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Abstract

Motivated by a problem arising in the regenerative analysis of discrete-event system simulation, we ask whether a certain
class of random variate generation schemes exists or not. Under very reasonable conditions, we prove that such variate
generation schemes do not exist. The implications of this result for regenerative steady-state simulation of discrete-event
systems are discussed.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider a sequence of independent Bernoulli(p)
random variables X1; X2; : : : ; so that P(Xi = 1) = p=
1− P(Xi = 0) for all i¿ 1. Suppose that p∈ [0; 1=2)
but that you have no further information about p. Can
you then generate a Bernoulli(2p) random variable in
;nite time?
This question arises in relation to the initial tran-

sient problem for the steady-state simulation of re-
generative processes [2,11]. It is also a distillation of
a problem arising in relation to identifying regenera-
tion times in the regenerative steady-state simulation
of discrete-event systems.
For many systems, regeneration times are easily

determined by observing the sample paths. For ex-
ample, in a Markov chain, successive visits to a ;xed
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state constitute regeneration times and can be used in
steady-state simulation analysis so long as the state
is visited in;nitely often. However, in general it is
diAcult to identify regeneration times. Consider, for
example, a queue with an arrival process that is the su-
perposition of several renewal arrival processes with
nonexponential continuous interarrival time distribu-
tions. It is not clear that such a system can exhibit any
regenerative structure.
Nevertheless, regeneration times are known to ex-

ist for any “well-posed” simulation [6], including the
superposition process alluded to above under moder-
ate conditions; see [19,5]. The diAculty is that they
may be hard to identify. This problem is discussed in
detail in [10] in the context of discrete-event system
simulation.
The identi;cation of such regeneration times is

based on modeling a discrete-event system as a gen-
eral state spaceMarkov chain (GSSMC). The GSSMC
is obtained by observing the discrete-event system
at event times, and incorporating enough state infor-
mation so that the resulting process is Markov. One
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then uses a “splitting” technique introduced in [16,3]
(see also [1,12]) to identify the regenerations. All
of the known methods for employing the splitting
technique require explicit knowledge of the m-step
transition kernel of the GSSMC for some m¿ 1.
When m¿ 1, this transition kernel is unlikely to be
easily computed except in very special situations, but
the m¿ 1 case is perhaps the most likely situation in
practice [10].
So one might reasonably ask whether these re-

generation times can be computed without explicit
knowledge of the m-step transition kernel. This is the
question that we address in this paper. As we will
show, the answer is, in great generality, no. One needs
explicit knowledge of the m-step transition kernel to
be able to identify these regenerations.
Section 2 explains in greater detail how this prob-

lem arises within the regenerative simulation setting,
and can be skipped if the reader prefers. Section 3
places the problem in a slightly more abstract setting
and provides two nonexistence proofs under diIer-
ent assumptions about one’s level of knowledge about
the transition kernel. Section 4 describes the implica-
tions of these results for the regenerative method of
steady-state simulation. It also revisits the Bernoulli
example given above to answer the question posed
there, partly with the help of the elegant results of [11].

2. Regenerative simulation of discrete-event
systems

A generalized semi-Markov process (GSMP) is
a stochastic process evolving on a countable state
space, and may be used to model a wide variety of
discrete-event systems. We give only a very brief de-
scription of GSMPs here. More detailed descriptions
may be found in, for example, [17,8,10].
The GSMP has piecewise constant sample paths,

and the times between jumps of the sample paths are
determined by a set of active events associated with
each system state. While in a given state, clocks asso-
ciated with the active events decrease at unit rate un-
til one or more of them reach 0. When the ;rst clock
reaches 0, the GSMP jumps to a new state, and some
clock readings may be added or discarded.
A GSMP may be formally de;ned and analyzed

through a related GSSMC. The GSSMC records both

the GSMP state and the vector of active clock read-
ings at the time of state transitions of the GSMP.
Under very mild conditions [6] the GSSMC is known
to be positive Harris recurrent, and [8] provides
easily veri;able conditions for positive Harris recur-
rence in the case where the state space of the GSMP
is ;nite.

De�nition 1. Let X = {Xn : n¿ 0} be a Markov
chain on a complete separable metric space �. We
say that X is Harris recurrent if there exists an m¿ 1,
a set A ⊆ �, a 
¿ 0 and a probability distribution ’
such that:

1. Pm(x; ·) �=P(Xm ∈ · |X0 = x)¿ 
’(·) ∀x∈A; and
2. P(Xn ∈A in;nitely often |X0 = x) = 1 ∀x∈�.

Remark 1. It is often possible to explicitly identify
A; 
 and ’ that satisfy the above requirements.

Harris chains automatically possess a unique (up to
a multiplicative constant) nontrivial �-;nite invariant
measure �.

De�nition 2. Suppose that X is Harris recurrent
with invariant measure �. If � has ;nite total mass
then we say that X is positive Harris recurrent, and
we may take � to have total mass 1, so that it is a
probability.

We give a brief overview of how regeneration times
for a Harris recurrent chain X may be constructed
using splitting. For a more careful account, see [7,12].
For x∈A, we may write

Pm(x; ·) = 
’(·) + (1− 
)Q(x; ·); (1)

where Q(x; ·) is given by

Pm(x; ·)− 
’(·)
1− 


if 
¡ 1, and (arbitrarily) a point mass at x otherwise.
This decomposition suggests that starting from X0=

x∈A, we could generate Z0 as a Bernoulli(
) r.v. If
Z0 = 1, then Xm should be generated from ’, but oth-
erwise Xm should be generated from Q(x; ·). If Z0 =1,
then Xm is distributed according to ’ independently of
X0, so that in fact, (Xm; Xm+1; : : :) and X0 are indepen-
dent, and m is (in a certain sense) a regeneration time.
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Notice however, that after generating X0 and Xm, we
must generate X1; : : : ; Xm−1 conditional on those two
values, which may be diAcult. Fortunately, an alter-
native approach is available.
First, generate X0; : : : ; Xm. Then compute a

Bernoulli r.v. Z0 with success probability w(X0; Xm),
where w(x; ·) is a density of 
’(·) with respect to
Pm(x; ·). If Z0 = 1, then Xm is distributed according to
’ independently of X0, and a regeneration is recorded.
If not, then Xm is distributed according to Q(x; ·).
Either of these methods may be applied to determine

regeneration times for X . Notice that both methods
require the ability to generate random variates from
Q(x; ·) for x∈A. In the ;rst method this requirement
is explicit, while in the second it is implicit. If one can
implement the second method, then one can repeat-
edly generate X1; : : : ; Xm conditional on X0 = x, and
compute the Bernoulli r.v. Z0 until Z0 = 0 in standard
acceptance/rejection fashion.
So then it appears that we can de;ne regeneration

times for the GSSMC, but there is a problem. Both
methods for determining regeneration times require
information on Pm(x; ·) for x∈A. When m = 1, this
presents little diAculty, since P1(x; ·) is easily com-
puted. But Pm(x; ·) is typically extremely diAcult to
compute when m¿ 1. Unfortunately, it is shown in
[10] that we can expect the m¿ 1 case to be the norm
rather than the exception in practice.
So we see that to apply the regenerative method us-

ing either one of the two methods outlined above, we
need the ability, either directly or indirectly, to gener-
ate random variates from Q(x; ·). We may assume that
we can compute 
 and ’, and that we have the ability
to generate random variates from Pm(x; ·), but that we
do not have the ability to (exactly) compute Pm(x; ·).
So can we generate random variates from Q(x; ·) un-
der these circumstances?

3. Two nonexistence results

To attack this problem we ;rst generalize the set-
ting. Suppose that P=
’+(1−
)Q, where P; ’ and
Q are probability measures on the real line (−∞;∞).
Suppose that 
’ can be computed and P cannot, but
independent random variates from P(·) can be gener-
ated. The goal is to generate a random variate from
Q(·).

Remark 2. In order for this problem to make sense,
the assumed knowledge must uniquely determine the
probability measure Q. If one can generate indepen-
dent variates from P(·), then one can estimate the dis-
tribution function F of P by the empirical distribution
function Fn of n independent variates from P. As n →
∞, the Glivenko–Cantelli theorem (see Theorem 20.6
on p. 275 of [4] for example) asserts that

sup
x∈R

|Fn(x)− F(x) | → 0

almost surely. Thus the distribution function F
is completely determined in the limit, and there-
fore so is P. Furthermore, if 
’(·) is known, then

=
∫
(−∞;∞) 
’(dx) is also known. ThusQ is uniquely

determined as long as we avoid the trivial case where

 = 1, which we henceforth assume.

Suppose that the measure 
’(·) on (R;B) is ;xed
and given, where B denotes the usual Borel sigma
;eld. Let P0 be the class of all probability measures
on (R;B) such that P(·)¿ 
’(·). We desire an algo-
rithm that works for all P ∈P0. The algorithm does
not know what P is, but can take advantage of vari-
ates generated from P, plus other independent random
variables.
So, let us construct a probability space as follows.

Let N = ⊗∞
i=1(R × [0; 1]) denote the sample space,

and equip N with the usual product sigma ;eld. Each
!∈N takes the form

! = ((x1; u1); (x2; u2); : : :):

For i¿ 1, de;ne the random variables Xi(!)= xi and
Ui(!) = ui. For P ∈P0, let

PP((dx1; du1); : : : ; (dxn; dun))

=
n∏

i=1

P(dxi)I(06 ui6 1)dui:

Hence, under PP; X = (Xi: i¿ 1) is an i.i.d. se-
quence of random variables distributed according to
P; U = (Ui: i¿ 1) is an i.i.d. sequence of uniform
(0, 1) random variables, and X and U are indepen-
dent. The U sequence permits us to randomize the
algorithm.
Let T be a ;nite-valued stopping time adapted to

the ;ltration (Fn: n¿ 1) where, for n¿ 1; Fn =
�((Xi; Ui): 16 i6 n). Here T is the computational
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time-horizon or termination time for the algorithm.
Note that we want to incorporate time-horizons that
are potentially random, but T should not depend on
the entire sequence ((Xi; Ui): i¿ 1). Let Z be FT

measurable, so that Z can be computed solely from
the sample path up to time T . Our goal is to ;nd a
pair (Z; T ) with the property that for all P ∈P0,

PP(Z ∈ ·) = P(·)− 
’(·)
1− 


: (3)

We begin by answering the same question for
P ∈P1, where P1 is a strict subset of P0. This corre-
sponds to demanding more information about P than
just that it lies in P0. Suppose that ’ has a density �
(with respect to Lebesgue measure). De;ne P1 to be
the subset of P0 in which P has a density p say, so
that a typical P ∈P1 has a density of the form

p = 
�+ (1− 
)q;

where q is also a density function.

Theorem 1. Suppose that 
∈ (0; 1) and ’ has a den-
sity �. Then there does not exist a pair (Z; T ) as de-
;ned above that satis;es property (3) for all P ∈P1.

Proof. Let P1; P2 ∈P1 with densities p1 and p2 so
that

p1 = 
�+ (1− 
)q1; and

p2 = 
�+ (1− 
)q2;

where q1 and q2 are densities of probability measures
Q1 and Q2, respectively.

We further select P1 and P2 so that for i = 1; 2,
qi ¿ 0 only when �¿ 0, and so that the supports of
q1 and q2 are disjoint; see Fig. 1.
Observe that P1 and P2 are mutually absolutely con-

tinuous. Set Pi(·) = PPi(·), and let Ei denote the ex-
pectation under Pi for i=1; 2. Using the usual change
of measure, we have that

q2(z) dz = P2(Z ∈ dz)

= E1I(Z ∈ dz)
T∏

i=1

p2(Xi)
p1(Xi)

:

Now, let A1 be such that Q1(A1)=1 and Q2(A1)=0.
We can choose such a set since the supports of
q1 and q2 are disjoint. We then arrive at the

Fig. 1. The densities 
�, q1 and q2. The supports of q1 and q2
are disjoint, and for i = 1; 2, qi ¿ 0 only when �¿ 0.

contradiction

0 =Q2(A1)

=
∫

A1

q2(z) dz

= E1I(Z ∈A1)
T∏

i=1

p2(Xi)
p1(Xi)

= E1

T∏
i=1

p2(Xi)
p1(Xi)

(4)

=1; (5)

where (4) holds sinceQ1(A1)=P1(Z ∈A1)=1, and (5)
follows since T is a ;nite-valued stopping time.

One might argue that P1 is unrealistically rich
in that it includes probabilities P such that their
Q-components are mutually singular. This is, in fact,
the basis for the proof of Theorem 1. In the GSMP
context, one might be able to a priori argue that the
Q-components in question must have a component
that is common. This amounts to restricting the set
P0 to another subclass P2. Let ! be a probability
measure on (R;B), and set

P2 = {P ∈P0 :P = 
’+ (1− 
)Q; where Q

is equivalent to !}:
Even in the class P2, one cannot create the desired
algorithm.

Theorem 2. Suppose that 
∈ (0; 1) and ’ has a den-
sity �. Then there does not exist a pair (Z; T ) as de-
;ned above that satis;es property (3) for all P ∈P2.
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Fig. 2. An example of the densities qn in Theorem 2. The sets
A1 and A2 are the left and right intervals, respectively. Here
A1∪A2=[0; 1], qn(z)=1=n on A1, while qn(z)=(1−"(A1)=n)="(A2)
on A2, where " is Lebesgue measure.

Proof. Consider a sequence Pn ∈P2 with densities
pn such that

pn = 
�+ (1− 
)qn:

Select qn so that qn is positive if and only if � is
positive (and zero otherwise), thereby ensuring that all
of the Qns are equivalent to !=’. Then for all B∈B,

Qn(B) =
∫

B
qn(z) dz

= E1I(Z ∈B)
T∏

i=1

pn(Xi)
p1(Xi)

= E1I(Z ∈B)
T∏

i=1


�(Xi) + (1− 
)qn(Xi)

�(Xi) + (1− 
)q1(Xi)

:

We further select Qn so that there exists a partition
A1; A2; A3 ∈B of R on which qn(z) ↓ 0 as n → ∞
for all z ∈A1, qn(z) ↑ q∞(z) as n → ∞ for all z ∈A2,
qn(z) = 0 for all z ∈A3, and "(A1)¿ 0 where " rep-
resents Lebesgue measure; see Fig. 2. (Note that A3

represents the complement of the support of ’.)
Since qn(z) ↓ 0 as n → ∞ for all z ∈A1, it follows

that qn(z)6 q1(z) for all z ∈A1. The dominated con-
vergence theorem then implies that

lim
n→∞Qn(A1) = lim

n→∞

∫
A1

qn(z) dz

=
∫

A1

lim
n→∞ qn(z) dz

= 0:

On the other hand,

lim inf
n→∞ Qn(A1) = lim inf

n→∞ E1I(Z ∈A1)

T∏
i=1


�(Xi) + (1− 
)qn(Xi)

�(Xi) + (1− 
)q1(Xi)

¿ lim inf
n→∞ E1I(Z ∈A1)

T∏
i=1


�(Xi)

�(Xi) + (1− 
)q1(Xi)

¿ 0;

where the inequality follows sinceU ¿V ¿ 0 implies
that EU ¿EV . The strict inequality follows since T
is a ;nite-valued stopping time. This is the desired
contradiction and the proof is complete.

4. Discussion

So, in order to ;nd a pair (Z; T ) that works over a
class of probabilities, one needs to further restrict P0.
Of course, a restriction on P0 amounts to demanding
more information about P ∈P0, or equivalently, QP=
(P − 
’)=(1− 
). For example, consider an extreme
case. Let A be the support of ’. Take P3 to be the
set of probabilities P ∈P0 with the property that the
support ofQP does not intersect A. Then we can de;ne
T = inf{n¿ 1 :Xn �∈ A} and Z = XT .

This extreme case indicates that algorithms of the
form discussed in this paper may exist when the class
P0 is appropriately restricted, but the negative results
in the previous section suggest that any such restric-
tions will need to be quite severe.
What are the implications of these results for regen-

erative steady-state simulation of discrete-event sys-
tems? Basically, one cannot identify randomized re-
generation times of the form described in Section 2
without exploiting some form of information about the
m-step transition kernel beyond the ability to generate
random variates.
Such knowledge is available in nontrivial examples

[9]. Unfortunately, in that setting the available knowl-
edge will lead to regenerative cycles with excessive
cycle lengths except in examples with relatively few
active events.
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Of course, these results do not rule out the possibil-
ity of identifying nonrandomized regeneration times
such as those generated by visits to an atom in a
Markov chain. For nontrivial examples of such regen-
eration times in queueing systems, see [13–15,18].
To close the paper, let us return to the “sequence

of Bernoulli random variables” example from the
introduction. How is this example related to re-
generative simulation? Using the notation of Sec-
tion 3, suppose that ’ denotes a Bernoulli(1=2)
random variable so that ’({0}) = ’({1}) = 1=2.
Also suppose that P ∈P0 is known to corre-
spond to a Bernoulli random variable X . We take
P4 = {P :P({1}) =p= 1− P({0}); p∈ [1=4; 3=4]}.
Then P(·)¿ 
’(·) for all P ∈P4 where 
 = 1=2. For
a given p∈ [1=4; 3=4], the distribution Q is then eas-
ily computed to be Bernoulli(2(p − 1=4)). Thus, our
goal is to generate a Bernoulli(2(p − 1=4)) random
variable from a Bernoulli(p) random variable, where
p∈ [1=4; 3=4]. The example that opened the paper is
an abstraction of this one. The example is further mo-
tivated in that it plays a role in attempting to simulate
a stationary version of a regenerative process [2].
We are now ready to answer the question posed in

the introduction.
Let (Xi : i¿ 1) be an i.i.d. sequence of Bernoulli(p)

random variables where p∈ [0; 1=2). Let (Un : n¿ 1)
be an i.i.d. sequence of uniformly distributed random
variables on (0; 1) that is independent of (Xi : i¿ 1).
As before let Fn = �((Xi; Ui) : 16 i6 n). We are
asking whether there exists a stopping time T that is
;nite a.s., and a random variable Z that is measurable
with respect to FT such that P(Z = 1) = 2p = 1 −
P(Z = 0).

Proposition 3. Suppose that p can take on any value
in the interval [0; 1=2). Then there does not exist a
pair (Z; T ) as de;ned above with the property that
P(Z = 1) = 2p = 1− P(Z = 0).

The proof of Proposition 3 is entirely similar to that
of Theorem 2 and so is omitted. Proposition 3 also
follows from a result in [11] where the existence of
algorithms for generating Bernoulli random variables
was explored. We will discuss the main result of [11]
in more detail shortly.
We can immediately obtain the following corollary

related to the existence or not of an unbiased estima-

tor of p. Let & be a stopping time with respect to the
;ltration (Fn : n¿ 1) that is ;nite a.s., and ' be mea-
surable with respect to F&. Here ' represents an esti-
mator of p and & the “time” required to compute it.

Corollary 4. Suppose that p can take on any value
in the interval [0; 1=2). There does not exist a pair
('; &) such that ' is an unbiased estimator of p with
'∈ [0; 1=2) a.s.

Proof. Suppose that the pair ('; &) existed. Then
compute the random variable Z = I(U ¡ 2') where
U = U&+1. Then Z has a Bernoulli distribution and

P(Z = 1) = EP(U ¡ 2' | ') = E(2') = 2p:

Thus the pair (Z; &+ 1) contradicts Proposition 3.

In fact, the existence of an unbiased estimator of p
that lies in the interval [0; 1=2) almost surely is equiv-
alent to the existence of a pair (Z; T ) as in Proposi-
tion 3. Suppose that (Z; T ) exists, and set ' = 0:5Z .
Then ' is an unbiased estimator of p and lies in the
interval [0; 1=2). A similar observation appears as Re-
mark 3.2 in [2]. Roughly speaking, the result in [2]
shows that the existence of an unbiased estimator of
the stationary distribution � of a ;nite state space ir-
reducible Markov chain is equivalent to the existence
of a method for obtaining “perfect samples” from �.

Remark 3. There are a myriad of unbiased estimators
of p, but Corollary 4 shows that none exist that both
lie in the interval [0; 1=2) a.s. and can be computed in
;nite time.

Remark 4. While one cannot generate a Bernoulli
random variable with probability of success exactly
equal to 2p, one can certainly get arbitrarily close. Let
&n = n, and de;ne

'n =min

(
1
n

n∑
i=1

Xi;
1− n−1

2

)
:

Then construct Zn from 'n as in the proof of Corollary
4. Then P(Zn = 1) = 2E'n → 2p as n → ∞.

Based on the arguments presented here, we can say
nothing about the existence or nonexistence of an al-
gorithm for generating Bernoulli(2p) random vari-
ables where p can take on any value in the interval
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[0; 1=2 − () for some (∈ (0; 1=2). However, using an
elegant argument, [11] establishes constructively that
such an algorithm does indeed exist!
In fact, [11] gives necessary and suAcient condi-

tions on a function f (including its domain) so that
one can generate Bernoulli(f(p)) random variables
based only on the ability to generate Bernoulli(p) ran-
dom variables. Their result may be stated as follows.
Let the ;ltration F = (Fn : n¿ 1) be de;ned as

above.

Theorem 5 (Keane and O’Brien [11]). Let A ⊆
[0; 1] and f :A → [0; 1]. Then a pair (Z; T ) exists
where T is a ;nite-valued stopping time with respect
to F; Z is measurable with respect to FT and Z is
Bernoulli(f(p)) if, and only if,

(i) f is continuous on A, and
(ii) either f is constant on A, or there exists an in-

teger n such that

min{f(p); 1− f(p)}¿min{pn; (1− p)n}
for all p∈A.

To see why Theorem 5 does not contradict Propo-
sition 3 above, observe that f(p)=2p de;ned on the
interval A= [0; 1=2) does not satisfy condition (ii) of
Theorem 5. However, f(p) = 2p de;ned on the in-
terval A = [0; 1=2 − () does satisfy the conditions of
Theorem 5.
This result establishes the existence of algorithms

of the form discussed in this paper in the very spe-
cial case where P; ’ and Q have Bernoulli distribu-
tions. However, the delicacy of the conditions and ar-
gument in [11], together with the results in Section 3
for more general distributions, suggest that a practi-
cal algorithm of the form described here for detecting
regenerations in general discrete-event systems does
not exist.
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