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Abstract. Consider a single-server queue with a Poisson arrival process and exponential processing times in
which each customer independently reneges after an exponentially distributed amount of time. We establish
that this system can be approximated by either a reflected Ornstein–Uhlenbeck process or a reflected affine
diffusion when the arrival rate exceeds or is close to the processing rate and the reneging rate is close to 0.
We further compare the quality of the steady-state distribution approximations suggested by each diffusion.
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1. Introduction

It has long been recognized that reneging is an important feature in many real-world
queueing contexts. In fact, Palm [19] introduced reneging as a means of modeling the
behavior of telephone switchboard customers more than 60 years ago. However, due to
the explosive growth of the call center industry, there has been renewed interest in such
models in recent years. In the call center setting, customer impatience (amplified by large
customer loads) leads naturally to large amounts of reneging. Ignoring the presence of
reneging can lead to inappropriate sizing of the system and poor staffing allocation.

Models in which reneging is present are also potentially valuable in problem
contexts within which customers arrive with deadlines. When the time-in-system ex-
ceeds a given customer’s deadline, the customer leaves the queue (and thereby reneges).
Deadline-sensitive traffic is of practical interest currently in the wireless context, be-
cause certain packets of wireless data (for example, location data) lose their value unless
transmitted or received within a given time interval.

In this paper, we study approximations for a class of Markovian queueing models
in which reneging is present. Specifically, we approximate the corresponding number-
in-system birth–death process by a one-dimensional reflected diffusion with state-
dependent coefficients. We show that both a reflected Ornstein–Uhlenbeck (O–U) proc-
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ess and a reflected affine diffusion (a diffusion having linear drift and variance) serve as
suitable approximations for such a system. Although the steady-state distribution of a re-
flected affine diffusion has a simple form, the reflected O–U is in general more tractable.

The contributions of this paper are to (1) prove rigorous weak convergence theo-
rems for Markovian queueing models with reneging (2) introduce the notion of a “uni-
versal diffusion approximation” (3) establish weak convergence of steady-state distrib-
utions (4) provide a simple formula for the steady-state distribution of a reflected affine
diffusion and (5) perform a numerical study evaluating the quality of our proposed ap-
proximations. Theorem 1 establishes the limiting regimes in which Markovian reneging
models may be approximated by diffusion processes. The most important asymptotic
regime is that in which the arrival rate and processing rate are roughly in balance and
the reneging rate is small. The resulting reflected O–U process incorporates both the
queueing effects associated with high server utilization and the abandonment features
associated with a reneging model. In contrast to the work of Garnett et al. [11] (see
also related work by Fleming et al. [10]), our theory is developed within a setting in
which the number of servers is fixed (whereas they focus on diffusion limits obtained as
the number of servers goes to infinity). As a consequence, our approximation can more
easily be applied to systems with a small number of servers. We appeal to a semigroup
approach in proving our diffusion limits, thereby providing an important illustration of
how that body of theory applies to queues. (Another possible proof strategy would be to
apply continuous-mapping arguments, based on ideas of Mandelbaum and Pats [17].)

The second contribution of this paper is the introduction of the notion of a “univer-
sal diffusion approximation” in the context of heavy-traffic limit theorems for queues.
Historically, in developing diffusion approximations for systems involving multiple
problem parameters (like arrival rate, processing rate, and reneging rate), different limit
theorems (involving different temporal and spatial scalings) are offered for each of the
various limiting regimes under consideration. This can create difficulties for practi-
tioners, as it will require the practitioner to decide a priori which diffusion limit is ap-
propriate for a given set of problem parameters. The notion of a universal diffusion
approximation is intended to provide a single diffusion approximation, to be used uni-
versally across all combinations of the problem parameters. This single approximating
process is obtained by “pasting together” the different diffusion limits obtained from the
various limiting regimes associated with the model. We propose two universal diffusion
approximations for our model: a reflected Ornstein–Uhlenbeck process and a reflected
affine diffusion. Theorems 2 and 3 make rigorous the idea that our proposed univer-
sal diffusion approximations are indeed consistent with the case-by-case limit theorems
known for this class of models. This idea is consistent with work seen in the approxima-
tions literature in which a single approximation is proposed in order that it be consistent
with several different limiting regimes. For example, Mitra and Morrison [18] develop a
“uniform asymptotic approximation” for blocking probabilities in a finite capacity model
that is appropriate for overloaded, critical, and underloaded regimes. A second example
is [4], in which they derive a uniform asymptotic approximation to the partition function
for a single-chain closed product form queueing network.
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In addition to our functional limit theorems for the reneging model, we establish
the weak convergence of steady-state distributions in the asymptotic regime in which
the reflected O–U process appears. Typically, showing this convergence is a non-trivial
mathematical issue; see, for example [20]. However, in our setting, such a result is
straightforward because our reneging model is a birth and death process with a tractable
steady-state distribution. In proposition 1, we obtain a “local limit theorem” for the
steady-state distribution under a range of spatial scalings. These scalings identify the
range over which the steady-state of the reflected O–U process offers accurate approxi-
mations to that of the Markovian reneging model.

Motivated by our reflected affine universal diffusion approximation, we also estab-
lish the steady-state distribution of a reflected affine diffusion process. The density of
this distribution turns out to have a form similar to that of a gamma density.

The final contribution of this paper is a numerical study providing results on the ac-
curacy of the proposed approximations. The study shows that even for seemingly small
probabilities of customer abandonments, ignoring the presence of reneging can lead to
huge approximation errors. Fortunately, our weak convergence theory suggests a cri-
terion on the problem data under which the impact of reneging can be ignored (see
theorem 1), and our numerical study validates this criterion.

In a forthcoming paper [23], we will show that the reflected O–U process arises
as a diffusion limit for queues with renewal arrivals, and general processing and reneg-
ing time distributions. Consequently, the reflected O–U process plays the same role in
the reneging context as does reflected Brownian motion in the setting of conventional
queues. It therefore becomes important to study as much of the structure of the reflected
O–U process as is possible. We analyze various (steady-state and transient) properties
of reflected O–U in a companion paper [24].

The rest of this paper is organized as follows. In section 2, we specify the model
and its steady-state behavior. In section 3, we discuss the concept of a universal diffu-
sion approximation in the context of a single-server queue without reneging. In section 4,
we establish the appropriate diffusion approximations in different limiting regimes for
our reneging model. In section 5, we show how one diffusion process can consolidate
the limiting regimes found in section 4. In section 6, we establish weak convergence
of steady-state distributions and find the steady-state distribution of our alternative uni-
versal diffusion approximation, a reflected affine diffusion. Finally, in section 7, we
numerically study the quality of our proposed diffusion approximations in the context of
approximating steady-state performance characteristics.

2. Model description

In this paper, we are concerned with developing approximations for a class of queue-
ing models that can be characterized as birth–death continuous-time Markov chains
(CTMCs) Q = (Q(t): t � 0) on Z

+ = {0, 1, 2, . . .}, with birth rates λn = λ (n � 0)
and death rates µn = µ + (n − 1)γ (n � 1), where λ, µ, and γ are positive parame-
ters. The process Q describes the number-in-system process for a system that is fed by
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a Poisson arrival process having rate λ and in which customer processing times form
an independent sequence of i.i.d. exponential random variables having mean µ−1. The
server processes available work at unit rate. Customers are served in the order in which
they arrive; see remark 5. Each customer independently abandons the system when that
customer has spent an exponentially distributed amount of time (having mean γ −1) in
the system without receiving service. Our approximations can easily be extended to the
case in which s unit rate servers process customers in the order in which they arrive. This
class of models describes, in simplified form, a call center environment within which
customers abandon (or renege from) the queue after an exponentially distributed amount
of time. Thus, this paper makes a contribution to the general literature on Markovian
queues with reneging.

Our approximations are also valid for another closely related class of Markov-
ian queueing models in which reneging is present. Specifically, consider a birth–death
process Q′ on Z

+, with birth rates λn = λ (n � 0) and death rates µn = µ + nγ

(n � 1). Note that in this model, customers can abandon the system even after service
has been initiated. In particular, Q′ describes the number-in-system process for a system
with Poisson arrivals (having rate λ), exponential processing times (with mean µ−1),
and a unit rate server. A customer abandons the system after spending an exponentially
distributed amount of time having mean γ −1. The abandonment times in this model can
be interpreted as customer deadlines. When a given customer’s deadline is exceeded,
service of that customer becomes worthless and that customer is immediately dropped
from the system. For example, this might be appropriate in a wireless context in which
either a packet is transmitted within its deadline time or it becomes too dated to be of
value. It should be noted that in this class of models, the exponential assumptions we
have made imply that the distribution of Q′ is unaffected by the service discipline used
(e.g., FIFO, LIFO, processor sharing, etc.).

The CTMC queueing models described above are always irreducible and posi-
tive recurrent. Focusing on the first class of models, it follows that Q(t) ⇒ Q(∞)
as t → ∞. The birth–death structure implies that the steady-state probabilities
πn = P(Q(∞) = n) can be computed fairly explicitly. In particular,

π0 =
(

1 +
∞∑
n=1

λn∏n−1
j=0(µ+ jγ )

)−1

and

πn = λn∏n−1
j=0(µ+ jγ )π0

for n � 1. The product
∏n−1
j=0(µ + jγ ) can be expressed in terms of known special

functions. Specifically,

n−1∏
j=0

(µ+ jγ ) = γ n�(µ/γ + n)
�(µ/γ )
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and
∞∑
n=1

λn∏n−1
j=0(µ+ jγ ) =

(
λ

γ

)1−(µ/γ )
exp

(
λ

γ

)
�λ/γ

(
µ

γ

)
where �(y) = ∫∞

0 ty−1e−t dt is the gamma function and �x(y) = ∫ x
0 t

y−1e−t dt is the
incomplete gamma function; see [2,22].

A number of important steady-state performance measures can easily be expressed
in terms of the above steady-state distribution. For example, the mean number-in-system
is given by E[Q(∞)], and Little’s Law implies that the mean time-in-system is given by
E[Q(∞)]/λ. Similarly, the steady-state reneging rate is γE[Q(∞)− 1]+, whereas the
steady-state fraction of customers that renege prior to receiving service is γE[Q(∞)−
1]+/λ.

But more complex performance measures can also be computed in terms of the
above steady-state distribution. An important such example is the quantity β that de-
scribes the average time-in-system spent by a non-reneging customer in the FIFO system
described above. Note that

β =E[time in system spent by a customer | customer receives service]
= E[ξI (customer does not renege)]

P(customer does not renege)

where ξ is the time-in-system spent by a (typical) customer and I (·) is the indicator
function. Suppose that such a customer arrives to find n customers in the system. Be-
cause Poisson arrivals see time averages, this occurs with probability πn; see [27]. Such
a customer needs to wait for each of these n customers to exit the system before s/he
receives service. Suppose we temporarily view the system as consisting of the n queued
customers plus the arriving customer. Then, the time required for the system popula-
tion to decrease from j to j − 1 (1 � j � n + 1) is exponential with rate parameter
γ (j − 1) + µ. The probability that the arriving customer does not renege during the
interval of time required to drive the population from i to i − 1 (2 � i � n + 1) is
(γ (i − 2)+ µ)/(γ (i − 1)+ µ). Hence,

E
[
ξI (customer does not renege)

]
= π0

(
1

µ

)
+

∞∑
n=1

πn

n+1∑
j=1

1

(γ (j − 1)+ µ)
n+1∏
i=2

γ (i − 2)+ µ
γ (i − 1)+ µ (2.1)

=
∞∑
n=0

πn
µ

γ n+ µ
n∑
j=0

1

(γj + µ), (2.2)

from which β may then be computed.
In principle, the formulae provided above can be numerically evaluated to com-

pute the requisite performance measures. However, because of the factorial-type prod-
ucts involved in the steady-state probabilities, underflow and overflow issues need to
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be carefully addressed in such a numerical computation. Consequently, we provide, in
section 6, an approximation to the steady-state distribution based on our diffusion ap-
proximation ideas. This approximation avoids the numerical issues just mentioned, and
provides additional qualitative insight that we believe is more transparent than that ex-
hibited in the exact formulae. Our discussion in section 6 will illustrate, for example,
how the steady-state performance measure β just described can be suitably approximated
via our diffusion approximation.

Computations for transient performance measures for reneging models generally
involve numerical procedures to invert transforms. See [26] for expressions in terms
of transforms for some transient performance measures in reneging models and [1] for
a description of the Fourier-series method for transform inversion. The introduction
of diffusion approximations for reneging models with tractable analytic expressions for
transient performance measures eliminates the need for transform inversion. We briefly
return to the issue of transient performance measure computation at the end of section 5.

3. Universal diffusion approximations

One of our principal goals in this paper is to establish a heavy-traffic diffusion approxi-
mation for the class of Markovian reneging models introduced in section 2. To put our
results in context, we briefly review here some of what is known about conventional
heavy-traffic theory for queues without reneging.

Consider the M/M/1 number-in-system process Qρ = (Qρ(t): t � 0), where Qρ
is a birth–death process on Z

+ with constant birth rates λn = µρ (n � 0) and constant
death rates µn = µ > 0 (n � 1). The parameter ρ can, of course, be identified with the
traffic intensity of the queue or, equivalently, the server utilization (when ρ � 1). The
conventional heavy-traffic limit theorem asserts that when ρ ↑ 1,

|1 − ρ|Qρ
(·/(1 − ρ)2) ⇒ XR(·) (3.1)

in the topology of weak convergence on D[0,∞); see, for example, [3] for a discussion
of this convergence concept. Here,XR = (XR(t): t � 0) is a reflected Brownian motion
(RBM) with drift −µ and variance parameter 2µ. (See [13] for a rigorous definition of
RBM and derivations of many important properties.) A similar limit theorem holds as
ρ ↓ 1, in which case XR is a RBM with drift µ and variance parameter 2µ; see [15]
for such results. These two limit theorems describe the time-dependent behavior of an
M/M/1 queue in which the traffic intensity ρ is close to one, when viewed on time
scales of (1 − ρ)−2 and spatial scales of (1 − ρ).

But there are other diffusion approximations that can also be developed for the
M/M/1 queue. For example, if ρ > 1, then

ε
(
Qρ
(·/ε2)− µ(ρ − 1)e

(·/ε2)) ⇒ √
µ(1 + ρ)B(·) (3.2)

in D[0,∞) as ε ↓ 0, where e(t) = t and B = (B(t): t � 0) is a standard Brownian
motion with zero drift and unit variance parameters; see [25]. This approximation estab-
lishes that if the queue is over-saturated, then the queue eventually leaves the boundary
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associated with the idle state, and the reflecting barrier on the Brownian motion can
therefore be ignored.

A less well-known diffusion approximation for the M/M/1 queue in heavy traffic
asserts that if 0 < p < 1, then

|1 − ρ|pQρ
(·/(1 − ρ)2p) ⇒ XR(·) (3.3)

in D[0,∞) as ρ ↑ 1, where XR is a RBM with zero drift and variance parameter 2µ;
see [12] for a related result. This heavy-traffic result describes the behavior of the
number-in-system process for the M/M/1 queue over time scales of smaller order than
(1 − ρ)−2.

Thus, at least three different types of limit processes arise in the context of the
M/M/1 queue. The particular approximation to be used to analyze Qρ(t) may depend
on the relative magnitudes of t and |1 − ρ|. Each of the limit processes described above
is appropriate in a particular subregion of (t, |1−ρ|) space. In principle, given a specific
applications environment, the user of such a diffusion approximation needs to assess
which of the three limit theorems (3.1)–(3.3) is most appropriate to the particular com-
bination of t and |1 − ρ| arising in the application.

However, it turns out that there is no need to make this assessment. In particular,
there is a universal diffusion approximation that can be used globally across all combi-
nations of t and |1 − ρ| that are consistent with each of the three limit theorems above.
Specifically, we may choose to approximate Qρ as follows:

Qρ(·) D≈ XRρ (·) (3.4)

where XRρ = (XRρ (t): t � 0) is a RBM with drift µ(ρ − 1) and variance parameter (1 +
ρ)µ. Here,

D≈ means “has approximately the same distribution as,” and can be rigorously
verified to be accurate in each of the limiting regimes introduced in (3.1)–(3.3). For
example, (3.4) suggests that

ε
(
Qρ
(·/ε2

)− µ(ρ − 1)e
(·/ε2

) D≈ ε(XRρ (·/ε2
)− µ(ρ − 1)e

(·/ε2
)))
. (3.5)

Both the left-hand side and right-hand side of (3.5) converge when ρ > 1 in D[0,∞),
as ε ↓ 0, to the limit specified in (3.2), Brownian motion with zero drift and variance
parameter µ(1 + ρ). Consequently, (3.4) can be rigorously expected to provide a good
approximation (in a relative magnitude sense) when ρ > 1 and t is large. A similar
argument, taking advantage of (3.1) and (3.3), establishes the rigorous validity of the
approximation (3.4) whenever ρ is close to one and t is large; see [12] for additional
discussion of these mathematical issues.

Of course, a potential user of the universal diffusion approximation (3.4) is free to
use the approximation even in parameter regions of (t, |1 − ρ|) space in which rigorous
validity of the approximation has not been verified or is questionable. The key point,
from our perspective, is that the user has available a single diffusion approximation
(provided by (3.4)) that is consistent with all known asymptotic regimes.
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Our goal, in this paper, will be to develop an appropriate universal diffusion ap-
proximation for Markovian queues with reneging. We obtain these approximations by
first developing, in section 4, various diffusion approximations that are valid in different
subregions of the model’s parameter space. Section 5 then “knits together” these ap-
proximations in an effort to provide a universal diffusion approximation for Markovian
queues with reneging.

4. Diffusion approximations for queues with reneging

In studying the CTMC model Q introduced in section 2, we note that if the reneging
rate γ is zero, then the model reduces to an M/M/1 queue with arrival rate λ and service

rate µ. As discussed in section 3, it is well known that when ρ
"= λ/µ is close to one,

then Q behaves like an RBM over time scales of order (1 − ρ)−2 and spatial scales of
order (1 − ρ)−1. More precisely, the limit theorem (3.1) holds.

On the other hand, if µ = 0 in the CTMC model Q′, we end up with a model that
is identical to the infinite-server M/M/∞ queue with arrival rate λ and processing rate
(per server) γ . A well-known diffusion approximation (see [14]) is also available for
this model. Specifically, if Q′

λ,γ = (Q′
λ,γ (t): t � 0) is an M/M/∞ queue with arrival

rate λ and processing rate (per server) γ withQ′
λ,γ (0) = λ/γ , then

λ−1/2
(
Q′
λ,γ (·)− λ/γ

) ⇒ Y (·) (4.1)

as λ→ ∞ inD[0,∞), where Y is an Ornstein–Uhlenbeck (O–U) diffusion process with
infinitesimal drift −γ x and infinitesimal variance 2, starting from the origin. Noting that

Q′
λ,γ (·/γ ) D= Q′

λ/γ,1(·) (where
D= denotes equality in distribution), it follows from (4.1)

that

γ 1/2
(
Q′
λ,γ (·/γ )− λ/γ

) ⇒ Y (·) (4.2)

as γ ↓ 0 in D[0,∞) where Y is an O–U process with infinitesimal drift −x and infin-
itesimal variance 2λ. Because of the minor difference in the transition structures of Q
and Q′, it is easily seen that Q obeys the same limit theorem (4.2) as does Q′. Conse-
quently, in a pure reneging model, Q can be approximated by an O–U process on time
scales of order 1/γ and spatial scales of order γ −1/2, at least when γ is close to zero.

Our goal is to construct a diffusion approximation for Q that reflects the queue-
ing phenomena that arise both because of limited service capacity and the presence of
customer reneging. Thus, we wish to develop a diffusion approximation that describes
the behavior of Q in an asymptotic regime that is intermediate to (3.1) and (4.2). Given
that (3.1) describes fluctuations of order (1 − ρ)−1 on time scales of order (1 − ρ)−2

and (4.2) describes fluctuations of order γ −1/2 on time scales of order 1/γ , this suggests
that an intermediate asymptotic regime (the regime of part 1 of theorem 1) should be one
in which cγ 1/2 ≈ (1 − ρ), where γ (or, equivalently, (1 − ρ)) is close to zero.
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This intuition turns out to be correct. To set the stage for our limit theorem, let
X = (X(t): t � 0) be the strong solution to the stochastic differential equation (SDE)

dX(t) = (
α − γX(t)) dt + σ dB(t)+ dL(t) (4.3)

subject to X(0) = x � 0, where L = (L(t): t � 0) is the minimal nondecreasing
process which makes X(t) � 0 for t � 0. The process L increases only when X is zero,
so that ∫

[0,∞)
I
(
X(t) > 0

)
dL(t) = 0.

The existence of a unique strong solution to (4.3) is guaranteed by a careful extension of
the results of Lions and Sznitman [16] ([16] treats only bounded domains). We refer toX
as a reflected O–U process with infinitesimal drift α− γ x and infinitesimal variance σ 2.

Remark 1. When γ = 0, the reflected O–U process X reduces to RBM. In the setting
of RBM, the process L can be described explicitly in terms of the unreflected Brownian
motion with drift; see, for example, [13]. No such explicit representation is possible in
the setting of a reflected O–U process, because when γ > 0, the state-dependent drift
implies that the concept of an “unreflected version” of X is meaningless. The lack of an
explicit representation for L means that many of the methods widely used in analysis of
RBM are inappropriate in the reflected O–U setting.

Let Qγ = (Qγ (t): t � 0) be the birth–death process on Z
+ with birth rates

λn = µρ (n � 0) and death rates µn = (µ + (n − 1)γ ) (n � 1). Theorem 1 provides
a description of the behavior of Qγ in a panorama of limiting regimes. In particular,
theorem 1 pertains to the situations in which ρ ≈ 1 or ρ > 1. Whenever ρ � 1,
the server spends positive time in the idle state, and we cannot hope for a diffusion
approximation to be rigorously valid.

Part 1 of theorem 1 describes the behavior of Q when (1 − ρ) ≈ cγ 1/2 with γ
small. Note that the approximating process X has both a constant term in the drift (as in
RBM) and a linear term in its drift (as in an O–U process). Thus, a reflected O–U process
is, in some sense, a blend of the processes discussed in (3.1) and (4.2). Since this is the
only asymptotic regime in which both the effects of the server and the effects of cus-
tomer reneging appear in the limiting diffusion process, part 1 of theorem 1 is the most
important asymptotic regime and motivates the first “universal diffusion approximation”
we develop in section 5.

We see the parts of the parameter space in which our model behaves as a queue
without reneging in parts 2 and 3 of theorem 1. In particular, when γ 1/2 � 1 − ρ, then
the limit process is identical to that obtained in the setting of no reneging, namely RBM;
see (3.1). In other words, if γ 1/2 � 1 − ρ, reneging may be effectively ignored. This
is a potentially important qualitative insight that we revisit in our numerical study in
section 7. Also, whenQγ is viewed on time scales of smaller order than those discussed
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in parts 1 and 2, the limit process is again identical to that obtained in the setting of no
reneging; see (3.3).

Finally, parts 4 and 5 of theorem 1 focus on the situation in which ρ > 1. In part 4,
we obtain an analog to (4.2). In part 5, we establish the approximate behavior of Qγ
when ρ > 1 and when viewed under shorter time scales, as in part 3.

Throughout theorem 1, ⇒ denotes weak convergence in D[0,∞).

Theorem 1 (Weak convergence ofQγ ).

1. Suppose that ρ = ρ(γ ) is such that γ −1/2(1 − ρ) → c as γ ↓ 0 for some finite
constant c. In addition, suppose that γ 1/2Qγ (0)⇒ X(0) as γ ↓ 0. Then,

γ 1/2Qγ (·/γ )⇒ X(·)
as γ ↓ 0, whereX is a reflected O–U process with initial positionX(0), infinitesimal
drift −cµ− x, and infinitesimal variance 2µ.

2. Suppose that ρ = ρ(γ ) is such that 1 − ρ ↓ 0 and γ 1/2/(1 − ρ) ↓ 0 as γ ↓ 0. In
addition, suppose that (1 − ρ)Qγ (0) ⇒ X(0) as γ ↓ 0. Then,

(1 − ρ)Qγ
(·/(1 − ρ)2) ⇒ XR(·)

as γ ↓ 0, where XR is a RBM with initial position X(0), drift −µ, and variance 2µ.

3. Suppose that ρ = ρ(γ ) is such that γ −1/2(1 − ρ) → c as γ ↓ 0 for some finite
constant c. In addition, suppose that γ p/2Qγ (0) ⇒ X(0) as γ ↓ 0. Then, if
0 < p < 1,

γ p/2Qγ
(·/γ p) ⇒ XR(·)

as γ ↓ 0, where XR is a RBM with zero drift and variance parameter 2µ, starting
from X(0).

4. Suppose λ > µ is fixed and that γ 1/2(Qγ (0)− (λ− µ)/γ )⇒ Y (0) as γ ↓ 0. Then,

γ 1/2

(
Qγ (·/γ )− λ− µ

γ

)
⇒ Y (·)

as γ ↓ 0, where Y is an O–U process with initial position Y (0), infinitesimal drift
−x and infinitesimal variance 2λ.

5. Suppose that λ > µ is fixed and that γ p/2(Qγ (0) − (λ − µ)/γ ) ⇒ √
2λB(0) as

γ ↓ 0, for some p ∈ (0, 1). Then,

γ p/2
(
Qγ
(·/γ p)− (λ− µ)/γ ) ⇒ √

2λB(·)
as γ ↓ 0, where B = (B(t): t � 0) is a standard Brownian motion starting from
B(0).

The proof of theorem 1 can be found in the appendix. In the following, we make a
few remarks of interest.
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Remark 2. A similar limit to that described in part 2 of theorem 1 holds when γ 1/2/

(1−ρ) ↑ 0 as γ ↓ 0. In this setting, where ρ > 1 for the queue, the limit process (under
the same normalization) is an RBM XR with initial position X(0), drift µ, and variance
parameter 2µ.

Remark 3. It may at first seem unintuitive that the parameter µ does not appear in the
infinitesimal variance parameters given in parts 4 and 5 of theorem 1. Therefore, we
offer the following heuristic argument showing that this is the case. The variance for the
CTMCQ is:

var
(
Q(t + h)−Q(t) | Q(t) = n) = (

λ+ µ+ γ (Q(t)− 1
))
h+ o(h). (4.4)

When λ > µ, the “mass-balance” point for this system is: (λ−µ)/γ . (One can see this
by setting the birth rate λ equal to the death rate µ+ nγ .) Substituting (λ−µ)/γ forQ
in the equation above, we have:

var
(
Q(t + h)−Q(t) | Q(t) = n) ≈ 2λ.

Remark 4. Theorem 1 is also valid when we replace Q = (Q(t): t � 0) by the CTMC
Q′ = (Q′(t): t � 0), with precisely the same spatial and temporal normalizations. In
other words, the slight difference in the definitions of the death rates for Q and Q′ is
irrelevant in the asymptotic regimes we consider above.

Remark 5. Theorem 1 remains valid, when suitably modified, in the setting of multi-
server queues with reneging. Specifically, suppose that Q = (Q(t): t � 0) is a birth–
death CTMC on Z

+ with birth rates λn = λ = sρµ (n � 0) and death rates equal to
either µn = min(s, n)µ + nγ or µ′

n = min(s, n)µ + (n − s)+γ , for n � 1. These
death rates describe a Markovian queue with s servers, in which customers either can or
cannot renege while in service. Then, theorem 1 holds as stated, with the parameter sµ
replacing µ in all the limit processes and normalizations that arise.

5. A universal diffusion approximation for queues with reneging

As discussed in section 3, our goal here is to “knit together” the diffusion approximations
obtained in theorem 1, in an effort to provide one globally applicable approximating
diffusion process. Given the CTMC Q, with associated parameters λ, µ, and γ , we
propose the following univeral diffusion approximation to Q:

Q(·) D≈ X(·) (5.1)

where X = (X(t): t � 0) is a reflected O–U process with X(0) = Q(0), infinitesimal
drift λ− µ− γ (x − 1) and infinitesimal variance 2λ.

At a practical level, (5.1) can potentially be used to compute an approximation (in-
volving X) to virtually any performance measure involving Q. Of course, in using such
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approximations, it is important to be able to identify those subregions of (t, ρ, γ ) para-
meter space within which the approximations can be rigorously validated to be accurate.
To obtain such rigorous guarantees requires use of limit theorems.

As in section 4, we consider limit theorems that are expressed in terms of the
reneging parameter γ . We view ρ = ρ(γ ) = λ(γ )/µ as a function of γ . For γ > 0,
let Xγ be a reflected O–U process with infinitesimal drift (ρ(γ )− 1)µ − γ (x − 1) and
infinitesimal variance 2ρ(γ )µ, and let Qγ be defined as in section 4.

We shall prove that Xγ and Qγ have distributions that are, in some sense, “close.”
Our measure of distance involves the Prohorov metric d defined on the space of proba-
bility measures on the function space D[0,∞). The Prohorov metric is the metric that
gives rise to the topology of weak convergence on D[0,∞); see, for example, [9]. In
other words, ξn ⇒ ξ in D[0,∞) if and only if d(P (ξn ∈ ·), P (ξ ∈ ·)) → 0 as
n → ∞. In a (slight) abuse of notation, we shall henceforth write d(ξn, ξ) in place
of d(P (ξn ∈ ·), P (ξ ∈ ·)).

Let
D= denote equality in distribution, and assume throughout the following theorem

(whose proof can be found in the appendix) that Xγ (0)
D= Qγ (0).

Theorem 2 (Universal diffusion approximation).

(i) If γ −1/2(1 − ρ) → c and γ p/2Qγ (0)⇒ Q(0) as γ ↓ 0, then

d
(
γ p/2Qγ

(·/γ p), γ p/2Xγ (·/γ p)) → 0

as γ ↓ 0 (for 0 < p � 1).

(ii) If ρ → 1, γ 1/2/(1 − ρ)→ 0, and (1 − ρ)Qγ (0) ⇒ Q(0) as γ ↓ 0, then

d
(
(1 − ρ)Qγ

(·/(1 − ρ)2), (1 − ρ)Xγ
(·/(1 − ρ)2)) → 0

as γ ↓ 0.

(iii) If ρ > 1 is fixed and γ p/2(Qγ (0)− (λ− µ)/γ )⇒ Q(0) as γ ↓ 0, then

d

(
γ p/2

(
Qγ
(·/γ p)− λ− µ

γ

)
, γ p/2

(
Xγ
(·/γ p)− (λ− µ)

γ

))
→ 0

as γ ↓ 0 (for 0 < p � 1).

Note that the temporal and spatial scalings appearing in theorem 2 are, in each case,
identical for Xγ and Qγ . This guarantees that in each of the asymptotic regimes de-
scribed by theorem 1, the universal diffusion approximation provided by (5.1) provides
approximations with high relative accuracy. This provides a mathematical justification
for the assertion that (5.1) legitimately “knits together” the limiting diffusions obtained
in theorem 1.
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Remark 6. An almost identical universal diffusion approximation exists for Q′. In par-
ticular, given the CTMC Q′, with associated parameters λ, µ, and γ , we propose the
universal diffusion approximation:

Q′(·) D≈ X′(·),
where X′ is a reflected O–U process with X′(0) = Q′(0), infinitesimal drift λ−µ− γ x
and infinitesimal variance 2λ. Furthermore, theorem 2 holds with Q′ and X′ appropri-
ately replacing Q and X.

Remark 7. Suppose that we are given a multi-server queue, possessing s servers, in
which reneging is present. As discussed in remark 5, this leads to a CTMC Q with
(slightly) modified birth and death parameters. We propose approximating Q by X,
whereX is a reflected O–U process with infinitesimal drift λ−sµ−γ x and infinitesimal
variance 2λ.

It turns out that there is an alternative universal diffusion approximation that is con-
sistent with the asymptotic regimes described in theorem 2. To motivate this alternative
universal approximation, note that we can easily compute the following analogs to the
infinitesimal drift and infinitesimal variance for the CTMCQ. Specifically, for n � 1,

E
(
Q(t + h)−Q(t) | Q(t) = n) = (

λ− µ− γ (Q(t)− 1
))
h+ o(h)

and

var
(
Q(t + h)−Q(t) | Q(t) = n) = (

λ+ µ+ γ (Q(t)− 1
))
h+ o(h)

as h ↓ 0. This suggests that we can construct an alternative universal diffusion ap-
proximation to Q by using a diffusion process that matches the infinitesimal mean and
variance characteristics of Q, and that exhibits reflection at the origin.

Specifically, let Z = (Z(t): t � 0) be the solution to the SDE

dZ(t) = (
λ− µ− γ (Z(t)− 1

))
dt +

√
λ+ µ+ γ (Z(t)− 1

)
dB(t)+ dL(t) (5.2)

subject to Z(0) = z, where L = (L(t): t � 0) is the minimal nondecreasing process
which makes Z(t) � 0 for t � 0. The existence of a unique solution to (5.2) is
again guaranteed by a careful extension of the results of Lions and Sznitman [16]. The
process Z without reflection is referred to as an affine diffusion in the finance literature;
see, for example, [7]. For this reason, we call the process Z a reflected affine diffusion.

Our alternative universal diffusion approximation toQ then takes the form

Q(·) D≈ Z(·) (5.3)

where, of course, we require that Z(0) = X(0). This universal approximation can be
mathematically justified in the same way as theorem 2 supports (5.1). Specifically, let
Zγ be the universal approximation to Qγ associated with (5.2), where Qγ is defined as
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in section 4, and Zγ has infinitesimal drift (ρ(γ ) − 1)µ − γ (x − 1) and infinitesimal
variance µ(ρ(γ )+ 1)+ γ (x + 1).

Theorem 3. Theorem 2 holds with Zγ replacing Xγ throughout the theorem statement.

Given that Z more faithfully reproduces the fine structure of the infinitesimal drift
and variance of Q, we suspect that one often obtains better approximations to Q by
using Z rather than X. In fact, table 2 in section 7 illustrates that Z estimates steady-
state tail probabilities slightly better than X. However, the presence of state dependence
in the infinitesimal variance of Z makes it substantially harder to compute transient
performance measures for Z than for X. As we show in our companion paper [24],
transient performance measure computations involving X are tractable. For this reason,
we recommend use of the universal approximation based on X in preference to that
based on Z.

6. Reflected O–U and reflected affine diffusion processes: steady-state behavior

Perhaps the single most important performance measure for Q is its steady-state distri-
bution. Given the universal diffusion approximation to Q proposed in (5.1), we expect
that

Q(∞) D≈ X(∞),
where X(∞) is the steady-state of X.

Let X = (X(t): t � 0) be a reflected O–U process with infinitesimal drift α − γ x
and infinitesimal variance σ 2, with γ , σ 2 > 0. Then, X has a unique stationary distribu-
tion π with density

p(x)=P [N(α/γ, σ 2/2γ
) ∈ dx | N(α/γ, σ 2/2γ

)
� 0

]
=
√

2γ

σ 2

φ(
√

2γ /σ 2(x − α/γ ))
1 −.(−√2α2/γ σ 2)

for x � 0, where φ(·) and .(·) are the density and distribution of a N(0, 1) random
variable, respectively. Computation of the distribution π can be found in [5,6,24].

Weak convergence of γ 1/2Qγ to X, as established in part 1 of theorem 1, does not
imply that the steady-state distribution of γ 1/2Qγ converges weakly to that of X. In the
current setting, establishing weak convergence of the steady-state distribution is quite
straightforward, because the process Qγ is a birth–death process with a steady-state that
is very tractable. Our next result uses this tractability to rigorously establish the weak
convergence of the steady-state distributions. Actually, our proof technique establishes
much more. It yields not only a weak convergence statement, but also a “local limit
theorem” in which it is shown that the probability mass function of Qγ (∞) may be
approximated by the density of X(∞), where Qγ (∞) and X(∞) are random variables
endowed with the steady-state distributions of Qγ and X, respectively. In addition, our
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argument shows that the steady-state distribution of X provides asymptotically accurate
approximations to the steady-state of Qγ over spatial scales as large as γ −2/3, and that
γ −2/3(= γ −1/2γ −1/6) is the critical spatial scale at which the steady-state approximation
given by X breaks down (see part (ii)).

Proposition 1. Let Qγ and X be defined as in part 1 of theorem 1, and satisfy the
conditions stated there. Assume, in addition, that 1 − ρ(γ ) = cγ 1/2 + o(γ 2/3) as γ ↓ 0.
Suppose p(·) is the stationary density of X.

(i) If xγ = o(γ −1/6), then

P
(
Qγ (∞) = ⌊

γ −1/2xγ
⌋) ∼ γ 1/2p(xγ )

as γ ↓ 0. Also,

P
(
γ 1/2Qγ (∞) > xγ

) ∼ P (X(γ ) > xγ )
as γ ↓ 0.

(ii) If xγ ∼ xγ −1/6, then

P
(
Qγ (∞) = ⌊

γ −1/2xγ
⌋) ∼ γ 1/2p(xγ ) exp

(
x3
γ /6µ

2)
as γ ↓ 0.

Proof. Recall that P(Qγ (∞) = n)
"= πγ (n), where πγ (n) = vγ (n)/∑∞

m=0 vγ (m) and

vγ (n) = ρn
n−1∏
j=0

(
1 + jγ

µ

)−1

.

Observe that

log

(
1 + jγ

µ

)
= jγ

µ
− 1

2

j 2γ 2

µ2
+ O

(
j 3γ 3

)
uniformly in j = o(1/γ ). Consequently,

n−1∑
j=0

log

(
1 + jγ

µ

)−1

= −n(n− 1)γ

2µ
+ γ 2

6µ2
(n− 1)

(
n− 1

2

)
n+ O

(
n4γ 3),

provided that n = o(1/γ ). So,

vγ (n)= exp
(
n log

(
1 − (1 − ρ))−

n−1∑
j=0

log

(
1 + jγ

µ

)

= exp

(
−n(1 − ρ)+ O

(
n(1 − ρ)2)

− n(n− 1)γ

2µ
+ γ 2

6µ2
n

(
n− 1

2

)
(n− 1)+ O

(
n4γ 3)) (6.1)
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uniformly in n = o(1/γ ). We conclude that

vγ (n) = exp

(
−cnγ 1/2 − (nγ 1/2)2

2µ
+ o(1)

)
(6.2)

uniformly in n = O(γ −1/2). Choose k so large that P(X(∞) > k) < ε, exp(−ck −
k2/2µ) < ε, and λ/(µ + γ 1/2�kγ −1/2�) < 1/2. Then, (6.2) implies that for K(c,µ) =√

2πµ exp(c2µ/2)(1 −.(−c√µ))
�kγ−1/2�∑
m=0

vγ (n)= γ −1/2K(c,µ) exp
(
o(1)

) �kγ−1/2�∑
n=0

p
(
nγ 1/2)γ 1/2

∼ γ −1/2K(c,µ)

∫ k

−∞
p(y) dy

= γ −1/2K(c,µ)
(
1 − O(ε)

)
as γ ↓ 0. Also,

∞∑
n=�kγ−1/2�

vγ (n)= vγ
(⌈
kγ −1/2⌉) ∞∑

j=0

j∏
l=0

(
λ

µ+ γ (�kγ −1/2� + l)
)

� 2vγ
(⌈
kγ −1/2

⌉)
� 2ε

(
1 + o(1)

)
as γ ↓ 0. Since ε > 0 can be made arbitrarily small, this yields the conclusion that

∞∑
n=0

vγ (n) ∼ γ −1/2K(c,µ) (6.3)

as γ ↓ 0. It follows from (6.1) and (6.3) that

πγ
(⌊
γ −1/2xγ

⌋) ∼ γ 1/2p(xγ )

as γ ↓ 0, proving the first assertion of part (i). The second assertion of part (i) follows
easily from (6.2) and (6.3) if xγ = O(1). If xγ → ∞, put r(γ ) = �xγ γ −1/2�, s(γ ) =
2r(γ ), and note that (6.1) and (6.3) together imply that

s(γ )−1∑
m=r(γ )

πγ (n)= exp
(
o(1)

) s(γ )−1∑
m=r(γ )

p
(
nγ 1/2)γ 1/2

∼
∫ ∞

xγ

p(y) dy

as γ ↓ 0, whereas
∞∑

m=s(γ )
πγ (n)� 2

vγ (s(γ ))γ
1/2

K(c,µ)

(
1 + o(1)

)
∼ 2p(2xγ )
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as γ ↓ 0. Since p(2xγ )/
∫∞
xγ
p(y) dy → 0 as γ ↓ 0, this establishes that

P
(
Qγ (∞) > xγ γ −1/2

) =
∞∑

n=r(γ )
πγ (n) ∼

∫ ∞

xγ

p(y) dy

as γ ↓ 0, completing the proof of the second assertion of part (i).
For part (ii), note that (6.1) shows that if xγ ∼ xγ −1/6, then

vγ
(⌊
xγ γ

−1/2
⌋) ∼ exp

(
−cxγ − x2

γ

2µ
+ x3

γ

6µ2

)
as γ ↓ 0. Combining this asymptotic with (6.3) completes the proof. �

As promised in section 2, we can use the steady-state approximations of this sec-
tion to approximate various complex performance measures associated with the original
reneging queue. As an illustration, consider the quantity β = β(γ ) of section 2 that
describes the average time-in-system spent by a non-reneging customer in the system
associated withQγ . Recall that (see (2.2))

β(γ ) = E
[(

µ

γQγ (∞)+ µ
)Qγ (∞)∑

j=0

1

γj + µ

](
1 − γE[Q(∞)− 1]+

λ

)−1

.

Straightforward analysis then shows that

β(γ ) = γ −1/2EX(∞)
µ

− varX(∞)
µ2

− 1

2

EX2(∞)
µ2

+ o(1)

as γ ↓ 0. The leading term is the time-in-system that one typically sees in a queue
without reneging. The correction terms, which are negative in sign, are the reduction in
time-in-system for a given customer that is contributed by those customers “ahead” of
the given customer that choose to renege before receiving service.

We close this section with a discussion of the steady-state behavior of our alterna-
tive approximating diffusion, the reflected affine diffusion Z. We start with a nonrigor-
ous argument that yields an appropriate differential equation for Z’s stationary density.

Assuming that a stationary distribution π (with density p) exists, Echeverria [8]
shows that p ought to satisfy ∫

[0,∞)
(Af )(x)p(x) dx = 0 (6.4)

for all functions f that are twice continuously differentiable on [0,∞) with compact
support and satisfying the boundary condition f ′(0) = 0, where

A = 1

2
(β + γ x) d2

dx2
+ (α − γ x) d

dx
.
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Suppose that the stationary density p is four times continuously differentiable (with
bounded derivatives) and satisfies xp(x) → 0 and xp′(x) → 0 as x → ∞. Integrating
by parts twice then yields the relation∫ ∞

0

1

2
(β + γ x)f ′′(x)p(x) dx =

∫ ∞

0
f (x)

[
γp′(x)+ 1

2
(β + γ x)p′′(x)

]
dx

+ γ

2
p(0)f (0)+ 1

2
βp′(0)f (0). (6.5)

On the other hand, integration by parts once gives us the equality∫ ∞

0
(α − γ x)f ′(x)p(x) dx = −

∫ ∞

0
f (x)

[
(α − γ x)p′(x)− γp(x)] dx

− αp(0)f (0). (6.6)

Substituting (6.5) and (6.6) into (6.4) yields∫ ∞

0

[
1

2
(β + γ x)p′′(x)+ (γ − α + γ x)p′(x)+ γp(x)

]
f (x) dx

+
[
β

2
p′(0)+

(
γ

2
− α

)
p(0)

]
f (0) = 0. (6.7)

If we can find a probability density p satisfying the second-order differential equation

1

2
(β + γ x)p′′(x)+ (γ − α + γ x)p′(x)+ γp(x) = 0 (6.8)

subject to the boundary condition

β

2
p′(0)+

(
γ

2
− α

)
p(0) = 0, (6.9)

then (6.7) is clearly satisfied. Thus, we conclude that we may compute the stationary
density of Z by solving (6.8), subject to (6.9).

The key to solving (6.8) is to note that it can be re-written as

d2

dx2

[
(β + γ x)p(x)]− d

dx

[
(α − γ x)p(x)] = 0. (6.10)

Integration of (6.10) therefore yields a first order linear differential equation (with non-
constant coefficients) that may be solved explicitly. The general solution is

p(x) = exp(−2x)(β + γ x)ν
[

2C1

∫ x

0
exp(2u)(β + γ u)−(ν+1) du+ C2

]
where ν = (2α + 2β − γ )/γ and C1, C2 are arbitrary constants of integration. In order
that p integrates to unity and satisfies (6.9), we conclude that

p(x) = exp(−2x)(β + γ x)ν∫∞
0 exp(−2y)(β + γy)ν dy

. (6.11)

Note that p is non-negative so that (6.11) yields a legitimate density.
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Having obtained a candidate stationary distribution through the above argument, it
remains only to rigorously verify that this distribution is indeed the stationary distrib-
ution for Z. This argument is similar to that of proposition 1 in [24], and is therefore
omitted. We summarize this discussion with the following result.

Proposition 2. Suppose that γ and β are positive. Then, the reflected diffusion Z has a
unique stationary distribution π with density given by (6.11).

The diffusion Z has strikingly different tail behavior in its stationary distribution as
compared to X. Nevertheless, under the limiting regimes described in sections 4 and 5,
the two stationary distributions have identical asymptotic behavior. We discuss this issue
further in section 7.

7. Numerical study of the quality of the suggested approximations

We conclude this paper with a brief numerical investigation of the accuracy of the two
universal diffusion approximations proposed in section 5 for our Markovian reneging
model. In particular, we study the relative error associated with approximating the
steady-state of the continuous-time Markov chain Q by both the steady-state of the re-
flected O–U process X, and the steady-state of the reflected affine diffusion process Z.
The processes X and Z are related to Q via (5.1) and (5.3), respectively.

In many real-world service industry applications of queueing theory (such as call
centers, fast food restaurants, etc.), reneging is present. Of course, if the reneging rate is
small, one might be tempted to ignore the presence of reneging and model the system as a
normal queue (without reneging). In such settings, the RBM approximation to the queue
becomes relevant. Therefore, we also take this opportunity to present the relative error
associated with approximating the continuous-time Markov chain Q via the reflected
Brownian motion process XR having infinitesimal drift λ−µ and infinitesimal variance
λ+ µ; see [13] for its steady-state distribution.

Because the magnitude of the parameter γ itself is difficult to interpret, table 1
also provides the “steady-state reneging probability” (i.e. the long-run fraction of arriv-
ing customers that eventually renege). It is striking to observe the degree to which tiny
amounts of reneging can have a substantial impact on queueing performance character-
istics. For example, at a nominal traffic intensity of 0.98 (with λ = 0.98 and µ = 1) and
with only 0.36% of the customers choosing to renege, the RBM relative error (in which
reneging is ignored by the diffusion approximation) is already 32 times larger than that
associated with the reflected O–U approximation (in which reneging is incorporated).
Given that a modeler may well be tempted to ignore the presence of reneging at such
small reneging rates, the numbers in table 1 make clear the perils associated with such
shortcuts.

The numbers in table 1 also confirm the heuristic suggested in section 4 as to when
RBM provides a reasonable approximation for reneging models. The heuristic is that
when

√
γ � 1 − ρ, we may effectively ignore the presence of reneging. Notice that
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Table 1
Relative error calculations for E[Q(∞)].

Approximate values and percent relative error

γ P [renege] E[Q(∞)] E[X(∞)] E[Z(∞)] E[XR(∞)]
λ = 0.98 µ = 1

0.0001 0.0036 36.74 37.02 (00.8%) 37.18 (01.2%) 49.50 (0034.7%)
0.0010 0.0184 19.03 19.07 (00.2%) 19.40 (01.9%) 49.50 (0160.1%)
0.0100 0.0655 07.34 07.25 (01.2%) 07.67 (04.5%) 49.50 (0574.4%)
0.1000 0.1814 02.58 02.44 (05.5%) 02.87 (11.2%) 49.50 (1818.6%)
1.0000 0.3625 00.98 00.79 (19.4%) 01.19 (21.4%) 49.50 (4951.0%)

λ = 0.9 µ = 1
0.0001 0.0009 8.84 9.33 (05.5%) 9.34 (05.7%) 9.50 (007.5%)
0.0010 0.0077 7.84 8.22 (04.8%) 8.31 (06.0%) 9.50 (021.1%)
0.0100 0.0452 4.93 5.07 (02.8%) 5.32 (07.9%) 9.50 (092.6%)
0.1000 0.1578 2.18 2.13 (02.3%) 2.50 (14.6%) 9.50 (335.8%)
1.0000 0.3406 0.90 0.74 (17.5%) 1.12 (24.4%) 9.50 (955.6%)

λ = 0.85 µ = 1
0.0001 0.0006 5.62 6.12 (08.8%) 6.12 (08.9%) 6.17 (009.8%)
0.0010 0.0052 5.30 5.74 (08.2%) 5.79 (09.2%) 6.17 (016.4%)
0.0100 0.0363 3.90 4.13 (05.9%) 4.33 (10.9%) 6.17 (058.0%)
0.1000 0.1439 1.95 1.96 (02.2%) 2.29 (17.3%) 6.17 (216.1%)
1.0000 0.3264 0.85 0.72 (15.8%) 1.07 (26.4%) 6.17 (625.5%)

λ = 0.7 µ = 1
0.0001 0.0002 2.33 2.82 (21.4%) 2.83 (21.4%) 2.83 (021.5%)
0.0010 0.0023 2.30 2.78 (21.0%) 2.79 (21.5%) 2.83 (023.1%)
0.0100 0.0197 2.07 2.45 (18.6%) 2.53 (22.5%) 2.83 (036.8%)
0.1000 0.1062 1.37 1.51 (10.6%) 1.75 (27.6%) 2.83 (106.6%)
1.0000 0.2808 0.70 0.64 (09.1%) 0.94 (33.8%) 2.83 (304.3%)

when either ρ = 0.85 or ρ = 0.9 and γ = 0.0001, the RBM approximation has a
relative error less than 10%. Of course, as theorems 2 and 3 suggest, the error associated
with the reflected O–U and reflected affine approximations is small for these parameter
combinations as well. Since in practical situations it is often hard to confirm

√
γ �

1 − ρ, in systems where reneging is present (even if at small rates), the safe approach is
to explicitly model the reneging.

With regard to the quality of our two universal diffusion approximations, table 2
suggests that Z outperforms X in some regions of the tail distribution of the steady-
state. Given that X and Z differ only in the asymptotic behavior of their corresponding
infinitesimal variances, it is perhaps not surprising that tail probabilities approximated
via Z perform better than those obtained from X (because its infinitesimal variance
reproduces more faithfully that of Q than does X). Nevertheless, our conclusion is that
tables 1 and 2 support the use of the approximation based on X over that based on Z.
The approximations based onX beat those of Z in virtually all entries of table 1 andX is
competitive with Z in approximating tail probabilities, except when the tail probabilities
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Table 2
Relative error calculations for tail probabilities.

Percent relative error

x P (Q > x) P (X > x) P (Z > x) X Z

λ = 0.98 µ = 1 γ = 0.0001
1 9.53 × 10−1 9.76 × 10−1 9.76 × 10−1 2.40% 2.42%

50 2.64 × 10−1 2.68 × 10−1 2.71 × 10−1 1.31% 2.65%
100 5.71 × 10−2 5.69 × 10−2 5.87 × 10−2 0.40% 2.89%
500 6.22 × 10−11 3.72 × 10−11 6.55 × 10−11 0.40% 5.33%

1000 3.19 × 10−31 2.06 × 10−32 3.56 × 10−31 93.53% 11.60%

λ = 0.98 µ = 1 γ = 0.001
1 9.25 × 10−1 9.61 × 10−1 9.62 × 10−1 3.98% 4.00%

50 5.04 × 10−2 5.06 × 10−2 5.35 × 10−2 0.43% 6.13%
100 3.22 × 10−4 2.65 × 10−4 3.50 × 10−4 17.81% 8.79%
500 3.68 × 10−53 1.82 × 10−61 1.17 × 10−52 �100% �100%

1000 1.49 × 10−178 3.76 × 10−232 1.89×10−174 �100% �100%

λ = 0.98 µ = 1 γ = 0.01
1 8.33 × 10−1 9.13 × 10−1 9.12 × 10−1 9.62% 9.55%

50 1.37 × 10−6 2.81 × 10−7 1.94 × 10−6 79.53% 41.81%
100 2.52 × 10−19 2.10 × 10−24 9.09 × 10−19 �100% �100%
500 2.98 × 10−256 1.17 × 10−558 1.15×10−221 �100% �100%

1000 2.66 × 10−722 5.15 × 10−2223 3.39×10−564 �100% �100%

λ = 0.98 µ = 1 γ = 0.1
1 6.08 × 10−1 7.90 × 10−1 7.80 × 10−1 29.81% 28.18%

50 2.87 × 10−14 9.72 × 10−56 1.89 × 10−23 �100% �100%
100 6.44 × 10−74 1.88 × 10−220 6.99 × 10−58 �100% �100%
500 2.21 × 10−660 7.26 × 10−5525 6.37×10−381 �100% �100%

1000 2.81 × 10−1601 7.50×10−22126 4.99×10−804 �100% �100%

themselves become very small (in which case both approximations tend to do poorly).
The fact that X is analytically more tractable than Z makes the case for X even stronger.
Of course, both approximations consistently outperform the RBM approximation (that
effectively ignores the presence of reneging effects).
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Appendix A. Proofs of theorems 1–3

We will prove our weak convergence theorems by appealing to semigroup convergence
methods. This requires working with certain function spaces. To this end, let B(S)
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be the Banach space of bounded real-valued measurable functions on S, equipped with
supremum norm. Furthermore, for −∞ � r1 < r2 � +∞, let C(r1, r2) be the space of
continuous functions on (r1, r2) having finite limits at r1 and r2, C2(r1, r2) be the space
of twice continuously differentiable functions on (r1, r2), and let Ĉ(r1, r2) be the space
of continuous functions vanishing at the infinite boundaries of (r1, r2).

Proof of theorem 1. Parts 1–3. For part 1, we start by identifying the generator of the
limit process X. Set

A = −(cµ+ x) d

dx
+ µ d2

dx2

and let f ∈ C(0,∞) ∩ C2(0,∞) with Af ∈ C(0,∞) and limx↓0 f
′(x) = 0. Put

f (0) = limx↓0 f (x). Note that for such an f , f ′(0) exists and equals zero. To see this,
realize f (h)− f (0) = f (h)− f (εh)+ f (εh)− f (0) = f ′(ξ)(h− εh)+ O(h2), where
ξ ∈ (εh, h), provided we choose εh < h2 small enough so that |f (εh) − f (0)| � h2.
Furthermore, we can repeat this argument to establish that f ′′(0) exists (using the fact
that f ′(0) = 0, Af ∈ C(0,∞), and f (h) − f (εh) = f ′(0)h + f ′′(ξ)(h2/2), with
ξ ∈ (εh, h) and εh < h3 chosen so that |f (εh) − f (0)| � h3). Consequently, Itô’s
formula and the properties of L establish that for such an f ,

f
(
X(t)

) − f (X(0)) =
∫ t

0
(Af )

(
X(s)

)
ds +√

2µ
∫ t

0
f ′(X(s)) dB(s).

Because f and Af are clearly bounded, it follows that

Exf
(
X(h)

)− f (x) = (Af )(x)h + o(h)

as h ↓ 0. We now apply remark 8.1.3 and corollary 8.1.2 of Ethier and Kurtz [9] to
conclude that {(f,Af ): f ∈ Ĉ(0,∞) ∩ C2(0,∞), f ′(0) = 0, Af ∈ Ĉ(0,∞)} gener-
ates a Feller semigroup on Ĉ(0,∞).

We now appeal to theorems 1.6.1 and 4.2.11 of Ethier and Kurtz [9]. To do this,
observe that Q̃γ (·) = γ 1/2Qγ (·/γ ) = (rγ ◦ Xγ )(·), where rγ : Z

+ → �+ is defined by
rγ (k) = γ 1/2k and Xγ is a CTMC on Z

+ with birth rates λn = (ρµ)/γ (n � 0) and
death rates µn = (µ + (n − 1)γ )/γ (n � 1). We must show that for each pair (f,Af )
generating the semigroup, there exists (fγ : fγ ∈ B(Z+), γ > 0) such that

sup
k�0

∣∣fγ (k)− f (γ 1/2k
)∣∣ → 0 (A.1)

and

sup
k�0

∣∣(Aγ fγ )(k)− (Af )(γ 1/2k
)∣∣ → 0 (A.2)

where Aγ is the generator of Xγ .



QUEUES WITH RENEGING 125

Select τ = τ(γ )→ ∞ so that∣∣(ρ − 1)γ −1/2 − c∣∣ sup
0�x�τ

∣∣f ′(x)
∣∣→ 0, (A.3)

γ 1/2τ sup
0�x�τ

∣∣f ′′(x)
∣∣→ 0, (A.4)

γ 1/2 sup
0�x,y�τ
|x−y|�1

∣∣f ′′(x)− f ′′(y)
∣∣→ 0. (A.5)

Note that f,Af lie in Ĉ(0,∞), so that f (x) and (Af )(x) → 0 as x → ∞.
Consequently, f (x) − f (x − 1) = f ′(ξx) → 0 for some ξx ∈ (x − 1, x). Also,
f (ξx) − f (ξx − 1) − f ′(ξx) = −f ′′(ξ̃x)/2 → 0 as x → ∞ for some ξ̃x ∈ (x − 2, x).
Hence, there exists ξ̃x ∈ (x − 2, x) such that f (ξ̃x), |cµ + ξ̃x |f ′(ξ̃x), and f ′′(ξ̃x) all
converge to zero as x → ∞. Put κ = ξ̃τ → ∞ and let f̃γ be the twice continuously
differentiable function on [0,∞) such that f̃γ (x) = f (x) for x � κ , and f̃γ (·) is defined
on [κ, κ + 1] through a smooth spline so that

sup
κ�x�κ+1

∣∣f̃ (k)γ (x)∣∣→ 0 (k = 0, 2), (A.6)

sup
κ�x�κ+1

∣∣(cµ+ x)f̃ ′
γ (x)

∣∣→ 0. (A.7)

The spline, sγ (x), is defined on [κ, κ + 1] as follows:

sγ (x)= f (κ)+ f ′(κ)(x − κ)+ (−3f (κ)− 2f ′(κ)
)
(x − κ)2

+ (
2f (κ)+ f ′(κ)

)
(x − κ)3.

Finally, put fγ (x) = f̃γ (γ 1/2x)+ γ 1/2h(γ 1/2x), where h is twice continuously differen-
tiable, has compact support, and satisfies h′(0) = f ′′(0)/2. Clearly, (A.1) is satisfied for
this choice of (fγ : γ > 0).

As for (A.2), observe that

sup
k�0

∣∣(Aγ fγ )(k)− (Af )(γ 1/2k
)∣∣

�
∣∣(Aγ fγ )(x)− (Af )(0)∣∣+ sup

1�k��κγ−1/2�

∣∣(Aγ fγ )(k)− (Af )(γ 1/2k
)∣∣

+ sup
κ�x�κ+1

∣∣(Aγ f̃γ )(k)∣∣+ sup
x�κ

∣∣(Af )(x)∣∣. (A.8)

The fourth term on the right-hand side clearly converges to zero (because x → ∞),
while the first term can be written as

ρµ

γ

(
f
(
γ 1/2

)− f (0)+ γ 1/2
(
h(γ )− h(0))− µf ′′(0)

= ρµγ −1/2f ′(0)+ ρµ

2
f ′′(0)+ ρµh′(0)+ o(1)− µf ′′(0)

→ 0
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as γ ↓ 0, because f ′(0) = 0 and h′(0) = f ′′(0)/2. For the second and third terms, note
that

(Aγ fγ )(k)=
(
µ(ρ − 1)γ −1/2 − (k − 1)γ 1/2)f ′

γ

(
γ 1/2k

)
+ µ

(
ρ + 1

2
+ γ (k − 1)

)
f ′′
γ

(
ξγ (k)

)+ o(1)

where ξγ (k) lies in γ 1/2(k−1, k+1). Use of (A.3)–(A.7) then establishes that the second
and third terms in (A.8) converge to zero, completing the proof of (A.2).

The proofs of parts 2 and 3 of theorem 1 are very similar to that of part 1, and are
omitted.

Parts 4 and 5. Since parts 4 and 5 of theorem 1 involve a limit process on � (as opposed
to the half line), we could appeal to the results of Stone [21] (which can be used when
the state space of the limiting diffusion process is the real line) to establish these results.
This is the methodology used in [14] and part 4 of theorem 1 is a minor variant of his
result. However, in an effort to illustrate semigroup methodology, we outline these parts
of the proof.

Here the generator of the limit process Y is:

A = −x d

dx
+ λ d2

dx2

and {(f,Af ): f ∈ Ĉ(−∞,∞) ∩ C2(−∞,∞), Af ∈ Ĉ(−∞,∞)} generates a Feller
semigroup on Ĉ(−∞,∞). We represent Q̃γ (·) = γ 1/2(Qγ (·/γ ) − (λ − µ)/γ ) =
(η ◦Xγ )(k), where ηγ (k) = γ 1/2(k − (λ− µ)/γ ) and Xγ is a CTMC on Z

+ with birth
rate λn = ρµ/γ (n � 0) and death rates µn = (µ+ (n− 1)γ )/γ (n � 1).

For (f,Af ) as above, we need to prove that there exists (fγ : γ > 0) satisfying

sup
k�0

∣∣∣∣fγ (k)− f(γ 1/2

(
k − λ− µ

γ

))∣∣∣∣ → 0 (A.9)

and

sup
k�0

∣∣∣∣(Aγ fγ )(k)− (Af )(γ 1/2

(
k − λ− µ

γ

))∣∣∣∣ → 0 (A.10)

as γ ↓ 0, where Aγ is the generator of Xγ . To construct fγ , we select f̃γ (as in the proof
of theorem 1) so that f̃γ agrees with f on (−κ, κ) (with κ → ∞ sufficiently slowly)
and vanishes outside (−κ − 1, κ + 1), and then put fγ (k) = f̃γ (γ 1/2(k − (λ− µ)/γ )).

Because of the compact support of f̃γ , (A.10) reduces to showing that

sup
|j |�(κ+1)γ−1/2

∣∣(Aγ fγ )(j + l)− (Af )(γ 1/2(j +"))∣∣ → 0

as γ ↓ 0, where l = �(λ− µ)/γ � and " = �l − (λ− µ)/γ �. But

(Aγ fγ )(j + l) = −("+ j)γ 1/2f̃ ′
γ

(
γ 1/2(j +"))+ (

λ+ (j +")γ )f̃ ′′
γ

(
ξγ (j)

)
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and

(Af )
(
γ 1/2(j +")) = −("+ j)γ 1/2f ′(γ 1/2(j +"))+ λf ′′(γ 1/2(j +"))

where ξγ (j) lies within γ 1/2 of γ 1/2(j + "). A straightforward argument then yields
(A.9) and (A.10).

The proof of part 5 follows a similar pattern to that of part 4; its proof is therefore
omitted. �

Proof of theorem 2. We prove part (i) for p = 1; the other cases follow an identical
style of argument.

The triangle inequality for metrics implies that it is sufficient to prove that
γ 1/2Xγ (·/γ )⇒ X(·) inD[0,∞) as γ ↓ 0. Note that γ 1/2Xγ (·/γ ) can be represented as
(ηγ ◦X̂γ )(·), where X̂γ (·) = Xγ (·/γ ) and ηγ (x) = γ 1/2x. The process X̂γ has generator
Âγ = A/γ , where A is defined as in the proof of theorem 1. Furthermore, the identical
collection {(f,Af )} (as in theorem 1) generates a Feller semigroup on Ĉ(0,∞) for X.

We must show that for each pair (f,Af ), there exists (fγ , Âγ fγ ) in the collection
such that

sup
x�0

∣∣fγ (x)− f (γ 1/2x)
∣∣ → 0

and

sup
x�0

∣∣(Âγ fγ )(x)− (Af )(γ 1/2x
)∣∣ → 0

as γ ↓ 0. As in the proof of theorem 1, we select f̃γ so that f̃γ is twice continuously
differentiable, agrees with f on [0, κ] (with κ → ∞ sufficiently slowly), and vanishes
on [κ + 1,∞). Set fγ (x) = f̃γ (γ

1/2x). The key calculation is that(
Ãγ fγ

)
(x) = (

(ρ − 1)µ− γ (x − 1)
)
γ −1/2f ′(γ 1/2x

) + 2ρµf ′′(γ 1/2x
)

and

(Af )
(
γ 1/2x

) = −(cµ+ γ 1/2x
)
f ′(γ 1/2x

) + µf ′′(γ 1/2x
)

for x � κγ −1/2. The rest of the details can easily be filled in. �

The proof of theorem 3 follows a similar pattern to theorem 2; its proof is therefore
omitted.
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