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SUMMARY

We describe a heuristic control policy for a general finite-horizon stochastic control problem, which can be used when the
current process disturbance is not conditionally independent of the previous disturbances, given the current state. At each
time step, we approximate the distribution of future disturbances (conditioned on what has been observed) by a product
distribution with the same marginals. We then carry out dynamic programming (DP), using this modified future disturbance
distribution, to find an optimal policy, and in particular, the optimal current action. We then execute only the optimal current
action. At the next step, we update the conditional distribution, and repeat the process, this time with a horizon reduced by
one step. (This explains the name ‘shrinking-horizon dynamic programming’). We explain how the method can be thought of
as an extension of model predictive control, and illustrate our method on two variations on a revenue management problem.
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1. INTRODUCTION

We consider a general finite-horizon stochastic control
problem, with full state information, but without the
standard assumption that the current disturbance is
conditionally independent of the past disturbances,
given the current state (see, e.g. [1–6]). When this
assumption holds, standard dynamic programming
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(DP) can be used to find the optimal policy (see, e.g.
[2, 7–9]). While the curse of dimensionality renders DP
impractical in many problems, there are still many other
problems for which the DP can be carried out effec-
tively. These include, for example, the case in which
the state and input spaces are finite, with modest cardi-
nalities, and the case when they are continuous, with
small dimension (one or two).

When the disturbances do not satisfy the conditional
independence assumption, however, straightforward DP
cannot be used. A general approach is to augment the
state to include all previous disturbances; with this
augmented state, the conditional independence assump-
tion holds, so that standard DP can be applied. Unless
the time horizon is very small, however, this is not
practical since the augmented state is large (either in
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cardinality, if it is discrete, or in dimension, if it is
continuous).

Approximate dynamic programming methods, which
are meant to handle unwieldy large state spaces,
can be applied to find a suboptimal policy, using
the augmented system [2, 10, 11]. These methods are
based on using an estimate of the optimal value func-
tion or optimal policy. Another general method for
finding a suboptimal control policy is model predictive
control (MPC) [6, 12–14], which goes by many other
names, including certainty-equivalent model predictive
control (CE-MPC), reciding horizon control, dynamic
matrix control [15], rolling horizon planning [16],
and dynamic linear programming [17]. In MPC, the
action or control is found as follows. At each step, we
solve a deterministic optimal control problem, with
the unknown future disturbances replaced with some
kind of estimates available at the current time (such as
conditional means). We can think of this optimization
as a planning exercise, working out the best sequence
of actions to take, if the future disturbances were equal
to our estimates. We then execute only the current
action in this plan. At the next step, the same problem
is solved, this time using the exact value of the current
state, which is now known from the measurement and
an updated set of predictions.

In this paper we introduce another suboptimal policy
that can be used when straightforward DP would be
practical if the disturbances satisfied the conditional
independence assumption. This includes, for example,
systems with finite state, action, and noise spaces,
with the product of their cardinalities no more than a
million or so (say), for which we can directly compute
the value function by recursion. Another example is
systems with continuous state with low dimension (say,
one or two), for which we can (accurately) discretize
the state and carry out the value function recursion
numerically. Our method requires the solution of a DP
problem, for the given (unaugmented) system, but with
independent disturbances, at each step. As the number
of remaining time steps shrinks as time advances, we
call the method as shrinking-horizon dynamic program-
ming (SHDP). SHDP can be thought of as a variation
on MPC, in which a (tractable) DP problem is solved
at each step, instead of a deterministic optimal control
problem.

In Section 2 we describe a general finite-horizon
stochastic control problem, fixing our notation. In
Section 3, we briefly describe DP, and DP with
state augmentation. In Section 4, we describe three
suboptimal policies, which grow in sophistication. In
certainty-equivalent open-loop control (CE-OLC), we
ignore all variations in the disturbances, and simply
replace the disturbances with some fixed values, which
yields a (deterministic) optimization problem. In
CE-MPC, at each step, future disturbances are replaced
with predictions, based on currently available infor-
mation. And finally, in SHDP, at each step, we replace
the future disturbance distribution with a product
distribution with the same marginals, and then use
DP to solve the resulting problem. In Section 5 we
illustrate SHDP with two applications from revenue
management (RM).

2. FINITE-HORIZON STOCHASTIC CONTROL

We consider a discrete-time dynamic system, over the
time interval t=1, . . . ,T , with dynamics

xt+1= ft (xt ,ut ,wt ), t=1, . . . ,T −1, (1)

where xt ∈X is the system state, ut ∈U is the control
input or action, wt ∈W is the process noise or
disturbance, all at time step t . The functions ft :
X×U×W→X are the state transition functions. We
assume that the initial state x1 is known. The process
noise trajectory w1:T ∈WT is random, with a known
distribution. Here we use the notation zi : j to denote
zi : j =(zi , zi+1, . . . , z j−1, z j ).

We will consider causal control policies, in which
x1, . . . , xt (i.e. x1:t ) and w1, . . . ,wt−1 (i.e. w1:t−1) are
available when the control input ut must be chosen.
Thus we have

ut =�t (x1:t ,w1:t−1), t=1, . . . ,T, (2)

where the family of functions �t :Xt ×Wt−1→U,
for t=1, . . . ,T , is called the control policy. (As x1 is
known, the function �1 is constant). For fixed control
policy, (1) and (2) can be used to express the control
trajectory u1:T and the state trajectory x1:T as functions
of w1:T , so these are also random variables.
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We can express the control policy in several other
forms. In (2) the control input is expressed as a family
of functions of the current and past states x1:t and past
disturbances w1:t−1. But it can just as well be expressed
as a family of functions of the past disturbances w1:t−1
alone, since the current and past states x1:t are a function
of the past disturbances w1:t−1 (given the control policy
functions �1, . . . ,�t−1). It will also be convenient in
the sequel to express the control policy as a family of
functions of the current state and the past disturbances,
as in

ut =�t (xt ,w1:t−1), t=1, . . . ,T .

When �t is a function only of xt , i.e. has the form

�t (x1:t ,w1:t−1)=�t (xt ), (3)

where �t :X→U, we refer to the policy as a state
feedback policy. When �t is a constant, i.e. independent
of any states or disturbances, we refer to it as a constant
policy or open-loop policy.

The objective function has the form

J =E
T∑
t=1

�t (xt ,ut ,wt ), (4)

where �t :X×U×W→R∪{∞} is the stage cost at
time step t , for t=1, . . . ,T . (Thus, we are implicitly
imposing the constraint on ut , which �t (xt ,ut ,wt )<∞
almost surely).

The objective J is a (very complex) function of the
control policy. In the stochastic control problem, the
goal is to choose the control policy so that J is mini-
mized. The data in this problem are the initial state
x1, the state transition functions ft , the distribution of
w1:T , and the state cost functions �t ; the optimization
variable is the control policy.

2.1. Prescient lower bound

We can obtain a lower bound on the optimal value of
the stochastic control problem by relaxing the causality
constraint on the policies: We allow all ut to depend on
w1:T . In this case we can explicitly solve the problem:
For each realization of w1:T , the optimal control input

sequence is found by solving the (deterministic) opti-
mization problem

minimize
T∑
t=1

�t (xt ,ut ,wt )

subject to xt+1= ft (xt ,ut ,wt ),

t=1, . . . ,T −1,

(5)

with variables x2, . . . , xT , u1, . . . ,uT . The optimal value
of this optimization problem is a random variable, since
it depends on w1:T . The mean value of the optimal
value of (5) is evidently a lower bound on the optimal
value of the stochastic control problem. We call this
bound the prescient lower bound since it is the optimal
value of the problem when the control actions know
the future disturbances exactly.

To evaluate this lower bound, we must be able
to effectively solve the deterministic optimization
problem (5). We can evaluate the mean by Monte
Carlo, by generating many realizations of w1:T , solving
the problem (5) for each realization, and averaging the
optimal values obtained.

There is no reason to believe that this bound should
be close to the optimal value of the stochastic control
problem. Indeed, the difference between these two
numbers can be directly interpreted as the cost of not
knowing the future.

3. DYNAMIC PROGRAMMING

In this section we consider the special case in which the
following assumption about the disturbance distribution
holds:

wt is independent of w1:t−1 given xt ,

t=2, . . . ,T . (6)

As x1, . . . , xt−1 are functions of w1:t−1, this assumption
implies that wt is independent of x1:t−1, given xt . If
the disturbances w1, . . . ,wT are independent, then of
course the assumption (6) holds.

It is well known that when (6) holds, the optimal
control policy is a state feedback policy (3). More-
over, an optimal policy can be found by DP, using the
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Bellman recursion [18, 19]. We recursively define the
cost-to-go or value functions Vt :X→R, as

Vt (z)= inf
v∈U

Ewt (�t (z,v,wt )+Vt+1( ft (z,v,wt ))), (7)

for t=T, . . . ,1, where we take VT+1=0; the expecta-
tion is conditioned on xt = z. An optimal control policy
is then given by

��
t (xt ) = arg inf

v∈U
Ewt (�t (xt ,v,wt )

+Vt+1( ft (xt ,v,wt ))), (8)

for t=1, . . . ,T . For more on DP, see [2, 4, 7–10].

3.1. DP with state augmentation

When wt is not independent of w1:t−1 given xt , i.e.
the assumption (6) does not hold, the straightforward
DP method described above cannot be used to find an
optimal policy. One general approach in this case is to
augment the state with all previous disturbances: We
take states of the augmented system to be

x̃1= x1, x̃t =(xt ,w1:t−1), t=2, . . . ,T .

(These vary in size). The state transition function can
be extended to the augmented system in the obvious
way. For the augmented system, the current disturbance
wt is now conditionally independent of w1:t−1 given
x̃t (since in this case wt−1 is deterministic). Standard
DP can now be applied to this augmented (and much
larger) system. For more on state augmentation, see [2,
Section 1.4].

In some cases we can get away with a smaller state
augmentation. If wt can be expressed as a function of
a Markov process with state st ∈S, we can augment
the state as x̃t =(xt ,st ), assuming we can have access
to st in determining the control action at time step t .

Our focus in this paper is on systems for which the
basic DP algorithm of Section 3 would be practical, if
the disturbances satisfied the conditional independence
assumption (6), but DP with state augmentation, as
described here, is not.

4. SUBOPTIMAL POLICIES

In this section we describe several methods for finding
a good, if not optimal, policy, when the conditional
independence assumption (6) does not hold. Each of
the methods can be interpreted as finding an optimal
policy for a modified problem, after a simplification of
the disturbance model.

4.1. Certainty-equivalent open-loop control

A very simple constant or open-loop policy can be
obtained as follows:

1. Form constant approximations ŵ1, . . . , ŵT of the
disturbances: These can be means, most likely
values, or any other reasonable approximations
of wt .

2. Solve the resulting problem using these approx-
imate disturbance values: In this case the
stochastic control problem reduces to an ordinary
optimization problem,

minimize
T∑
t=1

�t (x̃t , ũt , ŵt )

subject to x̃t+1= ft (x̃t , ũt , ŵt ),

t=1, . . . ,T −1

x̃1= x1

(9)

with variables x̃1, . . . , x̃T ∈X, ũ1, . . . , ũT ∈U.
Let u�

1, . . . ,u
�
T denote the optimal values of

ũ1, . . . , ũT .
3. Use ut =u�

t , t=1, . . . ,T , as an (open-loop)
policy.

We refer to this as CE-OLC. In CE-OLC, we ignore
all variation in the disturbances, since we assume that
the disturbances are known, and take on the predicted
values ŵt . CE-OLC requires the solution of the one
optimization problem (9), which can be done ahead
of time.

4.2. Certainty-equivalent model predictive control

In CE-MPC we calculate each input ut by replacing the
current and future disturbances with constant approxi-
mations ŵt |t , . . . , ŵT |t , obtained using the most recent
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known data, and solving the resulting optimization
problem over the remaining time period.

To find ut , we proceed as follows:

1. Form constant approximations ŵt |t , . . . , ŵT |t of
the current and future disturbances: Here, ŵ�|t
denotes our prediction of w� based on the infor-
mation available at time period t , i.e. w1:t−1.
These predictions could be, for example, the
conditional means ŵ�|t =E(w�|w1:t−1), or the
conditionally most likely values. These approxi-
mations are (in general) functions of w1:t−1.

2. Solve the resulting problem over the remaining
period using these approximate disturbance
values: We solve the (deterministic) optimization
problem

minimize
T∑

�=t
��(x̃�, ũ�, ŵ�|t )

subject to x̃�+1= f�(x̃�, ũ�, ŵ�|t ),
�= t, . . . ,T −1

x̃t = xt ,

(10)

with variables x̃t , . . . , x̃T ∈X, ũt , . . . , ũT ∈U. Let
u�
t , . . . ,u

�
T denote optimal values of ũt , . . . , ũT .

These are (in general) functions of w1:t−1
(through the predicted values ŵ�|t ) and xt
(through the equality constraint in (10).

3. Use ut =u�
t as the current input.

CE-MPC can be thought of as CE-OLC, where at
each step we use the most up to date predictions of
the future disturbance values. The CE-MPC policy has
recourse, i.e. ut is a function of the current state and
past disturbances. Unlike CE-OLC, CE-MPC takes
advantage of the measured values of past disturbances
in its determination of a current action, through the
generation of the predicted future disturbances. Its
model of the future disturbances, however, is still rather
unsophisticated, since the implicit assumption is that
the future disturbances are known exactly. CE-MPC
requires the solution of the optimization problem (10)
at each time step.

4.3. Shrinking-horizon dynamic programming

We now come to the algorithm we propose. SHDP
takes CE-MPC one step further, by taking into account

variation in future disturbances. However, any depen-
dency among the future disturbances is ignored, which
makes it possible to solve the (modified) problem
using DP.

In SHDP, the control input ut is found as follows:

1. Form approximate product measure for current
and future disturbances: Let Dt denote the distri-
bution of wt :T , conditioned on the observed x1:t
and w1:t−1. Let D̃t denote the distribution on wt :T
obtained from Dt by keeping the marginal distri-
butions of wt , . . . ,wT , but otherwise making them
independent. In other words: find the marginal
distributions of wt , . . . ,wT under Dt , and then
form D̃t as the product of these measures.

2. Solve the resulting stochastic control problem
over the remaining period using this approximate
measure on current and future disturbances: Use
DP to find an optimal policy on the remaining
time interval, for the modified future distur-
bance distribution. Define the Bellman functions
VT , . . . ,Vt+1 recursively as

V�(z) = inf
v∈U

Ew�(��(z,v,w�)

+V�+1( f�(z,v,w�))), (11)

for �=T, . . . , t+1, with VT+1=0, using the
marginal conditional distributions for wt , . . . ,wT

(i.e. D̃t ). Let

u�
t = arg inf

v∈U
Ewt (�t (xt ,v,wt )

+Vt+1( ft (xt ,v,wt ))) (12)

denote an optimal input for the modified
stochastic control problem. This (in general)
depends on x1:t and w1:t−1, via the conditional
distribution Dt .

3. Use ut =u�
t as the current input.

In CE-MPC, all uncertainty in the future distur-
bances is ignored; in SHDP, however, we retain infor-
mation about uncertainty in future disturbances, but
we ignore any dependence between the future distur-
bances. At each time step, SHDP requires the solu-
tion of a stochastic control problem (which satisfies
the conditional independence assumption (6)), using
(11) and (12).
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When the disturbance in the original problem satis-
fies the conditional independence assumption (6), the
true conditional distribution Dt and the approximate
product conditional distribution D̃t are the same, and
SHPD is an optimal control policy.

4.4. Implementing SHDP

Wemention two methods that can be used to implement
SHDP. In some cases w1:T has a parameterized distri-
bution, for which the conditional distributions are easily
formed. For example, if the distribution is Gaussian or
log-normal, so is the conditional distributionDt , whose
parameters are easily computed. In these two cases,
the marginal distributions of w�, conditioned on t , are
also Gaussian or log-normal, with easily computed
parameters.

In other cases we can use a sampling approxi-
mation for D̃t . To do this we only need a method
for generating a set of samples or realizations w

(i)
t :T ,

i=1, . . . ,N , from the conditional distribution Dt . We
interpretw(i)

t , . . . ,w
(i)
T as a set of plausible future distur-

bance trajectories, given everything observed to date.

5. REVENUE MANAGEMENT (RM)

We now describe a general nonperishable RM problem
and show how SHDP can be implemented for two vari-
ations on the problem. In RM, the goal is to maximize
expected profit from sales of an asset that occur over
T periods, denoted t=1, . . . ,T . Let xt�0 denote the
total amount of the asset remaining at period t , with
x1= B being the given initial quantity available. At
each time period t , we must decide how much of the
asset remaining to release for sale, which we denote
ut , with 0�ut�xt . We let dt�0 denote the demand for
the asset in period t , with d1:T random from a known
distribution. (This distribution might be obtained by a
modeling step from historical demand data). When ut
is chosen, the previous demands d1:t−1 are known; the
current period and future demands dt :T are not.

The amount of asset sold in period t is st =
min{ut ,dt }, the minimum of the amount of asset
released for sale and the demand. The asset is nonper-
ishable, i.e. any amount made available in a time period

but not sold carries over to the next time period, so
we have xt+1= xt −st . The price of the asset in time
period t is pt , which we assume is known. We will
assume that the prices are positive and increasing, i.e.
0<p1< · · ·<pT . (We can always reduce the general
case to this one: For any period in which the prices
do not increase, the optimal ut is zero, so we can just
aggregate such periods into the next one). The total
revenue is R=∑T

t=1 pt st . The RM problem is to find
a policy

ut =�t (xt ,d1, . . . ,dt−1), t=1, . . . ,T,

which maximizes ER. We will look at two versions of
the RM problem: in the discrete (or indivisible) version,
the asset quantities xt , ut , dt are integers; in the contin-
uous (or divisible) version, the asset quantities xt , ut ,
dt are real numbers.

As we will see, the RM problem is readily solved
when the demands satisfy the conditional independence
assumption (6). But the dependence of the demands
over time is a key point in RM: The demand in the
first period, for example, tells us something about the
demand in the later periods, when the price is higher,
and therefore can strongly affect our early actions.

There are many variations in the RM problem
described above. We can allow xt<0, which we inter-
pret as backlog (which incurs some backlog cost).
In the perishable RM problem, the amount of asset
made available but not sold is lost, so xt+1= xt −ut .
In another version, the prices are random with some
known distribution. In yet another version, we do not
know the demands d1, . . . ,dt−1; instead we only know
the sales s1, . . . ,st−1. If s�<u�, we know the demand
exactly; if, however, we have st =ut , we only know
that d��u�. For more on RM and for some of the latest
work in the field, see [20–24].

Let us cast our discrete and continuous RM prob-
lems in the formulation presented in Section 2. The
state is simply xt , the remaining amount of asset, with
X={0,1, . . . , B} (in the continuous case, X=[0, B]);
the control input is ut , the amount released, with
U={0,1, . . . , B} (in the continuous case, U=[0, B]).
The process disturbance wt is just the demand dt ,
with W=Z+ (W=R+ in the continuous case). The
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dynamics (1) are given by

xt+1 = ft (xt ,ut ,dt )= xt −min(ut ,dt ),

t = 1, . . . ,T −1,

with x1= B. The cost function in period t is the negative
revenue,

lt (xt ,ut ,dt )=
{−pt min(ut ,dt ) if ut�xt

+∞ otherwise.

(The value+∞ here encodes the constraint that ut�xt ).
With these identifications, the RM problem is exactly
the general stochastic control problem from Section 2.

Conditionally independent demands: If the demands
d1, . . . ,dT satisfy (6), the RM problem is easily solved
by DP. With discrete variables, the value function Vt
reduces to a vector in RB . The Bellman recursion can
be carried out by direct evaluation of the expectation
(truncating the distribution of dt at some reasonable
large value); the minimization can be carried out by
exhaustive search over v=0,1, . . . , xt . With continuous
variables, Vt is a function defined on the real interval
[0, B]; we describe it by its values at, say, M=100
values in the interval, and use piecewise-linear interpo-
lation to evaluate it between these sample points. The
Bellman recursion can be evaluated as in the discrete
case.

Known demands: To compute the prescient bound,
and to carry out CE-MPC, we must be able to solve
optimization problems of the form (5) or (10), i.e. solve
RM problems when the future demand is known. We
now show how this can be done analytically for both
the discrete and continuous cases. We argue informally
here, but optimality of the control input we describe is
easily proved. The strategy is to first satisfy (if possible)
all the demand in period T (which corresponds to
highest price pT ); then we satisfy (again, if possible)
all demand in period T −1 (which has second highest
price), with any left over asset. We continue working
backward this way until we run out of asset to allocate,
or all demand is satisfied.

To describe this formally, let t̄ be the largest integer
for which

∑T
t=t̄ dt>B. Then we have

u�
t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dt t>t̄

B−
T∑

t=t̄+1
dt t− t̄

0 t<t̄ .

The associated optimal revenue is

pt̄

(
B−

T∑
t=t̄+1

dt

)
+

T∑
t=t̄

pt dt .

6. DISCRETE RM EXAMPLE

6.1. Demand model

Here we assume that all asset quantities are discrete,
i.e. integers. We model the demand d with an auto-
regressive Poisson process, i.e.

dt ∼Poisson(�dt−1+�dt−2+�), t=1, . . . ,T,

where �, �, � are scalars, and d0, d−1 are given integers.
The mean demand follows the linear auto-regressive
process:

d̄t =�d̄t−1+�d̄t−2+�, t=1, . . . ,T .

The conditional distribution Dt of dt , . . . ,dT given
d1, . . . ,dt −1 is also auto-regressive Poisson:

d� ∼Poisson(�d�−1+�d�−2+�), �= t, . . . ,T .

We can easily generate samples from this conditional
distribution by simulation, which can be used to eval-
uate expectations over the marginals.

Note that, given the demand process above, the
optimal policy can be computed exactly by DP with
state augmentation as described in Section 3.1. The
state at time t is augmented to be (xt ,dt−1,dt−2).
Under this formulation, the conditional independence
(6) holds and DP can be applied.

6.2. Numerical instance

We consider a particular problem instance with T =10
periods, a total initial asset level B=200 units, and
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Figure 1. Mean and standard deviation of demand d versus
t (decreasing curve), and price p versus t (increasing line),

for the discrete RM example.

linearly increasing prices pt =(4t+5)/9, t=1, . . . ,10,
which vary from p1=1 to p10=5. We choose �=0.3,
�=0.2, �=8, d0=d−1=70. Figure 1 shows the mean
and standard deviation of the demands versus time. It
also shows the evolution of the price versus time. The
mean total demand is 235, slightly more than the initial
asset level.

We generate 1000 realizations of d , and for each
one, we work out the revenue obtained using CE-OLC,
CE-MPC, SHDP, and the prescient control policy,
which gives us an upper bound on the revenue. For
the predictions of future demand, we use the mean
(conditional mean in CE-MPC), rounded to the closest
integer. We also computed the optimal policy by
brute force, using DP with state augmentation.
(This required approximately 10 CPU hours on a
quadcore 3GHz machine, as compared with 2.75
CPU seconds for each SHDP simulation, and much
less for each simulation of the other policies). The
results are shown below. We can see that SHDP
substantially outperforms CE-OLC and CE-MPC,
achieving less than half the suboptimality of these
policies. One might expect CE-MPC to outperform CE-
OLC, since it has recourse, but in this example, it does
not. On the other hand, the recourse obtained using
SHDP does evidently give a substantial improvement

over CE-OLC.

Policy Revenue mean ± std. dev. Suboptimality

CE-OLC 517.43±40.61 7.7%
CE-MPC 511.95±49.26 8.7%
SHDP 539.96±53.89 3.6%

Optimal 560.39 0%
Prescient (568.72±53.05)

7. CONTINUOUS RM EXAMPLE

7.1. Demand model

Here we assume that all asset quantities are contin-
uous. We will model the demand d with a log-normal
distribution, i.e. we assume that logd∼N(	,�), where
	∈RT and �∈ST are known. The mean demand is
given by

d̄t =exp(	t +�t t/2), t=1, . . . ,T .

The demand covariance matrix is

�d =E(d− d̄)(d− d̄)T=(d̄d̄T)◦(exp(�)−1),

where exp(·) is entrywise, and ◦ is the Hadamard
product, i.e. entrywise multiplication.

The conditional distribution Dt of dt :T given d1:t−1
is also log-normal:

log(dt :T )|d1:t−1∼N(
t ,�t ), (13)

where log(·) is entrywise, and

t = 	t :T +�t :T,1:t−1�

−1
1:t−1,1:t−1(log((d1, . . . ,dt−1))

−	1:t−1),

�t = �t :T,t :T −�t :T,1:t−1�
−1
1:t−1,1:t−1�

T
t :T,1:t−1.

(The subscripts denote subvectors or submatrices of
	 and �, with the given index ranges). The marginal
distribution of dt :T under Dt is log-normal too: the
product measure D̃t is log-normal with parameters

t and diag(�t ). In particular, we can easily determine
the marginal distributions of dt , . . . ,dT , conditioned
on d1:t−1.
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7.2. Numerical instance

We consider a particular problem instance with T =10
periods, a total initial asset level B=1, and linearly
increasing prices pt =(4t+5)/9, t=1, . . . ,10, which
vary from p1=1 to p10=5.

The parameters 	 and �, which determine the
demand distribution, come from a constant-elasticity
model, and a model for inter-period demand depen-
dence. We choose the mean demands to follow a
constant-elasticity price-response function, i.e.

d̄t =cp−�
t , t=1, . . . ,T,

where c=0.2 and �=0.4. We describe � via its diag-
onal elements and correlations, �ij=�i� j
ij, where
�t is the standard deviation of logdt , and 
ij is the
correlation of logdi and logd j . We take �t =0.2 for all
t , which means each demand often varies ±20%, and
sometimes ±40%. We use a simple model of decaying
correlation: for i 	= j ,


ij=�exp(−�|i− j |),
with �=0.7, �=0.1. Thus, the correlation between
logdt and logdt+1 is 63%; the smallest correlation is
between logd1 and logd10, around 28.5%. Figure 2
shows the mean and standard deviation of the demands
versus time. It also shows the evolution of the price
versus time. The mean total demand is 1.38, which is
slightly more than the initial asset level.

To evaluate each V�(z), we discretize x and u over
an evenly spaced grid of 100 points over the interval
[0, B]. We approximate the expectations in (11) and
(12) by replacing them by their empirical mean over
100 samples of dt generated from the marginal of dt
under Dt .

We generate 1000 realizations of d , and for each
one, we work out the revenue obtained using CE-OLC,
CE-MPC, SHDP, and the prescient control policy. The
results are shown below.

Policy Revenue mean ± std. dev.

CE-OLC 3.05±0.26
CE-MPC 3.02±0.29
SHDP 3.11±0.25
Prescient (3.28±0.27)
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Figure 2. Mean and standard deviation of demand d versus t
(decreasing curve), and price p versus t (increasing curve),

for the continuous RM example.

We can see that SHDP substantially outperforms
CE-OLC and CE-MPC. The mean revenue obtained
with SHDP is only 5% under that achieved with full
knowledge of future demand. In particular, the SHDP
control policy is at most 5% suboptimal. (It is likely to
be substantially less suboptimal).
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