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Abstract

This note considers the taboo counterpart of stationarity. A general stochastic process in
two-sided time is de.ned to be taboo-stationary if its global distribution does not change by
shifting the origin to an arbitrary non-random time in the future under taboo, that is, condition-
ally on some taboo-event not having occurred up to the new time origin. The main result is
the following basic structural characterization: a process is taboo-stationary if and only if it can
be represented as a stochastic process with origin shifted backward in time by an independent
exponential random variable. An application to re2ected Brownian motion is given.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this note is to de.ne the concept of “taboo-stationarity” for general
stochastic processes in two-sided time (De.nition 1) and present a basic but amazingly
simple structural characterization of this property (Theorem 2, see also Example 1).
Taboo-stationarity is the characterizing property of a “taboo-limit” process (Theorem
1) in the same way as stationarity is the characterizing property of an ordinary limit
process. An application of this general theory to Markov processes can be found in
Glynn and Thorisson (2001, the proof of Proposition 3), and an application to re2ected
Brownian motion is given at the end of this paper.
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This paper is a companion paper to Glynn and Thorisson (2001) and Glynn and Tho-
risson (2002) where taboo-limits are investigated in two important special cases: the
Markov case and the regenerative case. Unlike these papers the present one is not con-
cerned with establishing conditions for the existence of taboo-limits, but rather the focus
is on the properties of the limit process when it exists. The paper is self-contained,
but because of its general character the reader might .nd it helpful to consult the
companion papers before embarking on this one (unless the survey in Section 3 is
su>cient).

These three papers continue a research that has a long tradition in the Markov
process context, including the work on rarity and exponentiality by Keilson (1979)
and the substantial body of literature on R-recurrence for non-negative kernels and the
associated quasi-stationary distribution theory; see, for example, Seneta and Vere-Jones
(1966), Tweedie (1974), Nummelin and Arjas (1976), Nummelin and Tweedie (1978),
Nummelin (1984), and Jacka and Roberts (1995). For a coupling approach to taboo-
stationarity, see Thorisson (2000).

In Section 2 we establish notation, and in Section 3 we put taboo-stationarity brie2y
into the Markov context. In Section 4 we de.ne taboo-stationarity for general processes
(De.nition 1) and show that it is the characterizing property of a taboo-limit (Theo-
rem 1). In Section 5 we give a simple general example of a taboo-stationary process
(Example 1) and then establish the main result of this note (Theorem 2) which states
that a process is taboo-stationary if and only if it has the structure in that example. In
Section 6 we establish the result needed in Glynn and Thorisson (2001), and in Section
7 we present the application to re2ected Brownian motion. In Section 8 we conclude
with a comment on a 1969 paper by Vere-Jones, the only paper that we are aware of
which, like the present paper, considers conditional limits of general non-Markovian
processes.

2. Notation

We shall consider a pair (X ∗; �∗) where �∗ is a non-negative .nite random time
and

X ∗ = (X ∗(s) : s∈R)

is a general stochastic process in two-sided time taking values in a Polish space E and
with DE(R) valued paths. We use �t to denote the two-sided shift:

�tX ∗ = (X ∗(t + s) : s∈R); t ∈R (two-sided shift)

while we shall denote the one-sided shift by

X ∗
t = (X ∗(t + s) : s∈ [0;∞)); t ∈R (one-sided shift):

We also consider a pair (X; �), where � is a non-negative .nite random time and

X = (X (s) : s∈ [0;∞))

is a one-sided process with paths in DE([0;∞)). Denote the one-sided shift by

Xt = (X (t + s) : s∈ [0;∞)); t ∈ [0;∞) (one-sided shift):
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Note that �tX ∗ is two-sided like X ∗ while both X ∗
t and Xt are one-sided like X . Let

t:v:→ denote convergence in total variation.

3. The Markov case

Taboo-stationarity is the “taboo” counterpart of stationarity and extends the well-
known property of quasi-stationarity from the Markov case. Before giving the de.nition
of taboo-stationarity we shall brie2y consider the Markov case and contrast taboo-
stationarity to stationarity.

Let X be a Markov process. Recall that if � is a total variation limit distribution:

P�(X (t)∈ ·) t:v:→�; t → ∞ (� is a t:v: limit distribution);

then � is stationary:

P�(X (t)∈ ·) = �; t ∈ [0;∞) (� is stationary):

Moreover, if there exists a total variation limit distribution � then there actually exists
a two-sided total variation limit process X ∗ such that for all h¿ 0

P(Xt−h ∈ ·) t:v:→P(X ∗
−h ∈ ·); t → ∞ (X ∗ is a limit process):

Clearly, the distribution of the limit does not depend on h and thus X ∗ must be
stationary:

P(�tX ∗ ∈ ·) = P(X ∗ ∈ ·); t ∈ [0;∞) (X ∗ is stationary):

Analogously, if � is a hitting time of a set A and � is a total variation taboo-limit
distribution:

P�(X (t)∈ · |�¿t) t:v:→ �; t → ∞ (� is a t:v: taboo-limit distribution);

then � is quasi-stationary with respect to A, that is,

P�(X (t)∈ · |�¿t) = �; t ∈ [0;∞) (� is quasi-stationary):

Now, a natural question is whether the existence of a quasi-stationary taboo-limit dis-
tribution � implies the existence of a full two-sided taboo-limit process. The answer
is yes. In our Markov paper (Glynn and Thorisson, 2001), we study both discrete-
and continuous-time processes and give conditions (in terms of eigenvalues and eigen-
vectors) for the existence of a quasi-stationary total variation taboo-limit distribution
�, and further show that this yields the existence of a two-sided total variation limit
process, that is, a process X ∗ such that for all h¿ 0

P(Xt−h ∈ · |�¿t) t:v:→P(X ∗
−h ∈ ·); t → ∞ (X ∗ is a taboo-limit): (1)

In Glynn and Thorisson (2001) we show that this limit process X ∗ is a Markov process,
but time inhomogenous. Clearly, X ∗

0 = (X ∗(s) : s∈ [0;∞)) must be time homogenous
with the same transition probabilities as X , and it turns out that the time-reversed
process (X ∗(−s) : s∈ (0;∞)) is also time homogeneous with certain transition prob-
abilities that in particular do not allow entrance into A. Moreover, we show in the
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discrete time Markov chain case that �∗—the hitting time of A—is geometric and that
��∗X ∗ and �∗ are independent. This hints at Example 1 and Theorem 2 below.

In our regenerative paper (Glynn and Thorisson, 2002), we give quite diPerent con-
ditions (in terms of cycle-length moments) for the existence of a two-sided taboo-limit
process X ∗ satisfying (1). In the classical regenerative case we show that X ∗ consists
of independent (but not i.i.d.) cycles. Clearly, X ∗

0 =(X ∗(s) : s∈ [0;∞)) must have i.i.d.
cycles with the same distribution as those of X , and it turns out that the time-reversed
process (X ∗(−s) : s∈ (0;∞)) has also i.i.d. cycles with a certain distribution that, in
particular, does not allow entrance into A.

Clearly, the taboo-limit process at (1) is not stationary. It has another characterizing
property as we shall see in the next section.

4. Taboo-stationarity for general processes in two-sided time

It turns out that the characterizing property of a two-sided taboo-limit process is
“taboo-stationarity” de.ned as follows.

De$nition 1. Let X ∗ be a general stochastic process in two-sided time taking values
in a Polish space E and with DE(R) valued paths. Let �∗ be a non-negative .nite
random time. Call X ∗ taboo-stationary with taboo-time �∗ if shift under taboo does
not change the distribution of the pair (X ∗; �∗); that is; if

P((�tX ∗; �∗ − t)∈ · |�∗¿t) = P((X ∗; �∗)∈ ·); t ∈ [0;∞): (2)

Call the pair (X ∗; �∗) taboo-stationary if this holds. Think of �∗ as the time when
some “taboo” event occurs; for instance the time when X ∗ hits a “taboo” region of its
state space.

The taboo-time �∗ has to be explicitly included in the de.nition because it is not
necessarily de.ned by the process, it is not necessarily a hitting time for instance.

We shall now show that taboo-stationarity is, in fact, the characterizing property of
a total variation taboo-limit.

Theorem 1. A pair (X ∗; �∗) is taboo-stationary if and only if there is a pair (X; �);
where X = (X (s) : s∈ [0;∞)) is a one-sided process with paths in DE([0;∞)) and �
is a non-negative :nite random time; such that

P((Xt−h; � − t)∈ · |�¿t) t:v:→ P((X ∗
−h; �

∗)∈ ·); t → ∞; (3)

for all h∈ [0;∞).

Proof. If (2) holds then clearly so does (3) with (X; �) := (X ∗
0 ; �

∗). In order to es-
tablish the converse [that (3) implies (2)]; assume that (3) holds. Take x∈ [0;∞) and
h∈ [x;∞) and note that (3) implies (with h replaced by h− x) that

P((Xt−(h−x); � − t − x)∈ ·; � − t ¿ x|�¿t)

t:v:→P((X ∗
−(h−x); �

∗ − x)∈ ·; �∗¿x); t → ∞:
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Divide by P(�− t ¿ x|�¿t) on the left and by the limit P(�∗¿x) on the right (and
note that Xt−(h−x) = X(t+x)−h and X ∗

−(h−x) = X ∗
x−h) to obtain: as t → ∞;

P((X(t+x)−h; � − t − x)∈ · |�¿t + x) t:v:→ P((X ∗
x−h; �

∗ − x)∈ · |�∗¿x):

But; according to (3); the left-hand side tends also to P((X ∗
−h; �

∗)∈ ·). Since the two
limits must be identical we have (replace x by t) that

P((X ∗
t−h; �

∗ − t)∈ · |�∗¿t) = P((X ∗
−h; �

∗)∈ ·); 06 t6 h:

Since h is arbitrary this yields (2).

5. The basic structural characterization

Consider the following amazingly simple and general example of a taboo-stationary
process.

Example 1. Let Y = (Y (s) : s∈R) be any stochastic process in two-sided time taking
values in a Polish space E and with DE(R) valued paths. Let V be exponential and
independent of Y . Then (X ∗; �∗) := (�−V Y; V ) is always taboo-stationary. This can be
seen as follows. Since V is exponential we have; for all paths x∈DE(R);

P((�t−V x; V − t)∈ · |V ¿ t) = P((�−V x; V )∈ ·); t ∈ [0;∞):

Since V and Y are independent we may replace x by Y to obtain (since �t−V Y =�tX ∗

and �−V Y = X ∗)

P((�tX ∗; �∗ − t)∈ · |�∗¿t) = P((X ∗; �∗)∈ ·); t ∈ [0;∞);

that is; (X ∗; �∗) is taboo-stationary.

We shall now prove that this example is really not an example but a complete
characterization of taboo-stationarity: all taboo-stationary processes are of this form.

Theorem 2. The pair (X ∗; �∗) is taboo-stationary if and only if �∗ is exponential
and independent of ��∗X ∗.

Proof. If �∗ is exponential and independent of ��∗X ∗ take V =�∗ and Y = ��∗X ∗ in
Example 1 to obtain that (X ∗; �∗) is taboo-stationary. Conversely; suppose (X ∗; �∗) is
taboo-stationary. From (2) we obtain

P(�∗ − t ∈ · |�∗¿t) = P(�∗ ∈ ·); t ∈ [0;∞);

which is the standard characterization of exponentiality. Moreover;

��∗X ∗ = ��∗−t�tX ∗; t ∈ [0;∞);

that is; ��∗X ∗ = g(�tX ∗; �∗ − t) for all t ∈ [0;∞) where g is the mapping de.ned by
g(X ∗; �∗) = ��∗X ∗. Applying g on both sides in (2) yields

P(��∗X ∗ ∈ · |�∗¿t) = P(��∗X ∗ ∈ ·); t ∈ [0;∞):
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Multiply by P(�∗¿t) to obtain

P(��∗X ∗ ∈ ·; �∗¿t) = P(��∗X ∗ ∈ ·)P(�∗¿t); t ∈ [0;∞)

that is; ��∗X ∗ and �∗ are independent.

In addition to its immediate theoretical value and to applications like those in Sections
6 and 7 below, Theorem 2 is useful in simulation. It is of the same importance for
simulating taboo-stationary processes as the independent uniformity of the origin is for
simulating stationary regenerative processes; see Asmussen et al. (1992).

6. Application to Markov processes

The corollary below is the key result needed in the proof of Proposition 3 in our
Markov paper (Glynn and Thorisson, 2001). That proposition gives the behaviour of
the diPerent taboo-limit process obtained when the taboo is broken at time t. It turns
out that that process behaves like ��∗X ∗, where X ∗ is the taboo-limit process obtained
when the taboo is broken after time t as in the present paper.

Corollary 1. If (X ∗; �∗) is taboo-stationary then P(X ∗ ∈ · |�∗¡h) goes weakly
(in the Skorohod topology) to P(��∗X ∗ ∈ ·) as h decreases to zero.

Proof. Let f be a bounded continuous function de.ned on D(R) and let Vh be inde-
pendent of (X ∗; �∗) and have the distribution P(�∗ ∈· |�∗¡h); that is; an exponential
distribution truncated by h. Then the independence of ��∗X ∗ and �∗ yields the second
identity in

E[f(X ∗)|�∗¡h] =E[f(�−�∗��∗X ∗)|�∗¡h]

=E[f(�Vh��∗X ∗)]: (4)

Since Vh6 h and f is continuous and �t is continuous in t; we have that f(�Vh��∗X ∗)
goes pointwise to f(��∗X ∗) as h decreases to zero. Since f is bounded this implies
that E[f(�Vh��∗X ∗)] goes to E[f(��∗X ∗)] and a reference to (4) completes the proof.

7. Application to re,ected Brownian motion

In the following concrete example, much can be worked out explicitly.
Take standard Brownian motion on the real line and put a re2ecting boundary at

the origin, so that we now have re2ecting Brownian motion on the positive half-line
with zero drift and variance parameter one. Let the taboo-time be the hitting time of
the interval [1;∞).

In our Markov paper (Glynn and Thorisson, 2001), the key is to solve a certain
eigenvalue problem. In this setting, we need to .nd a positive eigenfunction u and an
eigenvalue −� (with � positive) so that Au=−�u with u′(0)=0 (this is the re2ecting
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boundary condition) and u(1) = 0. Since the eigenfunction is only determined up to a
constant, we can choose to require that u(0)=1. Here, A is the second-order diPerential
operator 1

2d
2=dx2 (that is, one half the second derivative).

When solving this problem, one notes that there are three boundary conditions. In
order that we satisfy all three, � will need to be chosen appropriately (that is, this
determines the eigenvalue that we need). Here, the linearly independent solutions of the
second-order ODE are cos((2�)1=2x) and sin((2�)1=2x). Let a and b be the coe>cients of
the two linearly independent solutions. The boundary conditions u′(0)=0 and u(0)=1
require setting a= b=1. In order that we satisfy u(1)=0, we must set (2�)1=2 =3�=4.
In other words, � = 9�2=32. This gives us the required positive eigenfunction and
eigenvalue.

8. Remark

Unlike in the standard quasi-stationary literature, the process X considered here
is not necessarily Markovian, and the taboo-time � need not be a stopping time. It
could, for instance, be a last exit time. Taboo-limit results for such times seem not
to have been worked out even in the Markov case. But according to Theorems 1 and
2, the taboo-time �∗ of the two-sided limit process X ∗ will still be exponential and
independent of the limit process seen from that time, ��∗X ∗.

The only paper that we are aware of, where conditional limits are considered for
general non-Markovian processes, is Vere-Jones (1969). According to Theorem 1 in
that paper it holds for an integer-valued process X , that X (t) goes in probability
to 0 and the conditional distribution of X (t) given X (t) �= 0 converges to a proper
distribution, as t goes to in.nity, if and only if there are non-random integers C(t)
such that the sum of C(t) independent copies of X (t) converges in distribution to a
proper non-degenerate random variable.

This diPers in several ways from our results. Firstly, it deals with convergence in the
state space to a limit variable rather than in a two-sided path space to a limit process.
Secondly, the conditioning is on X (t) �= 0 rather than on �¿t. Finally and most
importantly, Vere-Jones’s Theorem 1 focuses on a characterization of the existence of
a limit variable while the present paper is not concerned with establishing conditions
for the existence of taboo-limits. Theorems 1 and 2 above focus on the characterizing
properties of the limit process when it exists.
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