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We study precise conditions under which the cyclic regenerative confidence intervals of Sargent and Shanthikumar are 
asymptotically valid. We also obtain an optimal way of implementing the cyclic regenerative variance reduction technique, and 
obtain a sufficient condition under which the procedure yields a lower variance than that of the standard regenerative method. 

Regenerative processes, variance reduction techniques 

I.  Introduct ion 

Recently, Sargent and Shanthikumar [5] developed an interesting new variance reduction technique 
designed to exploit the stochastic structure associated with a cyclic regenerative process. Our purpose here 
is to study precise conditions under which the confidence intervals proposed in [5] are asymptotically valid. 
This analysis will provide us with the side benefit of obtaining an optimal way of implementing the 
variance reduction procedures introduced there. To be precise, we will obtain the minimum variance 
estimate in the class of estimates proposed in [5]. We will also determine conditions under which the 
minimum variance estimate achieves a lower variance than that of the standard regenerative method (see 
Crane and Lemoine [4] for a description of the standard procedure). 

We will use the convention that assumptions in force throughout the entire paper will be prefixed by A 
(e.g. Ai) whereas all others will be prefixed by B. We can now state our basic assumptions for the problem: 

AI. (Xn: n >~ 0) is a regenerative process with regenerative times 0 - To < 7'1 < . . .  satisfying E'r i < oo, 
where 1., ffi T , -  T,_ i. 

A2. f i s a  real-valued function such that E Y , ( i f l )  z- E([f( Xr._,)[ + " "  + I f (Xr . -  i)l) < oo. 

A3. There exist random times (a,.~: n >~ 0, 0 < i < t) such that T n_ I ffi a,.o < a,.i < " . .  < a , . ,  - 7", and 
for which ((Y,.~, I-,.~): n >I I) are independent and identically distributed (i.i.d.) random vectors (r.v.'s) for 
! ~< i ~< t ,  where %., ffi a . . ,  - a,,.,_ i and Yn.~ ffi f (Xa, . ,_ , )  + " ' "  + f (  Xo..,_ i). 

Assumptions A I and A3 basically define the notion of a t-phase cyclic regenerative process. We will also 
suppose that the simulator possesses the following knowledge: 

A4. EYI.,, E¢l. ~ are known for i ¢ D. 

A5. The simulator can sample independently from each of the distributions 

( r l . , ,  I-,.,), i ~ F A ( l , . . . , t ) \ D .  

Under AI and A2, E~-of(Xk) /n  ~ r = E Y I ( f ) / E ¢  I a.s. (see [4] for a proof). The goal of the simulator 
is to obtain confidence intervals for r. 
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2. A central limit theorem 

In the setting of a cyclic regenerative process, the practitioner must decide on a sampling order before 
initiating the simulation. To be precise, the simulator must assign, for each n >i 1, an integer m. from 
G = F U  (0). The practitioner then simulates the sequence of independent r.v.'s ((W~, x.) :  n ~ 1), where 
( t~ ,  xn) is sampled from the distribution of (Ym.,n., ~'~.,,,.) if m,, ~ F and from that of (Ym(f) ,  ~ )  if m n = 0 
(independent sampling is possible on account of A5). Put ,On, ~ =( j~<  n: my= i) and let k,,j be the 
cardinality of ~on. ~ for i ~ G. The natural point estimate for r is given by 

+ 

i ~ G  i ~ D  i i G D  

where 

v,.,= E E 
j G l , . ,  j ~ ,o,,., 

The a.s. convergence of r n to r is ensured by 

A6. either (i) kn,~ - '  oo i f  i ~ F,  k . ,  o - O, or (ii) k,,,~ - ,  oo i f  i ~ G. 

To obtain a confidence interval for r, we need a central l imit theorem (CLT); such behaviour is guaranteed 
by 

BI.  0 < 0 2 Affi o2(y l ,~  _ r~l,~) < oo for i ~ F, 
0 < 0 2 S o 2 ( Y l ( f ) -  r,rl ) < 00. 

Theorem 1. Under BI, There exist constants a n such that an(r n - r ) =  N(O, 1), where N(O, 1) is a unit normal 
r ,o ,  

Proof. We shall prove the result under A6(i), the proof under A6(ii) being similar. We view the problem in 
terms of a triangular array of r.v.'s by setting 

U~. j -  ( W j -  rxj + fli) / k , .  ~ i f m j -  i, 

where ~ ffi rE~l. ~ - EYI. ~. Set Un ffi ~j~U~.y and observe that 

Sn 
iGF 

Then the triangular array {U.,ffs,,) satisfies Lindeberg's condition since for any c > 0, 
t l  

~ . J s . .  U~,  >~ = Z i . , I kn . ,so .  , Zil., >~ ¢ s . k n . , )  
i=. l iGF 

E E{Z2, , I02;  Z2,i>~i2k,,,,o 2} --,0 asn ~ oo; 
i G F  

2 a2/kn,~). Also, used the notational conven- here Z i~=  Y i / -  r~'i~ +/~  (in the inequality, we used s. >i we 
tion E('X; A) '~ E(~;Is), for any r.v. X and event A, where I A is 1 or 0 depending on whether or not A 
occurs. Since EU.,j = 0, it follows by Lindeberg's Theorem (see Chung [3, p. 205]) that U d s  . => N(0, I). 
Hence, 

( + l,,)/=. = ,,,(o, , )  
i G F  

But Ei~r/~--~,i~DEYI, i - - rEf l .  i. Thus, using the fact that ,~,, z__ ~e~f, .~ + Y~iEDE'rl,i-* E¢I a.s. and the 
converging-together lemma (Billingsley [2, p. 25]), we have 

a n ( r  n - r )  =~ N(0, 1) 

where an - E ~ , / s  n. 13 
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In a simulation application, one needs to estimate the constants a. .  For the estimation, we need to add 
an additional hypothesis: 

B2. E(Y~, + .~ , )<  oo for i ~ F, E(y,2(f)-I- 'r2)< oo. 

Notice that if Y~,~ = r~-,., + 0~ where E'r~ = oo and 0 < EO: < oo, then B I is satisfied but not B2. 

Corollary I. Under BI-B2, there exist estimates d, such that ~,,( r, - r)  : :  N(0, 1). 

Proof. By the converging-together lemma, this follows from Theorem 1 if we obtain estimates d, such that 
.2 : ~.~F6,2i/k,.~ and ~, , /a , -~  i a.s. Under A6(i) an appropriate candidate for t~,, is ~,/~,, where s, 

( ) 2 

E E 
j ¢ t0.., J ¢ w.., 

But II 2 - a,,/d.I <~ £ ~ 1 1  - E2.,,~/~r~o}l "-' 0 a.s. A similar proof works under A6(ii). [] 

The CLT of Corollary I can be used to construct confidence intervals for r. The halt-width of a 
100 ( i -6 )~  confidence interval for r, based on a sample of size n, will be za/~,,, where zs solves 
P(N(0, i)~<za)- l - ½ &  

3. Another central limit theorem 

To analyze the degree of variance reduction of a method, one needs to compare the half-width of 
competing intervals generated in a given amount of simulation time. In our context, this is accomplished by 
constructing intervals based on (W,, x,), . . . .  (WI(NI, XI(Ni), where I ( N ) -  max{k: x, + . . .  + xk ¢ N). 

To base a CLT on a random number i (N)  of independent r.v.'s requires control on the growth of the 
k.,~'s: 

B3. if k.,~ - .  oo, then k . , f n  -* c,. If c~, cj are both zero, then k..j/k,,.~ --. y~j > O. 

Theorem 2. Under BI and B3. a ,  Ni(rl~Ni--r)=* N(0, 1) where the a . ' s  are the constants of Theorem 1. 

Proof. We assume we are dealing with A6(i), the proof  for A6(ii) being similar. Suppose then that c~ is 
minimal for i -  s. Then, by B I and B3, 

k',,/.2(Z.,, • i~F)=N (3.1) 

where N is a multivariate normal r.v. with (possibly) singular components (7...~ - Y.j~..o Z. , j /k . .~);  in fact, 
it is easy to obtain a weak invariance principle version of (3.1). 

Put S . -  x, + . . .  + x .  and observe that 

s. i .  = r. ,<i .  = z ( z , < : . . ,  i . k,,.,I,, --> c i E l l , i  a.s. 
iGF jG~,,,, iGF ~ j ~ o . . ,  / iGF 

by B3. But Sl(Nl~< N < SI(N)÷! SO 

s,, ll( ) N / t (  ) < , / i (  ,v ) 

and thus, by 'squeezing' N I l ( N ) ,  we obtain the result N I l ( N ) - . ,  Y~F.c~E'r,,~ a.s. Then, using the weak 
invariance version of (3.1) and the random time change results of [2, p. 146], we have that 

k i l l  ,,N>.. E N(o, I) 
i ~ F  

where o l =T.,~FC,O~/c ~ (if c , -  c~--0, set cJc~ = ¥~s). Another application of the converging-together 
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lemma shows that 

at(N)(rt(N)-- r) =* N(O, 1) 

where a~ = k..,E2~l/O_ 2. But B3 guarantees that a J a , - - ~  1, yielding+the theo':cm. [] 

Again, in terms of the confidence interval problem, one needs to estimate at(jr). The following corollary 
follows immediately from Theorem 2 and the fact that d . / a ,  --* 1 a.s. 

Corollary 2. Under BI-B3, dl(N)(rl(N)--r)=~ N(O, 1) where the ~, 's  are the estimators of  Corollary 1. 

Finally, we can often rewrite the CLT of Theorem 2 in another form. If c, is positive, then k , . J n c s  - ,  1, 
so that we obtain the following result. 

Corollary 3. Assume B3 holds with all c~'s positive. Then, under BI, there exists ~ such that V~'(rl<N)--r)/~ 
=~ N(0, I). Also, under BI-B2, there exist estimators ON such that VrN(rl(N) - r ) / ~  N =~ N(0, I). 

Proof. The result is obvious, upon identifying if2, ff~. Under A6(i), 

and 

++: i_,++,,,+.+,.,>. 
imF 

ffi c+,oi<,.+~./c~'r,,v> ~ c~5<,v)./c., • [ ]  
i m F  i m F  

4. Optimal eonfidenee intervals 

We now wish to investigate the amount of variance reduction over the standard regenerative method 
that is accomplished by using the intervals proposed in Section 3. Let a,(N), v(¢, N) be the half-widths of 
100(1 - 8 ) ~  confidence intervals based on simulating N time units and using the standard regenerative 
interval and the interval of Corollary 2, respectively (we write p(c, N) to reflect dependence on e = (c~)). 
The following result may be found in [4]. 

Lemma I. Under BI-B2, N I / 2 u ( N ) ~  zao/(E~l)  I/2 z- zsO a.s. 

In view of Lemma 1, the next lemma shows that it is never optimal to allow k.,~ to tend to oo in such a 
way that k . , J n  - ,  O. 

[,emma 2. Suppose BI-B3 hold and k , . ,  --* oo with c, - O. Then N I / 2 p ( N ,  c) --* oo a.s. 

Proof. The assertion is equivalent to proving that N/?t~jv>-* oo. But 

.N/~/~ N) " ' " 2  --,"2 "2  "2 ffi JvsI(~i/~i(N) >t Nbi (m, jk l (N i , , ' r i ( j v  ) 

-(,v/,,(,v)) (,,(,V)/k,,,,,,..) ( "  - • • oi(,v),j,r#(N) ) ~ oo a.s. [=l 

Thus, in our search for optimal intervals, we need only consider the case where all c~'s are positive. This 
allows Corollary 3 to be applied to obtain a second cyclic regenerative interval with half-length •(N, e) 
(say). The following result follows from the proofs of Theorem 2 and Corollary 3. 

[,emma 3. Suppose BI-B3 hold with all c~'s positive. Then p(N, c ) / ~ ( N ,  e ) ~  1 a.s. Furthermore, under 
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A6(i), 

t z,, E o?lc, E c,E,-, . ,  
i ~ F  i ~ F  

and under A6(ii) 

NI/21'(N,c)-'+z8 °21Co + E °?lci coE¢ ' 4" E ciE'rl,iJ /2gq', 
i ~ F  i E F  

a . $ .  

We are now in a position to determine the optimal constants c. 

Theorem 3. Assume BI--B2 hold. I f  o 2 ~< (~Fa~(E'rl , i) l /2) 2, then no variance reduction is possible via the 
cyclic intervals of Section 3. Otherwise, the maximal reduction is obtained via the cyclic interval of Section 3 in 
which kn , fn  --+ c i for i ~ F, where 

( ) c, = aoJ (E ,h .  , ) ' / ' ,  " =  E ° r / (E ' rn . , ) ' / :  . (4.1) 
i e F  

The percentage variance reduction achieved is then 

Proof. By Lemma 3, it is clear that the optimal interval possible via a cyclic method of type A6(i) is 
obtained by choosing k , J n  ~ c~ for i ~ F, where c~ solves the optimization problem 

minimize ( ~ o ~ / c ~ ) ( ~ 7 ~ E e n , ~ ) / E 2 ~ , ,  

subject to ~ c~ - i, c, > 0. 
i G F  

Application of the method of Lagrange multipliers to this problem (see Avriel [!, p. 48]) show that a 
minimal c must satisfy 

i E F  i G F  

for each i ~ F and some constant X. Muitipliying the ith equation of (4.3) by c~ and adding all the resulting 
equations proves that X - 0 .  Equation (4.3) shows that 

for some ~. The proportionality factor ~ is determined by E~Grc~ -- 1. It is easily checked that c, as given, is 
the minimum desired, with minimal value 

°. 2 -  ( ~ o,(E,i.,)i/2)2/E2,.. 
i • F  

A similar analysis for cyclic intervals of type A6(ii) shows that the minimal possible value for the analog of 
(4.2) is given by 

( / o(E~'I) '12 + E °,(Eel,,) '!2 / 4 E  2¢i -- (½O + ½o)2 min(02 ' o2 ) 
i G F  

which shows that intervals of type A6(ii) can never achieve lower asymptotic half-width than the better of 
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the s tandard or cyclic (of type A6(i)) regenerative intervals. The other assertions of the theorem are trivial. 
[3 

This theorem suggests that the practitioner should execute a small 'p i lo t  run'  to obtain approximate 
values for c~. If the 'pi lot  run'  suggests a variance reduction over the s tandard method, the simulator should 
construct a sampling order which ensures that k , , J n  --, c~ for i ¢ F, and then employ the cyclic regenerative 
method. 

We conclude with a sufficient condition that guarantees that the cyclic regenerative method achieves a 
variance reduction over the s tandard procedure. 

Lemma 4. I f  B I - B 3  holds, then 0 2 <~ 0 2 i f  

r , l , , ,  Y , , j  - ) 0 f o r l  < ~ i , j < t .  

Proof. Since 0 2 is minimal for (4.2), 

the last two inequalities by the covariance condition. [] 

We caution that o 2 > O 2 is possible if the Y~,~ - r~',.~ are negatively correlated. 
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