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AVERAGE CASE BEHAVIOR OF RANDOM SEARCH 
FOR THE MAXIMUM 

JAMES M. CALVIN,* New Jersey Institute of Technology 
PETER W GLYNN,** Stanford University 

Abstract 

This paper is a study of the error in approximating the global maximum of a Brownian 
motion on the unit interval by observing the value at randomly chosen points. One point 
of view is to look at the error from random sampling for a given fixed Brownian sample 
path; another is to look at the error with both the path and observations random. In 
the first case we show that for almost all Brownian paths the error, normalized by 
multiplying by the square root of the number of observations, does not converge in 
distribution, while in the second case the normalized error does converge in distribution. 
We derive the limiting distribution of the normalized error averaged over all paths. 

BROWNIAN MOTION; GLOBAL OPTIMIZATION; AVERAGE COMPLEXITY 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60J65 

SECONDARY 68Q25 

1. Introduction 

Let f be a function defined on the unit interval. An obvious approach to searching 
for the global maximum of f is to randomly sample the unit interval, and to approximate 
the global maximum of f by the maximum function evaluation observed. Specifically, 
let (ti: i > 0) be a sequence of i.i.d. uniform random variables. We approximate M= 
max(f(x) : 0 ? x ? 1) by M,,= max(f(ti): 1 ? i ? n), where the error in our approxi- 
mation is denoted by A,= M- M,. We note that this type of algorithm is non-adaptive 
in the sense that the algorithm's current search pattern is not modified on the basis of 
previously observed values. Nevertheless, this algorithm bears some similarity to the 
random re-start algorithms that are frequently used in global optimization. In addition, 
such algorithms appear particularly natural when dealing with extremely non-smooth 
surfaces (such as might be the case in trying to determine the maximal deviation from 
prescribed tolerance of some finely machined surface). 
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Several approaches have been used to study the error resulting from approximating 
the global maximum of a function with randomly selected observations. An approach 
based on extreme value theory is given by de Haan (1981); see also Zhigljavsky (1991). 
Under certain conditions on the function f there exists a deterministic positive sequence a, 
such that an A, converges in distribution to a random variable with a Weibull distribution. 

In this paper we study the average error in approximating the global maximum by 
uniform sampling in the sense that we take an average with respect to a probability on 
objective functions. The probability we consider is the Wiener measure on the continuous 
functions on the unit interval. That is, let (B(t) :O t ?1) be a Brownian motion. We 
consider the problem of approximating 

M=maxo,_,, 
B(t) by the maximum of B at a 

randomly selected set of points. Our goal is to analyze the asymptotic behavior of the 
normalized error random variable _A, = • (M- 

max1,_ 
i, 

B(t,)) 
as n -- 00. Note that 

there are two sources of randomness in the error random variable: the Brownian path 
and the random observation points. When the path is fixed, we are in the setting of the 
previous paragraph, but the extreme value theory does not apply in this case. More 
precisely, we will show that, for almost all Brownian paths, the normalized error under 
random sampling does not converge in distribution. The situation is different when we 
treat the path, as well as the observations, as random. This might be thought of as 
looking at the average error over many independent searches of different objective 
functions. In this case /nA, converges in distribution, and we derive the limiting dis- 
tribution. 

This topic is a particular instance of the problem of analyzing the average error for 
methods that non-adaptively approximate the global maximum. This problem has been 
previously studied for the Brownian motion case. Ritter (1990) showed that, for the 
best non-adaptive method, the average error decreases at rate n-1/2 in the number of 
observations n. Calvin (1995) compared the average error for deterministic uniformly 
spaced observations with the expected error with random uniform sampling. Al-Mhar- 
mah and Calvin (1996) show that the optimal sampling density for minimizing the error 
for Brownian motion is the Beta distribution with parameters (2/3, 2/3). Asmussen 
et al. (1994) describe the limiting distribution of 

/n A, for the deterministic grid with 
ti = i/n. 

In Section 2 we establish basic results and derive the limiting distribution of the 
normalized error random variable (averaged over all paths). In Section 3 we show that 
for almost all Brownian paths, the normalized error under random sampling does not 
converge in distribution. 

2. Limiting error distribution 

In this section we establish a basic result (Theorem 1) that will be used throughout 
the paper, and use the result to determine the limiting distribution of the normalized 
error random variable. 

First we establish some notation. Let (B(t) : 0 <t 1) be a standard Brownian motion 
defined on a probability space (R, , P,), and let { t, 

t2,--- 
} be a sequence of independent, 
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uniform (0, 1) random variables defined on a probability space (Q2, 2, P2). Set 
(R, Y, P)= (01 x K12, 

oI 
x Y2, PI x P2), and define 

An = An,(o), 0w2)= M(1)) - max B(wo), ti (w2)). 
1 < i < n11 

We will at different times consider A,, as a random variable defined on Q or on 92 with 

wo fixed. 

Conditioning on the location of the global maximizer and the value of the Brownian 
motion at time 1, the segments of the process before and after the global maximizer are 
diffusion bridges that can be described in terms of Bessel bridges. Analyzing the error 
random variable under uniform random sampling then reduces to a study of the occupa- 
tion measures of Bessel bridges. Theorem 1 below is sufficient for the analysis of the 

limiting distribution of the normalized error random variable. 
For d > 1, the d-dimensional Bessel process is the diffusion that is identical in law to 

the modulus of a d-dimensional Brownian motion. Let fl be the set of continuous 
functions w : :+ -* and Q, the continuous functions o) : [0, t] -M M. Define the coordi- 
nate mappings X,: : -* M by X,(ow)= wo(t). For each t > 0 let F = a(X(s); O ss <t), and 
F= V,O0 t. Let R be the law on (0, F) under which the coordinate process is the 
three-dimensional Bessel process, and let R' be the law on (Qr, PT) under which the 
coordinate process is a Bessel bridge from 0 to v > 0 in time T. Let P be the law for a 
Brownian motion, and let pabs be the law for a Brownian motion starting at x and 
absorbed at 0. 

Theorem 1. Let T > 0 and v > 0 be fixed. For any choice of k > 1 and 

0 < y < Y2 < <Yk, O < U < 2 < .u . < uk, 

lim Ror n I 
x(t):,,1dt ul,., 

n I<Xkdt uk 

f-t==0 
t=0 

(1) 

= R 
Ifx(t)= 

d 
u.. Itxudt < uk 

t=0 t=0 

Proof. The Bessel process has the Brownian scaling property: if X is a Bessel process 
starting from x then, for any c > 0, the process {cX(tI/c2): t t 0} is a Bessel process 
starting from cx (Proposition 1.10, p. 416 of Revuz and Yor (1991)). Similarly, if X is 
a Bessel bridge from a at time 0 to b at time T, then {cX(t/c2) : 0< t < c2T} is a Bessel 

bridge starting from ca at time 0 and arriving at cb at time c2T. Therefore, 

R\Lv (n 1T 0I{X(t)?yl/nTdt U,...-T, n , dt u 

(2) 

=Roj4,r IX(t)_ Y1dt ul,,, 
IX(•t)y•vdt 

< uk 
t=0 t=0 

Let Tx be the first hitting time to x, and L, the last time state x is visited: 
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Tx=inf{t: X(t)=x}, Lx=sup{t: X(t)=x}. 

A Bessel bridge from level 0 to b in time t is the time reversal of a Brownian motion 

starting from b and absorbed at 0, conditional on absorption at time t. Therefore, for 
n sufficiently large that Yk < v n-, the last probability in (2) is equal to 

nT nT 

PvV• I{X(t)yzydt 
? 

u,"', I{,x()=ykdt 
< Uk To=n 

t=0 t=0 

nT nT 

Dabs IX)ab_ 

- Pa 
s 

Ixtt) y,)dt 
_ ui; li k To= nT, Tk ds Pab(Tk ds To=nT) 

s=0 v t=0E 
(3) 

abs 

= 
nT labs 

I Xt)y,)dt < u,; 1 <i <k To= Pab 
(Tk 

E nT-do To= nT) 
a=0 t=0 

0 

ababs Pab; s 

IIx(t)<_y,}dt 
< u.; I i 

<k iTo=a Pa 
/(TYk 

EnT-doa To=nT). 
4 =0 \ t=0 

/ 

Now 

R 
I{X(t)=yl}dt 

= ul,'", I{X(t)=yk}dt 
<- Uk 

(4) 

= R I x(t)<yldt < 
u,.., I{ {X(t)y~dt ? u Lyk = I P(Ly da), 

a=0 t=0 t=0 

because of the transience of the Bessel process. Finally, use the fact that the integrands 
in (3) and (4) are the same (since Pabs(? T= t)= R(p o L,= t) on n,, where p is the 
time reversal map sending ow , to (o(t -s) : 0 

?s< t); see Salminen (1983), Remark 8), 
and the integrator of the first integral converges weakly to the integrator of the second 
one as n - oo. To establish the last fact, note that 

abs 
P/ (Ty E nT-doa To=nT) 

P•, (T, E nT- dc , To= nT) 
Pv(To= nT) 

eP (T, E nT- dc)P,(To = 
=) 

Pnv (To = nT) 

nT- a 
2n(nT-_) 2(nT-ci) 

Ia 
22 

ep 

nT 2cnT 2nT 
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y(v - y / )T32 ( v2_2vy/ 
T+y2/n 

y2 

2•2 

exp - 
-. (T-a/,i )av , a 

//T_-rln 

2(T-oln) 2r 2T 

y (y2 
- FY exp 2a 

as n -+oo, which is the density of L, under R (see Revuz and Yor (1991), Corollary 4.6, 
p. 294). 

Specializing to k = 1 we obtain the Laplace transform of the limiting distribution of 
the normalized occupation time. 

Proposition 2. Fix v, T > 0, and for z ? 0 let 

T 

A(z) = 1T Ix(t)dt 
t=0 

be the occupation time of [0, z] up to time T. Then, under R,, nA(n-/2y) converges in 
distribution to I(y), where 

1 
(5) E exp(- XY(y)) 

cosh(y=_) 

Notice that the limit distribution does not depend on T or v. 

Proof. The result follows from Theorem 1, along with the fact that the local time 
process of the three-dimensional Bessel process is the square of a two-dimensional Bessel 
process. This fact is discussed, for example, in Williams (1974). (We take local time to 
be twice that in Williams, so that it is an occupation density.) Therefore, under R, 

(6) 
I{x(t)<=ydy t=0 

has the same distribution as 

(7) V(z)dz, 
z=0 

where { V(t): t > 0} is the square of a two-dimensional Bessel process. From Corollary 
1.8, p. 414 of Revuz and Yor (1991), 

(8) E exp - 2I= V(z)dz cosh(y= 

which establishes (5). 
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Turning our attention back to the Brownian motion B on [0, 1], let T= 
inf{t : B(s) ? B(t) Vs E [0, 1]} denote the (first) location where the global maximum is 
attained. For 0 < T< 1, define the pre-T and post-T deviation segments 

X,(s) = B(T) - B(T- s), O<s <T, 
(9) 

(9)X2(s) = B(T) - B(T + s), O < s < 1 - T. 

Given T, B(1), and B(T), X, and X2 are independent Bessel bridges over [0, T] and 
[0, 1 - T], respectively (see Asmussen et al. 1994). 

The next theorem gives the limiting distribution of the normalized error. We emphasize 
that in this theorem the error is averaged over all Brownian sample paths, i.e. we view 
A. as a random variable on fl, and not 12 with w1 fixed. 

Theorem 3. Conditional on T= t, B(T)= m and B(1) = u, for y > 0, 

(10) P( •A, A y) - tanh2(,2y) 

as n - o. 

Proof. Let 

T 1-T 

(11) AI(z) = 
II(t)l,sz)dt, A2(z) = 

I{X2(,)zZdt. t=0 t=0 

The time spent by the Brownian motion within z of its global maximum is then the sum 
of A1(z) and A2(z), which are (conditionally) independent. Therefore, for y > 0, 

(12) P(•A.> y)=P(A,> y/ )=E1 - - n[A(yl )+A2(y 
n 

By Proposition 2, 

(13) 
n[Al(yl/) 

+ A2(y n)]A-'1 +P2 
say, where the Y, are independent with the Laplace transform given by (5). By the 
Skorokhod representation theorem, there exist random variables Z, and Z defined on 
some probability space such that 

(14) 
Z,=1 

n[Al(yl )+A2(yl /n)], Z 
Tl + 2, 

and Z, -+Z almost surely. Therefore, 

P(,A> y) = El - 

n[Al(y/ 
,)+A2(ylI/1)] 

= E(1 - Z,/n)" 

• 
Ee-z 

by the dominated convergence theorem, since 0 Z, _<n and so 0 (1- Zl/n)"• 1. By 
Proposition 2, 
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(15) Ee-Z= Ee-V,2 
- - 

I 
- - 

cosh2(12y) 

Therefore, 

P ( A, ? y) -+ tanh2(12y). 

Note that the limiting distribution of the normalized error is independent of the 
location of the maximum T, the maximum value m, and the value of B at 1. 

Let A be a random variable with the limiting normalized error distribution, 

P(A < y)= tanh2(\/2y). 
The mean of the limiting error distribution is 

(16) E(A)= (1 - F(y))dy cosh - 1 
%=0 y=0 

cosh2 2y) 2 

3. Asymptotic behavior of error for fixed sample path 

Next we consider the question of convergence in distribution of / A,(o, 
), i.e. we 

fix a Brownian path and the only randomness is in the observations. With the path fixed, 
An is the minimum of i.i.d. non-negative random variables M(o)) - B(t,). To put things 
in the usual notational setting of extreme value theory, let us denote the cumulative 
distribution function of these i.i.d. random variables by F(wo, ? 

). In terms of our previous 
notation established in (11), 

F(ow1, z) = 
P2(M(w,) 

- 
B(ti(o2)) < z) = A1(ow, z) + A2(Cw, z), 

where we have added the argument oa- to the A, to emphasize the dependence of the 
time spent within z of the maximum on the path 

w•. 
By the Fisher-Tippet theorem of 

extreme value theory, if n/A,(co, 
- ) converges in distribution, the limit must be one of 

the three extreme value distributions. Two of these have support that includes the negative 
axis, and so the only possible limit law is the Weibull. A necessary and sufficient condition 
for convergence of n nA,(wo) to a Weibull distribution is that 

F(w1, ty) 
(17) lim -= yI(, ) 

tjo F(o,, t) 

for all y > 0, for some a(owi) > 0 (see Leadbetter et al. 1983). Of course, 2(wo1) could be 
different for different paths wl. The next theorem establishes that this limit does not 
exist for P,-a.e. wo. 

Theorem 4. For almost all Brownian paths the error under uniform sampling does not 
converge in distribution, i.e. 

(18) P,(w, : 
xA,(wo, 

) converges in distribution)= 0. 

Proof We use the notation of (9) and (11). For the convergence in distribution to 
occur at oi, it is necessary that 
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STO IXl(s ydS I-T 
Ss0 

I{1(s)ty}d+s=0 I{X2(Sy}ds 
(19) lim I_= 

y(Ol) 
,o J=0 I{x,(s)t}ds + S= 

Itx2(,S)=tds for all y > 0 and some 
x(wo) 

> 0. We will show that the limit in (19) does not exist for 

P,-a.e. wo. Since, as previously noted, conditional on T, B(T), and B(1), X, and X2 are 
independent Bessel bridges, it suffices to show that the limit in (19) does not exist almost 

surely under the probability under which X, and X2 are independent Bessel bridges. 
To be precise, let U denote the space of continuous A#2-valued functions u(ul, u2). 

Endow U with the a-fields 

W?0= 
a{(ul(s), 

u2(S)): 0 
-sg 

t}, O<t< 1. 

Define a mapping Y=(Y1, Y2): (Qj, F) -+ (U, (o) by 

Y,(o,, t) = 
T(ow)-"/2XI(o, 

tT(wl)), 0<t < 1, 

Y2(o•1, 
t) = (1 - T(o,))-'/X2 (1,, t(1 - T(w•))), 

0 ? t ? 1. 

Let 
Q0-,z2 

be the probability on WO such that u1 and u2 are independent Bessel bridges 
with ui(0)=0 and ui(1)=z, for i= 1, 2. Let {I,, 0 t1l} denote the augmentation of 
the filtration { o,0Otl1}, i.e. W,=aj{?U i}, where X=={NCU:NCME9?, 
QI;,z(M)= 0}. Denote by Q••2 the extension of Ql•2 to Wi. 

We next show that the augmented filtration is right-continuous, using a modification 
of the proof that the augmented filtration for a Feller process is right continuous; see 
Revuz and Yor (1991), p. 87, Prop. 2.10. Since ??, and W,+ are 

QI,l2 
complete, it is enough 

to establish that, for t E [0, 1) and positive ZE GW, 

(20) E(Z I)=E(ZI ,+) QZ,Z2 a.s. 

By the monotone class theorem, it is enough to prove (20) for 

Z= i f(u(t )), fj Co, 
Oftz<t2<...<t,<1, i=l 

where Co denotes the space of continuous functions vanishing at infinity (we can take 

t,< 1 since u(1)= z is fixed). 
Let t E [0, 1) and k be such that 

tk-_l 
t < tk. For h sufficiently small (say h< (tk - t)/2), 

since 

E(Z I ,t)= E(Z I ) Qz1,22 a.s. 

for every t, 

k-1 

E(Z ,t+h)= E(Z I 
9+h) = H 

f(u(t,))g(h, u(t+h)), Qzz2 a.s., 
i=l 

where 
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g(h, u) = 
dxkpk--h(U, 

Xk)fk(Xk) 
dxk+IPtk+,-tk(k, 

Xk+l)fk+I(Xk+,) 

PI (x,,z) . .. dxn p, 
-(x1,_)f-u,-(xn) 

fR ?p +2 
A-I -h(U, Z) 

= h T 
h(U; 

Xk, Xk+1,, X,)Ik(X) fn(X,,)dxk' -dx, 

and 

Ptk-t-h(U, xk)P k+ - (xk , Xk+1) Pt,-t,_ (Xn-I_ , Xn)P (xn Z) 

P-l-(U, z) 

is the density of (X(tk),..., X(tn)) when X is a Bessel bridge from u at time t +h to 
z at time 1. Here p is the transition density of the bivariate three-dimensional 
Bessel process 

p,(x, y)-= p((xl, X2), (yl, Y2) = A (X, Yl)pt (X2, Y2), 

where P is the transition density of the three-dimensional Bessel process 

S exp (- )2 - exp i )2 if v > 0, 
,(V, w) = 

()32 
w2 exp - if v=0, 

for w > 0. Observe that the density /h(u; 
xk,.-, 

x,) is jointly continuous in 0? h? 

(tk-t)/2, u, Xk,x..., Xn ER, and so by Scheff6's theorem (since 
fk(')fk+ 

1()f".() 
is in Co and therefore bounded), g(h,u) is jointly continuous in 0O h < (t - t)/2, 
u GRi. u 

+. By path continuity, u,,h -+ u, as h 10, so using Theorem 2.3, Ch. 2, of Revuz and Yor 

(1991) (since Z is bounded), we obtain 

E(Z I W,) = lim E(Z I W,+h) hJO 

k-I 

=lim H f (u(ti))g(h, u(t+h)) 
hJO i=1 

k-I 

= H f(u(t,))g(O, u(t)) 
i=l 

= E(Z I ,) 
Q1,..2 

a.s., 

which completes the proof of right continuity of the augmented filtration. 
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Fix e > 0, and let 

B,(e)= 
u E U: min uz(s) > 1/n, min u2(S)> 

l1n}, 

B,= U B,(E)= u E U: min 
u,(s) 

> 0, min u2(s)> 0 
n( es 1l e<s l 

Since 90 is complete with respect to Qz,,2 and QZ,, 2(B,) = 1 (since the Bessel bridge almost 
surely does not return to 0), B, e Io. 

Now QZ,, 2 is a regular conditional probability for Y given T=z E (0, 1), B(T)= 
z1J , 

B(1)-=B(T)-z2 
1 - (Fitzsimmons 1985, Fitzsimmons et al. 1992). Therefore, 

to establish that 

. 
Xl(s)ty}ds+ Js= I+X(S)'_ tY ds 

(21) P1 lim I 
• 

exists = 0, 
ftjo 

s=O- 
Ixi(s), t}ds + Js=o 

I{X2(s)<t 
Ids 

it suffices to show that 

S =0{uis)ty/Jrds +(1 -) I=0I IU2(S)<y/J1}ds (22) Q ZI,z 2 )1}ds - exists = 
0. 

t Lo z 
O= 

u Ij(s) 
t/J)< 

ds+(1-T) is=o 
IuS)<! tl_ 

O tds 
Set 

S 
=o 

ui(s)S=ty/4 

Lds+(1 
- 

•)0=o 
IfU(S) 

<ty.J 

1-tds 

A(T)= 
lim 

exists. tio 
s=0 I{ul(s)ttlt }dS +(1 - z) J=0 

I{U2(S)•t//1-, 
T}ds 

Since Qz,z2 (BE)= 1, QZ,,z (A,)= Qz,,Z2(A, 7 B,). Using (in the third equality below) the fact 
that, on B,(E), u (s) > 1/n for ess 1 we obtain 

A, n~B = U (A, n B,()) 

= 
y 

(ira 
0 {ul(s)?ty}ds+(1-i) = IU2(S)tkI exists B( 

= t({ z o I{u~s d(S)+5ty1ds+(1 -z) Jo I{,2(s)<tI -t})ds) 

b= li I-m existsn nB.() 
t1o z 

J=o I{u,(s)t/-Ids 
+(1 - z) Is=o I(u2(s)t/ 1-r)ds 

S =O I{ul(s)t/)ds 
+(1 -) J I U2(S) t5ty/1}ds 

0 Iu)tyTdS +(1 - ) I() exists ) B,() 
t lo z 

Io I{(u(s)<tif4-ds 
+(1 - z) 

=o (U(s)<t/g 
1 -}ds 

" . 
{ 

=?I{i(s)<y/fds+(1-)=? 
I= U2(s)< 

-ds 
is 

B 
Ulim exists nB 

t fo z rJ=o 
Iu(s)!=t/?})ds 

+ (1 - z) I- 
Iu2(s)<t/y -}ds 

Since this is true for any e > 0, setting 
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B= q 
B1,m={uEU:u(t)>O,O<t 

l} 
m>l 

we have that A, BE 
G0o+ 

= O (since the augmented filtration is right continuous). 
Therefore, by Blumenthal's 0-1 law QZ,,z2(A, fB) is 0 or 1, and so the same is true of 

Qi,,z,(A,) since QZ,22(B)= 1. If QZ,,z2(A,)=0, then (22) is established. If Q:21, (A,)= 1, then 

S o'i=ol ),,(,, y,; ds+(1-r ) S u2(s)ty/1- ds 
lim = a(y, r) 
tns0o = Ifui(s)<t tleds+(1 -?r) f=T I,2(S) l-ds 

QQZ,,2 a.s., where a(y, r) is independent of u, and so the only way that the convergence 
in distribution can take place is if a(y, z)= y"'('. But if this were the case, then we would 
have that, for almost every io1, 

Am(c,,(, 
ty) + A2( o1, ty) OT lim = y t o A I(ow, t)+ A2(o)l, t) 

This would imply that, conditional on T, B(T), and B(1), nIA, (defined on Q) must 

converge in distribution to a Weibull random variable, which we know not to be the 
case by Theorem 3. We have therefore established (22), and the proof is complete. 
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