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We give a new proof of the strong Szegö limit theorem estimating the deter-
minants of Toeplitz matrices using symmetric function theory. We also obtain
asymptotics for Toeplitz minors. © 2001 Elsevier Science

If f(t)=;.

−. dnt
n is a function on the unit circle T in C then Dn−1(f)

will denote the Toeplitz determinant det Tn−1(f), where Tn−1(f) is the
n×n Toeplitz matrix

Tn−1(f)=R
d0 d1 · · · dn−1
d−1 d0 · · · dn−2
x x

d−(n−1) d−(n−2) · · · d0

S .
Szegö [Sz1] studied the eigenvalues of large Toeplitz matrices by computing
the asymptotics of their determinants. The strong Szegö limit theorem
asserts that if s : TQ C is of the form s(t)=exp (;.

−. cnt
n) then (under

certain hypotheses on s)

Dn−1(s) ’ exp 1nc0+C
.

k=1
kckc−k 2 .

This result has many applications. Szegö proved it originally to answer a
question of Onsager in statistical physics: the magnetization in the Ising



model for an n×n toroidal grid can be represented as a Toeplitz determi-
nant and Szegö’s asymptotics allow the first rigorous proof of a phase
transition. Böttcher and Silbermann [BS] give a readable account of
this and other classical applications together with historical background,
references and other versions.

In recent years combinatorialists have found many new applications for
the asymptotics of Toeplitz determinants. Gessel [Ge] shows that many
generating functions of combinatorial interest can be expressed as Toeplitz
determinants. The celebrated asymptotics of Baik et al. [BDJ] for the
longest increasing subsequence of a random permutation proceeds from
this path. Tracy and Widom [TW3] extend these applications to alphabets
with repeated values. Their paper has a very readable development of
Gessel’s theorem. Fulman [F] uses Szegö’s theorem to give a card shuffling
interpretation of Schur functions.

In this paper we give a simple proof of the strong Szegö limit theorem
using the orthogonality relations for the power sum symmetric functions.
Our proof was motivated by work of Diaconis and Shahshahani [DS] and
Johansson [J2] on eigenvalues of random matrices, but none of this is
needed for the present work.

Our proof leads to a generalization to Toeplitz minors, whose asympto-
tics surprisingly involve the representation theory of the symmetric
group Sm. To state a result of this type, observe that because Toeplitz
matrices are banded, their minors may be obtained by either striking rows
and columns, or by shifting rows and columns. Let l1 \ l2 \ l3 \ · · · be a
partition of m, that is, a decreasing sequence of nonnegative integers, even-
tually zero, whose sum is m. Then l parametrizes a character ql of Sm is a
standard way (see Section 1). If Dln−1(f)=det(dli − i+j)1 [ i, j [ n then we find
that if l is fixed and nQ.

Dln−1(s)/Dn−1(s) ’
1
m!

C
p ¥ Sm

ql(p) D
.

k=1
(kck)ck(p),

where ck(p) is the number of cycles of length k in p.
The terms on the right side in this identity are constant on the conjugacy

classes of Sm. Thus Dln−1 is asymptotic to exp(nc0+; kckc−k) times a
correction term which is the sum over these conjugacy classes of mono-
mials involving c1, ..., cm. If l is the empty partition, the correction term is
1 and this is the Strong Szegö limit theorem. If l=(1), the correction term
is c1 and Dln−1 is the minor of Tn−1(f) obtained by striking out the first
column and the second row. In general, Dln−1 is the minor of an
(n+l1)×(n+l1) Toeplitz matrix obtained by striking the first l1 columns,
keeping the first row but striking the next l1−l2 rows, keeping the next
row, then striking the next l2−l3 rows, and so forth. For example if
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l=(4, 2, 2) we strike the first four columns and rows 2, 3, 6, and 7. When
the smoke clears, the partition l appears running down the main diagonal.

The result just stated gives the asymptotics of Toeplitz minors obtained
by striking or shifting rows only. More generally, we obtain asymptotics
for minors obtained by striking or shifting both rows and columns. These
have the form Dl, mn−1(f)=det(dli −mj − i+j)1 [ i, j [ n where l and m are a pair of
partitions (of possibly different integers). We will obtain asymptotics for
these in Theorem 6.

Every minor of a Toeplitz matrix is a Dl, mn−1. However, we are holding l
and m fixed as nQ.. It would be desirable to be able to vary l and m in
our asymptotics but we do not address this uniformity issue. If N is a posi-
tive integer, and if we are given N fixed particular rows and N particular
columns, then there are partitions l and m such that the minor obtained by
striking these rows and columns is Dl, mn−1 for sufficiently large n. Thus N=4
in the above example.

Toeplitz minors obtained by deleting a single row and column of a
Toeplitz matrix occur in the inverse matrix, and as such fall into a standard
body of theory. See for example Widom [W]. For more general minors,
Tracy and Widom [TW2] independently found asymptotics for the same
minors Dl, mn−1 as in our Theorem 6. Their results express the asymptotic
as a determinant involving the Fourier coefficients of the Wiener–Hopf
factorization of s. Since their expression is very different from ours,
comparing their results with ours gives a nontrivial algebraic identity.

In Section 1, we will review the results from symmetric function theory
which we need. In Section 2, we prove and generalize a classical formula
of Heine and Szegö, expressing the Toeplitz minors as integrals over
the unitary group. In Section 3, we prove our main asymptotic results.
In Section 4, we consider the special case of a triangular Toeplitz
matrix, where we relate our theorems to the representation theory of the
symmetric group and Pólya theory, and obtain a formula for skew Schur
functions.

1. REVIEW OF SYMMETRIC FUNCTIONS

The facts we need from symmetric function theory may be found, for
example, in Macdonald [M] or in Stanley [S1, Vol. 2, Chap. 7]. We will
therefore summarize these facts without proof.

Let l=(l1, ..., lr) be a partition. Thus the li are nonnegative integers
and l1 \ · · · \ lr. We do not distinguish between two partitions if they are
the same except for trailing entries equal to zero. The length of l is the
largest j such that lj > 0; we will denote lj=0 if j exceeds the length of l,
so lj is defined for all positive integers. We will call |l|=; li the weight of
the partition, and if |l|=m we call l a partition of m.
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The conjugate partition m=lŒ is characterized by the property that mi is
the number of j such that lj \ i.

Let us fix an integer n. We will be concerned with symmetric polynomials
in n variables. Such a function f gives rise to a function f on U(n) whose
value at g having eigenvalues t1, ..., tn is

f(g)=f(t1, ..., tn).(1.1)

There is then an inner product on symmetric polynomials defined by

Of1, f2P=F
U(n)

f1(g) f2(g) dg(1.2)

when f1 and f2 are the functions on U(n) associated with the symmetric
polynomials f1 and f2 by (1.1).

Particular symmetric polynomials of importance are the elementary
symmetric polynomials

er(t1, ..., tn)= C
k1 < · · · < kr

tk1 · · · tkr ,

the complete symmetric polynomials

hr(t1, ..., tn)= C
k1 [ · · · [ kr

tk1 · · · tkr ,

and the power sum polynomials

pr(t1, ..., tn)=t
r
1+·· ·+t

r
n.

If l is a partition of m, we will denote

el=D eli , hl=D hli , pl=D pli .

These are homogeneous polynomials of degree m.
Let l be a partition and m its conjugate partition. The Jacobi–Trudi
identity asserts that if |l| [ n and |m| [ p, then

det(hli − i+j)1 [ i, j [ n=det(emi − i+j)1 [ i, j [ p.(1.3)

Here it is understood that if li−i+j < 0 for any (i, j), then hli − i+j is
interpreted as zero, and similarly for emi − i+j. The symmetric polynomial
(1.3) is the Schur polynomial sl. It is nonzero as long as n is at least equal to
the length of l. The nonzero Schur polynomials sl with |l|=m are an
orthonormal basis of the space of symmetric polynomials of degree m. The
function sl associated with sl by (1.1), if nonzero, is an irreducible character
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of U(n). The Jacobi–Trudi identity is proved in Macdonald [M, I.3, p. 41],
or Stanley [S1, Sec. 7.16, p. 342, Vol. 2].

We will denote by k r the partition (k, k, ..., k) of length r, and assuming
l is a permutation of length [ r, we will denote

l+kr=(l1+k, ..., lr+k).(1.4)

We have

sl+kn=e
k
n sl.(1.5)

It is sufficient to prove this when k=1, since the general case then follows
by repeated applications of the special. Assuming thus that k=1, by Pieri’s
formula ((5.16) in Macdonald [M, I.5] or p. 340 of Stanley [S1, Vol. 2])
the product on the right is a sum of sn where n runs over partitions of
weight |l|+n such that lj [ nj and nj−lj [ 1 for all j. Only one such per-
mutation has length [ n, namely m. Since we are considering symmetric
functions in exactly n variables, the remaining sn vanish, whence (1.5).

In terms of characters, (1.5) means that on U(n)

sl+kn(g)=det(g)k sl(g).(1.6)

The dual Cauchy identity asserts that

C
l

sl(a) slŒ(b)=D
i, j
(1+aibj).(1.7)

See Macdonald [M, I.4, (4.3’), p. 65] or Stanley [S1, Theorem 7.14.3,
p. 332, Vol. 2]. We note for all but but finitely many l either l or its
conjugate lŒ will have length greater than p. Thus the sum on the left side is
actually finite.
Frobenius–Schur duality is a relationship between the irreducible repre-

sentations of U(n) and the irreducible representations of the symmetric
group Sm. Both U(n) and Sm act on the m-fold tensor product êm Cn, the
group U(n) acting linearly and the symmetric group by permuting the
factors. These actions commute with each other, so if r is a representation
of Sm then (êm Cn)êC[Sm] r is a module for U(n). It is irreducible if
nonzero. The irreducible representations of Sm may be parametrized by
partitions in such a way that if rl is the irreducible representation param-
etrized by a partition l of m, then the character (êm Cn)êC[Sm] r

l is the
character sl of U(n) introduced previously. We will denote the character of
rl by ql.
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Let Rm denote the vector space of functions on Sm which are constant on
conjugacy classes, with the usual inner product

Of, gP=
1
m!

C
x ¥ Sm

f(x) g(x),(1.8)

and let L (n)m be vector space of symmetric polynomials of degree m
in n variables. Then qlQ sl extends to a map ch: Rm Q L (n)m . This corre-
spondence, known as the characteristic map is an isometry for the inner
products (1.2) and (1.8) if n \ m. More generally, for f ¥ Rm we always have

Of, fP \ Och(f), ch(f)P,

with equality when n \ m.
Every partition m of m determines a conjugacy class cm of Sm, consisting

of disjoint cycles of length mj. We call the partition m the cycle type of this
conjugacy class. Let zm be the order of the centralizer of an element of the
conjugacy class m. Thus if m contains a1 1’s, a2 2’s, and so forth, so that
; j aj=m, then

zm=D jaj aj!.

Let fm denote the characteristic function of the conjugacy class cm. We will
denote the value of the character ql on cm by qlm.

As was known to Frobenius, we have

ch(zmfm)=pm.(1.9)

Equivalently,

qlm=Oql, zmfmP=Osl, pmP,(1.10)

where the second equality is true assuming n \ m. Here the first inner
product is the one (1.2) for symmetric functions, so the first equality in
(1.10) is equivalent to (1.9) given the definition (1.8) of the inner product.
We are using the fact that the characteristic map is an isometry when
n \ m. The identity (1.10) is proved in Macdonald [M, I.7, formula (7.7),
p. 114], or Stanley [S1, Corollary 7.17.4, p. 347, Vol. 2, and discussion in
Sec. 7.18].

Thus

Opl, pmP=Ozlfl, zmfmP=˛
zl if l=m;

0 otherwise,
(1.11)
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again assuming n \ m. If n < m we still have

Opl, pmP [ Ozlfl, zmfmP=˛
zl if l=m;

0 otherwise.
(1.12)

We have

sl=C
m

z−1m q
l
m pm,(1.13)

and

pm=C
l

qlm sl.(1.14)

In view of the orthogonality properties of the sl and of the pm, these are
equivalent to (1.10). See Macdonald [M, I.7, following 7.6], or Stanley
[S1, Vol. 2, Corollary 7.17.5].

Finally, we will need some of the theory of skew Schur functions. If n and
m are partitions of k and l, respectively, then the Littlewood–Richardson
coefficients clnm are defined for partitions l of k+l such that

sn sm=C
l

clnm sl.(1.15)

(The sum is over partitions of k+l.) If l is a partition of k+l and m is a
partition of k, we denote

sl/m=C
n

clnm sn,

where the sum is over partitions n of |l|− |m|. This is zero unless l ‡ m. If
l ‡ m then sl/m is called a skew Schur function. We also denote

sl/m=C
n

clnm sn.

Let n be greater than or equal to the lengths of both l and m. We have the
following generalization of the Jacobi–Trudi identity:

sl/m=det(hli −mj − i+j)1 [ i, j [ n=det(elŒi −mŒj − i+j)1 [ i, j [ n.(1.16)
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See Macdonald [M, (5.4) and (5.5) in I.5, pp. 70–71] or Stanley
[S1, Vol. 2, Theorem 7.16.1, p. 342, and Corollary 7.16.2, p. 344].

The multiplicative structure in the ring of symmetric polynomials has the
following interpretation. Let Rm denote the vector space of class functions
on Sm, as in Section 1. Then R=Ám Rm has the structure of a graded ring
defined as follows. It is sufficient to describe the product in this ring of two
characters of qm and Sp and qn of Sm−p. (p, r)Q qm(p) qn(r) is then a
character of Sp×Sm−p … Sm. If qm f qn denotes the character of Sm induced
from this character of Sp×Sm−p … Sm, then then the f multiplication makes
R a graded ring. The characteristic map is then a homomorphism from R
to the ring L (n) of symmetric polynomials in n variables. Using the fact that
the characteristic map is an isometry when Rm Q L (m) for sufficiently large
n \ m and the orthonormality of the Schur functions, (1.15) now implies
that

clmn=Oqm f qn, qlP.(1.17)

2. THE HEINE–SZEGÖ IDENTITY

A basic identity expresses Toeplitz determinants as integrals over
the unitary group. A closely related formula is is in Heine [H]. The
first appearance of this exact formula that we are aware of is in Szegö
[Sz2, pp. 27 and 288]. We will therefore refer to this result (Theorem 1
below) as the Heine–Szegö formula. We will give a proof of this identity
showing its relationship to the Jacobi–Trudi identity; this in turn suggests
generalizations for Toeplitz minors.

Let Fn, f be the function on the unitary group U(n) whose value on a
matrix g with eigenvalues t1, ..., tn is f(t1) · · ·f(tn). Let >U(n) dg be the Haar
integral, normalized so that the volume of U(n) is 1.

Theorem 1. If f ¥ L1(T) has Fourier coefficients dn (n ¥ Z), then

Dn−1(f)=F
U(n)
Fn, f(g) dg.(2.1)

Proof. Since f may be approximated in L1(T) by polynomials, it is
sufficient to prove this in the special case where

f(t)=t−N D
M

j=1
(1+ajt),(2.2)
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where a1, ..., aM are complex numbers. Here N may be positive or negative,
but if it is negative, a slight change to the following argument will
show that both sides of (2.1) are zero, so we will assume that N \ 0. We
have

dk=˛
ek+N(a1, ..., aM) if k \ −N,

0 otherwise,

in terms of the elementary symmetric polynomials. According to the Jacobi–
Trudi identity, the Toeplitz determinant Dn−1(f) is then equal to the
Schur polynomial s(nN)(a), where (nN) denotes the partition (n, ..., n) of
length N.

The integrand on the right-hand side of (2.1) is equal to

det(g)−N D
n

k=1
D
M

j=1
(1+aj tk).

Let l be a partition of length [ n. There is a character sl of U(n) such that
sl(g)=sl(t1, ..., tn), where ti are the eigenvalues of g. Using the dual
Cauchy identity (1.7) we may rewrite the right side of (2.1)

C
l

slŒ(a) F
U(n)

sl(g) det(g)−N dg.

By (1.6) we have det(g)N=s(Nn)(g). Integrating over the group picks off
the single contribution where l=(Nn), lŒ=(nN), whence (2.1) equals
s(nN)(a), as required. L

We will now generalize (2.1). Let l be a partition of length [ n, and
let

Dln−1(f)= :
dl1 dl1+1 · · · dl1+n−1

dl2 −1 dl2 · · · dl2+n−2

x x

dln −(n−1) dln −(n−2) · · · dln

: .(2.3)

This is essentially a Toeplitz determinant with some of the rows shifted.
Note that if l has length < n, then the trailing lj are interpreted as zero.
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Theorem 2. With the hypotheses of Theorem 1,

Dln−1(f)=F
U(n)
Fn, f(g) sl(g) dg.(2.4)

Proof. Indeed, using the same test function (2.2), invoking the dual
Cauchy identity (1.7) and (1.6), the right side of (2.4) equals

C
n

snŒ(a) F
U(n)

sn(g) sl+Nn(g) dg,

where l+Nn has the meaning defined in (1.4). The only nonvanishing term
has n=l+Nn, and by the Jacobi–Trudi identity, this contribution equals
the left side of (2.4). L

Noting that Dln−1(f) is a minor in a larger Toeplitz matrix, one seeks a
generalization which gives an arbitrary Toeplitz minor. One thought would
be to replace sl in (2.4) by a skew Schur function. We caution the reader
that this sometimes produces a Toeplitz minor, but not always. Luckily, we
will find a satisfactory alternative construction in Theorem 3 below.

Let l and m be partitions of length [ n. Define

Dl, mn−1(f)=det(dli −mj − i+j)1 [ i, j [ n.(2.5)

Note that despite the resemblance to (1.16), we are not assuming l ‡ m.

Lemma. Let dj (j ¥ Z) be complex numbers, and let l, m be partitions of
m and p, respectively, both of length [ n. If N is any sufficiently large
integer, we have

C
n

cl+N
n

nm det(dni −N+j−i)1 [ i, j [ n=det(dli −mj+j−i)1 [ i, j [ n,(2.6)

where the summation is over partitions of m+Nn−p of length [ n, and the
cl+N

n

nm are the Littlewood–Richardson coefficients.

Proof. Since the length of m is [ n, we may choose N so large that
m … l+Nn. We consider the skew Schur function sl+Nn/m in many variables
(possibly > n). This equals ;n cl+N

n

nm sn, where only n of length [ n occur,
because any n with cl+N

n

nm ] 0 must be contained in l+Nn. Using the Jacobi–
Trudi identities (1.3) and (1.16), we have

C
n

cl+N
n

nm det(hni+j−i)1 [ i, j [ n=C
n

cl+N
n

nm sn=sl+Nn/m=det(hli+N−mj+j−i)1 [ i, j [ n.
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If N is sufficiently large, then ni+j−i \ 0 and li+N−mj+j−i \ 0 for
every i, j and every n in this expression such that cl+N

n

nm ] 0. Assuming this,
and working with Schur functions in sufficiently many variables, the
parameters hj occuring here are algebraically independent, so this is an
algebraic identity. We may then replace hj by dj−N to obtain (2.6). L

Theorem 3. With the hypotheses of Theorem 1,

Dl, mn−1(f)=F
U(n)
Fn, f(g) sl(g) sm(g) dg.(2.7)

Proof. Once again, we use the test function (2.2). The integral on the
right side of (2.7) equals

C
n

snŒ(a) F
U(n)
sn(g) sm(g) sl+Nn(g) dg=C

n

cl+N
n

nm snŒ(a).

Using (1.3) this equals

C
n

cl+N
n

nm det(eni − i+j)=C
n

cl+N
n

nm det(dni −N−i+j).

The result now follows from the Lemma. L

Baxter [Ba, Lemma 7.4] proved that

Dn−1(1/UV)=D
i, j
(1−aibj)−1,

where U(t)=<(1−ajt), V(t)=<(1−bjt−1), |ai |, |bj | < 1. Although this
identity does not appear in the above proofs, it is related. A special case of
this identity was used by Szegö in the proof of the strong Szegö limit
theorem. See Szegö [Sz1] and Grenander and Szegö [GZ, p. 78]. Johansson
[J2] also applied this identity of Szegö and Baxter. The identity was
rediscovered by Gessel [Ge] who used it to define generating functions for
longest increasing subsequences. This identity has become a standard tool
in random matrix theory. A nice exposition with applications and exten-
sions appears in Tracy and Widom [TW1]. Borodin and Okounkov [BO]
have used this identity to show that Toeplitz determinants can be expressed
as Fredholm determinants.

262 BUMP AND DIACONIS



3. THE STRONG SZEGÖ LIMIT THEOREM

We will prove:

Theorem 4 (The Strong Szegö Limit Theorem). Let ck (k ¥ Z) satisfy

C |ck | <.(3.1)

and

C |k| |ck |2 <..(3.2)

Let s(t)=exp(; cktk) for t ¥ T. Then

Dn−1(s) ’ exp 1nc0+C
.

k=1
kckc−k 2 .(3.3)

Proof of Theorem 4. First we only assume (3.1). Using (2.1) we have

Dn−1(s)=F
U(n)
F(g) dg,

where, if t1, ..., tn are the eigenvalues of g, we define F(g)=<n
j=1 e

s(ti).
Assuming (3.1), since each trace tr(gk) is bounded by n, we have

F
U(n)

exp 1 C |ck | |tr(gk)|2 dg <.,

and this absolute convergence justifies the following manipulations. We can
write

Dn−1(s)=F
U(n)

exp 1 C ck tr(gk)2 dg.

Substituting the power series for the exponential function and grouping
together the terms with k=0, k > 0 and k < 0 we get

enc0 F
U(n)

D
.

k=1
C
.

ak=0

(ck tr(gk))ak

ak!
C
.

bk=0

(c−k tr(gk))bk

bk!
dg.

Now expanding this and invoking (1.11) and (1.12), the only terms which
survive have ak=bk. Given a sequence a1, a2, ... of nonnegative integers,
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only finitely many of which are nonzero, let la denote the partition having
ak values of lj equal to k. Then

Dn−1(s)=enc0 C
Opla , plaP (ck c−k)

ak

(ak!)2
.(3.4)

We compare this with

enc0 C
Ozla fla , zla flaP (ck c−k)

ak

(ak!)2
.(3.5)

We remind the reader that in (3.4), the inner product is the one defined by
(1.2), while in (3.5), the inner product is defined by (1.8). By (1.11), (3.5)
equals

enc0 C
(k ck c−k)ak

ak!
=exp 1nc0+C

.

k=1
kck c−k 2 .

Note that ; kckc−k converges absolutely by (3.2) and the Cauchy–Schwarz
inequality, so (3.5) is absolutely convergent. By (1.12) it dominates (3.4)
termwise, and as n is increased, each term in (3.4) eventually becomes its
corresponding term in (3.5). Evidently (3.4) converges to (3.5), which
completes the proof. L

The space of functions f=; dktk on the circle whose Fourier coeffi-
cients satisfy

C |dk | <.(3.6)

and

C |k| |dk |2 <.,(3.7)

if given the norm ; |dk |+`; |dk |2 , is a Banach algebra D under pointwise
multiplication whose maximal ideal space may be identified with T. This
fact was found independently by Hirschman [Hi] and Kreı̆n [K]. Proofs
of this and other basic relevant facts may be found in Böttcher and
Silberman [BS, p. 123]. Condition (3.6) implies easily that f is continuous.
If s is an element of D which is nonvanishing and has winding number
zero around the origin, then its logarithm is also an element of D. Conse-
quently the strong Szegö limit theorem as we have stated it is equivalent to
the formulations in Hirschman [Hi] and in Böttcher and Silberman [BS,
Theorem 5.2, p. 124].
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Johansson [J1, p. 267] has given an argument which shows in a similar
situation that the conclusion (3.3) follows assuming (3.2) but not (3.1).
Thus it is possible that this hypothesis may be lifted from our results,
though we have not tried to do so. His paper also proves the strong Szegö
limit theorem using the Heine–Szegö identity, though it is very different
from the above proof.

We now generalize the strong Szegö limit theorem. Let l be a fixed par-
tition of m, and let ck be the number of lj equal to k. We will find the
asymptotics of Dln−1(s) in the notation (2.3). Note that this is essentially a
Toeplitz determinant with a certain fixed set of rows shifted by a prede-
termined amount (independent of n).

Theorem 5. Let s(t)=exp(; cktk) be a function on T satisfying (3.1)
and (3.2). Let m [ n, let l be a partition of m, and let ql be the character of
Sm parametrized by l. If p is an element of the symmetric group Sm, let
ck=ck(p) equal the number of k-cycles in the decomposition of p into disjoint
cycles, and define

D(s, p)=D
.

k=1
(kck)ck.

(The product is actually finite.) With notation as in (2.3), with l fixed and
nQ., we have

Dln−1(s) ’
1
m!

C
p ¥ Sm

ql(p) D(s, p) exp 1nc0+C
.

k=1
kckc−k 2 .(3.8)

We remark that D only involves ck with k positive. This is because in the
definition of Dln−1(s) the rows which have been shifted have all been
shifted to the left.

Proof. Substituting (2.4) for (2.1) in the preceding proof, and making
use of (1.13), and proceeding as before we obtain

C
m

z−1m q
l
m e
nc0 F

U(n)
D
.

k=1
C
.

ak=0

(ck tr(gk))ak

ak!
C
.

bk=0

(c−k tr(gk))bk

bk!
(tr(gk))ck dg,

where ck is the number of mj equal to k. Remembering that Sm contains
m!/zm elements with cycle type (ck), we may write this as

1
m!

C
p ¥ Sm

ql(p) enc0 D
.

k=1
C
.

ak=0
C
.

bk=0

cakk
ak!
cbk−k
bk!

F
U(n)

tr(gk)ak tr(gk)bk+ck dg.
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The only terms which survive have ak=bk+ck. Continuing as in the proof
of Theorem 4, we obtain (3.8). L

Finally, we have an asymptotic result for the most general Toeplitz
minors. Let l and m be partitions of m and p, respectively. Let p ¥ Sm and
r ¥ Sp. Let ck be the number of k-cycles in p, and let dk be the number of
k-cycles in r. Recall that the Laguerre polynomials are defined by

L (a)n (t)=C
n

k=0

1n+a
n−k
2 (−t)k
k!
.

See Szegö [Sz2, Chap. 5] or Rainville [Rv, Chap. 12]. Let

D(s, p, r)=D
.

k=1

˛k
ck cck −dkk dk! L

(ck −dk)
dk

(−kckc−k) if ck \ dk,

kdk cdk − ck−k ck! L
(dk − ck)
ck

(−kckc−k) if dk \ ck.
(3.9)

Theorem 6. Let s(t)=exp(; cktk) be a function on T satisfying (3.1)
and (3.2). Let l and m be partitions of m and p, respectively. With l and m
fixed, as nQ., we have

Dl, mn−1(s) ’
1
m!

C
p ¥ Sm

1
p!

C
r ¥ Sp

ql(p) qm(r) D(s, p, r) exp 1nc0+C
.

k=1
kckc−k 2 .

(3.10)

Proof. Proceeding as in the proof of Theorem 5 gives easily

enc0
1
m!

C
p ¥ Sm

ql(p)
1
p!

C
r ¥ Sp

qm(r)D
k

C
ak, bk

cakk
ak!
cbk−k
bk!

F
U(n)

tr(gk)ak+dk tr(g−k)bk+ck dg,

where ck is the number of k-cycles in p, and dk is the number of k-cycles
in r. As nQ. this becomes asymptotically

enc0
1
m!

C
p ¥ Sm

ql(p)
1
p!

C
r ¥ Sp

qm(r)D
k

C
ak+dk=bk+ck

cakk c
bk
−k(bk+ck)! k

bk+ck

ak! bk!
.

We have

C
a

ta (a+d)!
a!(a+d− c)!

=c! L (d− c)c (−t) e t (d \ c \ 0).

This is equivalent to the Rodrigues formula for the Laguerre polynomials;
see Szegö [Sz2, (5.1.5), p. 101] or Rainville [Rv, p. 203]. Using this we
obtain (3.10). L
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4. THE TRIANGULAR CASE

When the Toeplitz matrix is upper triangular, Our viewpoint bears a
strong relationship to Exercise 7.91 of Stanley [S1, Vol. 2, p. 381] which is
based on the approach to Schur functions taken by Littlewood [Li].

In the special case of an upper triangular Toeplitz matrix, Theorems 2
and 3 are implicit in Littlewood’s definition of the Schur functions, if one
bears in mind the ‘‘unitary’’ interpretation (1.2) of the Hall inner product
on symmetric functions. In the triangular case Stanley has already pointed
out the relevance of the Jacobi–Trudi identity to Toeplitz minors. See [S2],
and the remarks on p. 544 of [S1], where Schur functions are related to the
result of Aissen et al. [AESW] characterizing triangular Toeplitz matrices
all of whose nontrivial minors are positive.

In the case of a triangular Toeplitz matrix, the formulas of Section 3 are
connected with Pólya theory, which is concerned with cycle enumeration in
permutation groups. See Stanley [S1, part 2, Sec. 7.24; S2]. Since this point
is worth understanding, we review the basics.

In this section we will study the case where ck=0 if k [ 0. Then if
s(t)=exp(; cktk), the Fourier coefficients dk of s satisfy d0=1 and dk=0
when k < 0. A first important observation is that in this case case, the
Toeplitz minors Dln−1(s) and Dl, mn−1(s) become constant when n is at least
the lengths of m and l. Thus although Theorems 5 and 6 only assert
asymptotic results, they are exact in this case.

We will see that this case is intimately connected with the representation
theory of the symmetric group. Let x1, x2, ... be indeterminates. Recall that
the cycle index polynomial is given by

fm(x1, ..., xm)=
1
m!

C
p ¥ Sm

D
m

k=1
xck(p)k ,(4.1)

where as in Section 3, ck(p) is the number of cycles of length k in the
permutation p. We also define f0=1, and fm=0 if m < 0.

Pólya proved an identity for the generating function of these poly-
nomials:

C
.

m=0
fmtm=exp 1 C

.

k=1

xktk

k
2 .(4.2)

This can be used to derive limit theorems for the joint distribution of
the ck. See Diaconis and Shahshahani [DS] and Shepp and Lloyd [SL].
The proof of (4.2) is relevant, so we recall it. Let hm, pm, etc., be symmetric
polynomials in sufficiently many variables x1, ..., xn. We specialize the
variables xk Q pk, and interpret fm as a function on Sm via the characteristic
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map (Section 2). Since there are m!/zl elements of Sm with cycle type l,
using (1.9), this function equals ;l fl, which is the constant function equal
to 1, that is, the trivial character of Sm. This corresponds to the symmetric
polynomial hm under the characteristic map, so under the specialization
xk Q pk we have fm Q hm. Now exponentiating the identity

log 1C
k
hktk2=log D (1−ajt)−1=C

k

pk tk

k

gives (4.2).
The relation with Theorem 5 may be seen by setting c−k=0 when k \ 0

and ck=xk/k when 1 [ k [ m and ck=0 for j > m. Thus

s(t)=exp 1 C
m

k=1

xktk

k
2 .

From (4.2), the first m coefficients of s(t) equal f1, ..., fm. Fix a partition l
of m. Assuming that n is greater than or equal to the length of l, the left
side of (3.8) in Theorem 5 is an n×n determinant whose value depends on
l but not on n, while the right side is asymptotically given by (3.8). Since
both sides are stable for all large n we have

1
m!

C
p ¥ Sm

ql(p) D
m

k=1
xck(p)k = :

fl1 fl1+1 · · · fl1+n−1

fl2 −1 fl2 · · · fl2+n−2

x x

fln+1 fln −n+2 · · · fln

: ,(4.3)

Under the specialization xk Q pk, fk Q hk, the left side becomes sl by
(1.13). Since fk Q hk, this is the Jacobi–Trudi identity.

We would like a similar interpretation of Theorem 6. Assuming that
ck=0 when k < 0, we may simplify (3.9). In this case, D(s, p, r) vanishes
unless dk=ck(r) \ ck=ck(p) for all k, that is, the cycle type of p must be
contained in the cycle type of r. Assuming this, the argument of the
Laguerre polynomial is zero, and using L (a)n (0)=(

a+n
n ), we have

D(s, p, r)=D
.

k=1
kdk cdk − ckk

dk!
(dk− ck)!

.

Using the specialization described above (so ck Q pk/k) we obtain:
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Theorem 7. Let l and m be partitions of m and p If p ¥ Sm and r ¥ Sp,
let ck=ck(p) and dk=ck(r) be the number of k-cycles in p and r, respec-
tively, and define

C(p, r)=˛ D
.

k=1
kdk pck −dkk

ck!
(ck−dk)!

if ck \ dk for all k;

0 otherwise.

Then

1
m! p!

C
p ¥ Sm
r ¥ Sp

C(p, r) ql(p) qm(r)=˛
sl/m if l ‡ m,

0 otherwise.
(4.4)

To put this result into the context of the representation theory of the
symmetric group, we will now give a second proof of Theorem 7.

Proof. Let p be a permutation of m, and let h (a partition of m) be its
cycle type, so the number ck=ck(p) of cycles in p of length k equals the
number of parts of h of length k. Given r ¥ Sp, let f (depending on r) be its
cycle type, and let dk be the number of cycles of length k in f. We will
assume that ck \ dk for all k, and we will express this assumption with the
notation r | p. Let k (depending on p and r) be the partition of m−p
having ck−dk components of length k. We express the relationship between
f, k and h as h=f 2 k, since h is obtained by taking the set-theoretic
union of the components of f and k, then arranging them in descending
order to obtain a partition. If y is an element of Sm−p with cycle type k and
if p has cycle type h, then p is conjugate to ry in Sm.

Let n be a partition of m−p. We will take the inner product on both
sides of (4.4) with sn. The inner product with sl/m is the Littlewood–
Richardson coefficient clmn. The inner product with the left-hand side is

1
m!p!

C
p ¥ Sm
r ¥ Sp
r | p

ql(p) qm(r) qnk D
.

k=1

1kdk ck!
(ck−dk)!
2 ,(4.5)

where ck, dk, and the dependence of k on p and r, are as explained above;
only pairs p and r with ck \ dk for all k are summed. In view of (1.17),
what we must show is that

pW
1
p!

C
r ¥ Sp
r | p

qm(r) qnk D
.

k=1

1kdk ck!
(ck−dk)!
2(4.6)
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is the character of qm*qn induced from the character qm é qn of Sp×Sm−p. It
follows from the definitions that the right side of (4.6) is

C
f, k

f 2 k=h

zh
zf zk

qmf f
n
k.

Taking representatives r and y with cycle types f and k respectively, the
order of the centralizer of ry in Sm is zh, while the order or the centralizer
of ry in Sp×Sm−p is zf zk. It follows that (4.6) is the value of the induced
character at p. L

Richard Stanley has pointed out to us that this result may also be
obtained from Osl0m, paP=Osl, pasmP. Indeed, the left side gives the coeffi-
cient of pa when sl0m is expanded in power sums. Expanding both Schur
functions on the right side using (1.13) and (1.11) then produces (4.4).
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