
been offered the algorithm “Ask your wife to
decide” (but never “Ask your husband”). One of
my most endearing memories of the great psychol-
ogist of decision making under uncertainty, Amos

Helen Pounds,William F. Pounds (MIT), and Paul Doty (Harvard University)
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Tversky, recalls his way of ordering in restaurants:
“Barbara? What do I want?” 

Clearly, we have a wealth of experience, gathered
over millennia, coded into our gut responses. Surely,
we all hope to call on this. A rule of thumb in this
direction is “Trust your gut reaction when dealing
with natural tasks such as raising children.” 

It’s a fascinating insight into the problem of think-
ing too much that these rules of thumb seem more
useful than the conclusions drawn from more the-
oretical attacks. 

In retrospect, I think I should have followed my
friend’s advice and made a list of costs and bene-
fits—if only so that I could tap into what I was
really after, along the lines of the following “grook”
by Piet Hein:

A Psychological Tip

Whenever you’re called on to make up your mind,
and you’re hampered by not having any,

the best way to solve the dilemma, you’ll find,
is simply by spinning a penny.

No—not so that chance shall decide the affair
while you’re passively standing there moping;

but the moment the penny is up in the air,
you suddenly know what you’re hoping.

Remarks � 2002 by Barry C. Mazur and Persi Diaconis,
respectively.

Photos � 2002 by Martha Stewart.

“A Psychological Tip” is from an English-language edi-
tion of Grooks by Piet Hein, published in Copenhagen
by Borgens Forlag (1982, p. 38); � Piet Hein.


