Shrinking-horizon dynamic programming Joëlle Skaf^{1,*,†}, Stephen Boyd² and Assaf Zeevi³ Google, 72 9th Avenue, New York, NY 10011, U.S.A. Information Systems Lab, Electrical Engineering Department, Stanford University, Stanford, CA 94305-9510, U.S.A. Graduate School of Business, Columbia University, Uris Hall, Room 406, New York, NY 10027, U.S.A. #### **SUMMARY** We describe a heuristic control policy for a general finite-horizon stochastic control problem, which can be used when the current process disturbance is not conditionally independent of the previous disturbances, given the current state. At each time step, we approximate the distribution of future disturbances (conditioned on what has been observed) by a product distribution with the same marginals. We then carry out dynamic programming (DP), using this modified future disturbance distribution, to find an optimal policy, and in particular, the optimal current action. We then execute only the optimal current action. At the next step, we update the conditional distribution, and repeat the process, this time with a horizon reduced by one step. (This explains the name 'shrinking-horizon dynamic programming'). We explain how the method can be thought of as an extension of model predictive control, and illustrate our method on two variations on a revenue management problem. Copyright © 2010 John Wiley & Sons, Ltd. Received 9 July 2009; Revised 19 November 2009; Accepted 1 December 2009 KEY WORDS: dynamic programming; model predictive control; revenue management ### 1. INTRODUCTION We consider a general finite-horizon stochastic control problem, with full state information, but without the standard assumption that the current disturbance is conditionally independent of the past disturbances, given the current state (see, e.g. [1–6]). When this assumption holds, standard dynamic programming (DP) can be used to find the optimal policy (see, e.g. [2, 7–9]). While the curse of dimensionality renders DP impractical in many problems, there are still many other problems for which the DP can be carried out effectively. These include, for example, the case in which the state and input spaces are finite, with modest cardinalities, and the case when they are continuous, with small dimension (one or two). When the disturbances do not satisfy the conditional independence assumption, however, straightforward DP cannot be used. A general approach is to augment the state to include all previous disturbances; with this augmented state, the conditional independence assumption holds, so that standard DP can be applied. Unless the time horizon is very small, however, this is not practical since the augmented state is large (either in †E-mail: joelle.skaf@gmail.com Contract/grant sponsor: AFOSR; contract/grant number: FA9550-06-1-0514 Contract/grant sponsor: NSF; contract/grant number: 0529426 ^{*}Correspondence to: Joëlle Skaf, Google, 72 9th Avenue, New York, NY 10011, U.S.A. cardinality, if it is discrete, or in dimension, if it is continuous). Approximate dynamic programming methods, which are meant to handle unwieldy large state spaces, can be applied to find a suboptimal policy, using the augmented system [2, 10, 11]. These methods are based on using an estimate of the optimal value function or optimal policy. Another general method for finding a suboptimal control policy is model predictive control (MPC) [6, 12–14], which goes by many other names, including certainty-equivalent model predictive control (CE-MPC), reciding horizon control, dynamic matrix control [15], rolling horizon planning [16], and dynamic linear programming [17]. In MPC, the action or control is found as follows. At each step, we solve a deterministic optimal control problem, with the unknown future disturbances replaced with some kind of estimates available at the current time (such as conditional means). We can think of this optimization as a planning exercise, working out the best sequence of actions to take, if the future disturbances were equal to our estimates. We then execute only the current action in this plan. At the next step, the same problem is solved, this time using the exact value of the current state, which is now known from the measurement and an updated set of predictions. In this paper we introduce another suboptimal policy that can be used when straightforward DP would be practical if the disturbances satisfied the conditional independence assumption. This includes, for example, systems with finite state, action, and noise spaces, with the product of their cardinalities no more than a million or so (say), for which we can directly compute the value function by recursion. Another example is systems with continuous state with low dimension (say, one or two), for which we can (accurately) discretize the state and carry out the value function recursion numerically. Our method requires the solution of a DP problem, for the given (unaugmented) system, but with independent disturbances, at each step. As the number of remaining time steps shrinks as time advances, we call the method as shrinking-horizon dynamic programming (SHDP). SHDP can be thought of as a variation on MPC, in which a (tractable) DP problem is solved at each step, instead of a deterministic optimal control problem. In Section 2 we describe a general finite-horizon stochastic control problem, fixing our notation. In Section 3, we briefly describe DP, and DP with state augmentation. In Section 4, we describe three suboptimal policies, which grow in sophistication. In certainty-equivalent open-loop control (CE-OLC), we ignore all variations in the disturbances, and simply replace the disturbances with some fixed values, which yields a (deterministic) optimization problem. In CE-MPC, at each step, future disturbances are replaced with predictions, based on currently available information. And finally, in SHDP, at each step, we replace the future disturbance distribution with a product distribution with the same marginals, and then use DP to solve the resulting problem. In Section 5 we illustrate SHDP with two applications from revenue management (RM). ### 2. FINITE-HORIZON STOCHASTIC CONTROL We consider a discrete-time dynamic system, over the time interval t = 1, ..., T, with dynamics $$x_{t+1} = f_t(x_t, u_t, w_t), \quad t = 1, \dots, T-1,$$ (1) where $x_t \in \mathcal{X}$ is the system state, $u_t \in \mathcal{U}$ is the control input or action, $w_t \in \mathcal{W}$ is the process noise or disturbance, all at time step t. The functions $f_t: \mathcal{X} \times \mathcal{U} \times \mathcal{W} \to \mathcal{X}$ are the state transition functions. We assume that the initial state x_1 is known. The process noise trajectory $w_{1:T} \in \mathcal{W}^T$ is random, with a known distribution. Here we use the notation $z_{i:j}$ to denote $z_{i:j} = (z_i, z_{i+1}, \dots, z_{j-1}, z_j)$. We will consider causal control policies, in which x_1, \ldots, x_t (i.e. $x_{1:t}$) and w_1, \ldots, w_{t-1} (i.e. $w_{1:t-1}$) are available when the control input u_t must be chosen. Thus we have $$u_t = \varphi_t(x_{1:t}, w_{1:t-1}), \quad t = 1, \dots, T,$$ (2) where the family of functions $\varphi_t: \mathcal{X}^t \times \mathcal{W}^{t-1} \to \mathcal{W}$, for t = 1, ..., T, is called the *control policy*. (As x_1 is known, the function φ_1 is constant). For fixed control policy, (1) and (2) can be used to express the control trajectory $u_{1:T}$ and the state trajectory $x_{1:T}$ as functions of $w_{1:T}$, so these are also random variables. We can express the control policy in several other forms. In (2) the control input is expressed as a family of functions of the current and past states $x_{1:t}$ and past disturbances $w_{1:t-1}$. But it can just as well be expressed as a family of functions of the past disturbances $w_{1:t-1}$ alone, since the current and past states $x_{1:t}$ are a function of the past disturbances $w_{1:t-1}$ (given the control policy functions $\varphi_1, \ldots, \varphi_{t-1}$). It will also be convenient in the sequel to express the control policy as a family of functions of the current state and the past disturbances, as in $$u_t = \phi_t(x_t, w_{1:t-1}), \quad t = 1, \dots, T.$$ When φ_t is a function only of x_t , i.e. has the form $$\varphi_t(x_{1:t}, w_{1:t-1}) = \psi_t(x_t),$$ (3) where $\psi_t: \mathcal{X} \to \mathcal{U}$, we refer to the policy as a *state* feedback policy. When φ_t is a constant, i.e. independent of any states or disturbances, we refer to it as a *constant* policy or open-loop policy. The objective function has the form $$J = \mathbf{E} \sum_{t=1}^{T} \ell_t(x_t, u_t, w_t), \tag{4}$$ where $\ell_t: \mathcal{X} \times \mathcal{U} \times \mathcal{W} \to \mathbf{R} \cup \{\infty\}$ is the stage cost at time step t, for t = 1, ..., T. (Thus, we are implicitly imposing the constraint on u_t , which $\ell_t(x_t, u_t, w_t) < \infty$ almost surely). The objective J is a (very complex) function of the control policy. In the *stochastic control problem*, the goal is to choose the control policy so that J is minimized. The data in this problem are the initial state x_1 , the state transition functions f_t , the distribution of $w_{1:T}$, and the state cost functions ℓ_t ; the optimization variable is the control policy. #### 2.1. Prescient lower bound We can obtain a lower bound on the optimal value of the stochastic control problem by relaxing the causality constraint on the policies: We allow *all* u_t to depend on $w_{1:T}$. In this case we can explicitly solve the problem: For each realization of $w_{1:T}$, the optimal control input sequence is found by solving the (deterministic) optimization problem minimize $$\sum_{t=1}^{T} \ell_t(x_t, u_t, w_t)$$ subject to $$x_{t+1} = f_t(x_t, u_t, w_t),$$ $$t = 1, \dots, T-1.$$ (5) with variables $x_2, \ldots, x_T, u_1, \ldots, u_T$. The optimal value of this optimization problem is a random variable, since it depends on $w_{1:T}$. The mean value of the optimal value of (5) is evidently a lower bound on the optimal value of the stochastic control problem. We call this bound the *prescient lower bound* since it is the optimal value of the problem when the control actions know the future disturbances exactly. To evaluate this lower bound, we must be able to effectively solve the deterministic optimization problem (5). We can evaluate the mean by Monte Carlo, by generating many realizations of $w_{1:T}$, solving the problem (5) for each realization, and averaging the optimal values obtained. There is no reason to believe that this bound should be close to the optimal value of the stochastic control problem. Indeed, the difference between these two numbers can be directly interpreted as the cost of not knowing the future. ### 3. DYNAMIC PROGRAMMING In this section we consider the special case in which the following assumption about the disturbance distribution holds: w_t is independent of $w_{1:t-1}$ given x_t , $$t = 2, \dots, T. \tag{6}$$ As $x_1, ..., x_{t-1}$ are functions of $w_{1:t-1}$, this assumption implies that w_t is independent of $x_{1:t-1}$, given x_t . If the disturbances $w_1, ..., w_T$ are independent, then of course the assumption (6) holds. It is well known that when (6) holds, the optimal control policy is a state feedback policy (3). Moreover, an optimal policy can be found by DP, using the Bellman recursion [18, 19]. We recursively define the cost-to-go or value functions $V_t: \mathcal{X} \to \mathbf{R}$, as $$V_t(z) = \inf_{v \in \mathcal{U}} \mathbf{E}_{w_t}(\ell_t(z, v, w_t) + V_{t+1}(f_t(z, v, w_t))), \quad (7)$$ for t = T, ..., 1, where we take $V_{T+1} = 0$; the expectation is conditioned on $x_t = z$. An optimal control policy is then given by $$\psi_t^{\star}(x_t) = \arg\inf_{v \in \mathcal{U}} \mathbf{E}_{w_t}(\ell_t(x_t, v, w_t) + V_{t+1}(f_t(x_t, v, w_t))), \tag{8}$$ for t = 1, ..., T. For more on DP, see [2, 4, 7–10]. ## 3.1. DP with state augmentation When w_t is not independent of $w_{1:t-1}$ given x_t , i.e. the assumption (6) does not hold, the straightforward DP method described above cannot be used to find an optimal policy. One general approach in this case is to augment the state with all previous disturbances: We take states of the augmented system to be $$\tilde{x}_1 = x_1, \quad \tilde{x}_t = (x_t, w_{1:t-1}), \quad t = 2, \dots, T.$$ (These vary in size). The state transition function can be extended to the augmented system in the obvious way. For the augmented system, the current disturbance w_t is now conditionally independent of $w_{1:t-1}$ given \tilde{x}_t (since in this case w_{t-1} is deterministic). Standard DP can now be applied to this augmented (and much larger) system. For more on state augmentation, see [2, Section 1.4]. In some cases we can get away with a smaller state augmentation. If w_t can be expressed as a function of a Markov process with state $s_t \in \mathcal{S}$, we can augment the state as $\tilde{x}_t = (x_t, s_t)$, assuming we can have access to s_t in determining the control action at time step t. Our focus in this paper is on systems for which the basic DP algorithm of Section 3 would be practical, if the disturbances satisfied the conditional independence assumption (6), but DP with state augmentation, as described here, is not. ### 4. SUBOPTIMAL POLICIES In this section we describe several methods for finding a good, if not optimal, policy, when the conditional independence assumption (6) does not hold. Each of the methods can be interpreted as finding an optimal policy for a modified problem, after a simplification of the disturbance model. ### 4.1. Certainty-equivalent open-loop control A very simple constant or open-loop policy can be obtained as follows: - 1. Form constant approximations $\hat{w}_1, \dots, \hat{w}_T$ of the disturbances: These can be means, most likely values, or any other reasonable approximations of w_t . - Solve the resulting problem using these approximate disturbance values: In this case the stochastic control problem reduces to an ordinary optimization problem, minimize $$\sum_{t=1}^{T} \ell_{t}(\tilde{x}_{t}, \tilde{u}_{t}, \hat{w}_{t})$$ subject to $$\tilde{x}_{t+1} = f_{t}(\tilde{x}_{t}, \tilde{u}_{t}, \hat{w}_{t}), \qquad (9)$$ $$t = 1, \dots, T - 1$$ $$\tilde{x}_{1} = x_{1}$$ with variables $\tilde{x}_1, \ldots, \tilde{x}_T \in \mathcal{X}$, $\tilde{u}_1, \ldots, \tilde{u}_T \in \mathcal{U}$. Let u_1^*, \ldots, u_T^* denote the optimal values of $\tilde{u}_1, \ldots, \tilde{u}_T$. 3. Use $u_t = u_t^*$, t = 1, ..., T, as an (open-loop) policy. We refer to this as CE-OLC. In CE-OLC, we ignore all variation in the disturbances, since we assume that the disturbances are known, and take on the predicted values \hat{w}_t . CE-OLC requires the solution of the one optimization problem (9), which can be done ahead of time. # 4.2. Certainty-equivalent model predictive control In CE-MPC we calculate each input u_t by replacing the current and future disturbances with constant approximations $\hat{w}_{t|t}, \dots, \hat{w}_{T|t}$, obtained using the most recent known data, and solving the resulting optimization problem over the remaining time period. To find u_t , we proceed as follows: - 1. Form constant approximations $\hat{w}_{t|t}, \ldots, \hat{w}_{T|t}$ of the current and future disturbances: Here, $\hat{w}_{\tau|t}$ denotes our prediction of w_{τ} based on the information available at time period t, i.e. $w_{1:t-1}$. These predictions could be, for example, the conditional means $\hat{w}_{\tau|t} = \mathbf{E}(w_{\tau}|w_{1:t-1})$, or the conditionally most likely values. These approximations are (in general) functions of $w_{1:t-1}$. - Solve the resulting problem over the remaining period using these approximate disturbance values: We solve the (deterministic) optimization problem minimize $$\sum_{\tau=t}^{T} \ell_{\tau}(\tilde{x}_{\tau}, \tilde{u}_{\tau}, \hat{w}_{\tau|t})$$ subject to $$\tilde{x}_{\tau+1} = f_{\tau}(\tilde{x}_{\tau}, \tilde{u}_{\tau}, \hat{w}_{\tau|t}), \qquad (10)$$ $$\tau = t, \dots, T-1$$ $$\tilde{x}_{t} = x_{t},$$ with variables $\tilde{x}_t, \ldots, \tilde{x}_T \in \mathcal{X}, \tilde{u}_t, \ldots, \tilde{u}_T \in \mathcal{U}$. Let $u_t^{\star}, \ldots, u_T^{\star}$ denote optimal values of $\tilde{u}_t, \ldots, \tilde{u}_T$. These are (in general) functions of $w_{1:t-1}$ (through the predicted values $\hat{w}_{\tau|t}$) and x_t (through the equality constraint in (10). 3. Use $u_t = u_t^*$ as the current input. CE-MPC can be thought of as CE-OLC, where at each step we use the most up to date predictions of the future disturbance values. The CE-MPC policy has recourse, i.e. u_t is a function of the current state and past disturbances. Unlike CE-OLC, CE-MPC takes advantage of the measured values of past disturbances in its determination of a current action, through the generation of the predicted future disturbances. Its model of the future disturbances, however, is still rather unsophisticated, since the implicit assumption is that the future disturbances are known exactly. CE-MPC requires the solution of the optimization problem (10) at each time step. ### 4.3. Shrinking-horizon dynamic programming We now come to the algorithm we propose. SHDP takes CE-MPC one step further, by taking into account variation in future disturbances. However, any dependency among the future disturbances is ignored, which makes it possible to solve the (modified) problem using DP. In SHDP, the control input u_t is found as follows: - 1. Form approximate product measure for current and future disturbances: Let \mathcal{D}_t denote the distribution of $w_{t:T}$, conditioned on the observed $x_{1:t}$ and $w_{1:t-1}$. Let $\tilde{\mathcal{D}}_t$ denote the distribution on $w_{t:T}$ obtained from \mathcal{D}_t by keeping the marginal distributions of w_t, \ldots, w_T , but otherwise making them independent. In other words: find the marginal distributions of w_t, \ldots, w_T under \mathcal{D}_t , and then form $\tilde{\mathcal{D}}_t$ as the product of these measures. - 2. Solve the resulting stochastic control problem over the remaining period using this approximate measure on current and future disturbances: Use DP to find an optimal policy on the remaining time interval, for the modified future disturbance distribution. Define the Bellman functions V_T, \ldots, V_{t+1} recursively as $$V_{\tau}(z) = \inf_{v \in \mathcal{U}} \mathbf{E}_{w_{\tau}}(\ell_{\tau}(z, v, w_{\tau}) + V_{\tau+1}(f_{\tau}(z, v, w_{\tau}))), \tag{11}$$ for $\tau = T, ..., t+1$, with $V_{T+1} = 0$, using the marginal conditional distributions for $w_t, ..., w_T$ (i.e. $\tilde{\mathcal{D}}_t$). Let $$u_t^* = \arg\inf_{v \in \mathcal{U}} \mathbf{E}_{w_t}(\ell_t(x_t, v, w_t)$$ $$+ V_{t+1}(f_t(x_t, v, w_t)))$$ (12) denote an optimal input for the modified stochastic control problem. This (in general) depends on $x_{1:t}$ and $w_{1:t-1}$, via the conditional distribution \mathcal{D}_t . 3. Use $u_t = u_t^*$ as the current input. In CE-MPC, all uncertainty in the future disturbances is ignored; in SHDP, however, we retain information about uncertainty in future disturbances, but we ignore any dependence between the future disturbances. At each time step, SHDP requires the solution of a stochastic control problem (which satisfies the conditional independence assumption (6)), using (11) and (12). When the disturbance in the original problem satisfies the conditional independence assumption (6), the true conditional distribution \mathcal{D}_t and the approximate product conditional distribution $\tilde{\mathcal{D}}_t$ are the same, and SHPD is an optimal control policy. # 4.4. Implementing SHDP We mention two methods that can be used to implement SHDP. In some cases $w_{1:T}$ has a parameterized distribution, for which the conditional distributions are easily formed. For example, if the distribution is Gaussian or log-normal, so is the conditional distribution \mathcal{D}_t , whose parameters are easily computed. In these two cases, the marginal distributions of w_{τ} , conditioned on t, are also Gaussian or log-normal, with easily computed parameters. In other cases we can use a sampling approximation for \tilde{D}_t . To do this we only need a method for generating a set of samples or realizations $w_{t:T}^{(i)}$, $i=1,\ldots,N$, from the conditional distribution \mathcal{D}_t . We interpret $w_t^{(i)},\ldots,w_T^{(i)}$ as a set of plausible future disturbance trajectories, given everything observed to date. ## 5. REVENUE MANAGEMENT (RM) We now describe a general nonperishable RM problem and show how SHDP can be implemented for two variations on the problem. In RM, the goal is to maximize expected profit from sales of an asset that occur over T periods, denoted $t=1,\ldots,T$. Let $x_t\geqslant 0$ denote the total amount of the asset remaining at period t, with $x_1=B$ being the given initial quantity available. At each time period t, we must decide how much of the asset remaining to release for sale, which we denote u_t , with $0\leqslant u_t\leqslant x_t$. We let $d_t\geqslant 0$ denote the demand for the asset in period t, with $d_{1:T}$ random from a known distribution. (This distribution might be obtained by a modeling step from historical demand data). When u_t is chosen, the previous demands $d_{1:t-1}$ are known; the current period and future demands $d_{t:T}$ are not. The amount of asset sold in period t is $s_t = \min\{u_t, d_t\}$, the minimum of the amount of asset released for sale and the demand. The asset is nonperishable, i.e. any amount made available in a time period but not sold carries over to the next time period, so we have $x_{t+1} = x_t - s_t$. The price of the asset in time period t is p_t , which we assume is known. We will assume that the prices are positive and increasing, i.e. $0 < p_1 < \cdots < p_T$. (We can always reduce the general case to this one: For any period in which the prices do not increase, the optimal u_t is zero, so we can just aggregate such periods into the next one). The total revenue is $R = \sum_{t=1}^{T} p_t s_t$. The RM problem is to find a policy $$u_t = \phi_t(x_t, d_1, \dots, d_{t-1}), \quad t = 1, \dots, T,$$ which maximizes $\mathbf{E}R$. We will look at two versions of the RM problem: in the discrete (or indivisible) version, the asset quantities x_t , u_t , d_t are integers; in the continuous (or divisible) version, the asset quantities x_t , u_t , d_t are real numbers. As we will see, the RM problem is readily solved when the demands satisfy the conditional independence assumption (6). But the dependence of the demands over time is a key point in RM: The demand in the first period, for example, tells us something about the demand in the later periods, when the price is higher, and therefore can strongly affect our early actions. There are many variations in the RM problem described above. We can allow $x_t < 0$, which we interpret as backlog (which incurs some backlog cost). In the perishable RM problem, the amount of asset made available but not sold is lost, so $x_{t+1} = x_t - u_t$. In another version, the prices are random with some known distribution. In yet another version, we do not know the demands d_1, \ldots, d_{t-1} ; instead we only know the sales s_1, \ldots, s_{t-1} . If $s_\tau < u_\tau$, we know the demand exactly; if, however, we have $s_t = u_t$, we only know that $d_\tau \geqslant u_\tau$. For more on RM and for some of the latest work in the field, see [20–24]. Let us cast our discrete and continuous RM problems in the formulation presented in Section 2. The state is simply x_t , the remaining amount of asset, with $\mathscr{X} = \{0, 1, \dots, B\}$ (in the continuous case, $\mathscr{X} = [0, B]$); the control input is u_t , the amount released, with $\mathscr{U} = \{0, 1, \dots, B\}$ (in the continuous case, $\mathscr{U} = [0, B]$). The process disturbance w_t is just the demand d_t , with $\mathscr{W} = \mathbf{Z}_+$ ($\mathscr{W} = \mathbf{R}_+$ in the continuous case). The dynamics (1) are given by $$x_{t+1} = f_t(x_t, u_t, d_t) = x_t - \min(u_t, d_t),$$ $t = 1, \dots, T - 1,$ with $x_1 = B$. The cost function in period t is the negative revenue, $$l_t(x_t, u_t, d_t) = \begin{cases} -p_t \min(u_t, d_t) & \text{if } u_t \leq x_t \\ +\infty & \text{otherwise.} \end{cases}$$ (The value $+\infty$ here encodes the constraint that $u_t \le x_t$). With these identifications, the RM problem is exactly the general stochastic control problem from Section 2. Conditionally independent demands: If the demands d_1, \ldots, d_T satisfy (6), the RM problem is easily solved by DP. With discrete variables, the value function V_t reduces to a vector in \mathbf{R}^B . The Bellman recursion can be carried out by direct evaluation of the expectation (truncating the distribution of d_t at some reasonable large value); the minimization can be carried out by exhaustive search over $v = 0, 1, \ldots, x_t$. With continuous variables, V_t is a function defined on the real interval [0, B]; we describe it by its values at, say, M = 100 values in the interval, and use piecewise-linear interpolation to evaluate it between these sample points. The Bellman recursion can be evaluated as in the discrete case. Known demands: To compute the prescient bound, and to carry out CE-MPC, we must be able to solve optimization problems of the form (5) or (10), i.e. solve RM problems when the future demand is known. We now show how this can be done analytically for both the discrete and continuous cases. We argue informally here, but optimality of the control input we describe is easily proved. The strategy is to first satisfy (if possible) all the demand in period T (which corresponds to highest price p_T); then we satisfy (again, if possible) all demand in period T-1 (which has second highest price), with any left over asset. We continue working backward this way until we run out of asset to allocate, or all demand is satisfied. To describe this formally, let \bar{t} be the largest integer for which $\sum_{t=\bar{t}}^{T} d_t > B$. Then we have $$u_t^* = \begin{cases} d_t & t > \bar{t} \\ B - \sum_{t=\bar{t}+1}^T d_t & t - \bar{t} \\ 0 & t < \bar{t}. \end{cases}$$ The associated optimal revenue is $$p_{\bar{t}}\left(B - \sum_{t=\bar{t}+1}^{T} d_t\right) + \sum_{t=\bar{t}}^{T} p_t d_t.$$ ### 6. DISCRETE RM EXAMPLE ### 6.1. Demand model Here we assume that all asset quantities are discrete, i.e. integers. We model the demand d with an autoregressive Poisson process, i.e. $$d_t \sim \text{Poisson}(\alpha d_{t-1} + \beta d_{t-2} + \gamma), \quad t = 1, \dots, T,$$ where α , β , γ are scalars, and d_0 , d_{-1} are given integers. The mean demand follows the linear auto-regressive process: $$\bar{d}_t = \alpha \bar{d}_{t-1} + \beta \bar{d}_{t-2} + \gamma, \quad t = 1, \dots, T.$$ The conditional distribution \mathcal{D}_t of d_t, \dots, d_T given $d_1, \dots, d_t - 1$ is also auto-regressive Poisson: $$d_{\tau} \sim \text{Poisson}(\alpha d_{\tau-1} + \beta d_{\tau-2} + \gamma), \quad \tau = t, \dots, T.$$ We can easily generate samples from this conditional distribution by simulation, which can be used to evaluate expectations over the marginals. Note that, given the demand process above, the optimal policy can be computed exactly by DP with state augmentation as described in Section 3.1. The state at time t is augmented to be (x_t, d_{t-1}, d_{t-2}) . Under this formulation, the conditional independence (6) holds and DP can be applied. ### 6.2. Numerical instance We consider a particular problem instance with T = 10 periods, a total initial asset level B = 200 units, and Figure 1. Mean and standard deviation of demand *d* versus *t* (decreasing curve), and price *p* versus *t* (increasing line), for the discrete RM example. linearly increasing prices $p_t = (4t+5)/9$, t=1,...,10, which vary from $p_1 = 1$ to $p_{10} = 5$. We choose $\alpha = 0.3$, $\beta = 0.2$, $\gamma = 8$, $d_0 = d_{-1} = 70$. Figure 1 shows the mean and standard deviation of the demands versus time. It also shows the evolution of the price versus time. The mean total demand is 235, slightly more than the initial asset level. We generate 1000 realizations of d, and for each one, we work out the revenue obtained using CE-OLC, CE-MPC, SHDP, and the prescient control policy, which gives us an upper bound on the revenue. For the predictions of future demand, we use the mean (conditional mean in CE-MPC), rounded to the closest integer. We also computed the optimal policy by brute force, using DP with state augmentation. (This required approximately 10 CPU hours on a quadcore 3 GHz machine, as compared with 2.75 CPU seconds for each SHDP simulation, and much less for each simulation of the other policies). The results are shown below. We can see that SHDP substantially outperforms CE-OLC and CE-MPC, achieving less than half the suboptimality of these policies. One might expect CE-MPC to outperform CE-OLC, since it has recourse, but in this example, it does not. On the other hand, the recourse obtained using SHDP does evidently give a substantial improvement over CE-OLC. | Policy | Revenue mean \pm std. dev. | Suboptimality | |--------------------------|--------------------------------|----------------------| | CE-OLC
CE-MPC
SHDP | | 7.7%
8.7%
3.6% | | Optimal Prescient | $560.39 \\ (568.72 \pm 53.05)$ | 0% | ### 7. CONTINUOUS RM EXAMPLE ### 7.1. Demand model Here we assume that all asset quantities are continuous. We will model the demand d with a log-normal distribution, i.e. we assume that $\log d \sim \mathcal{N}(\mu, \Sigma)$, where $\mu \in \mathbf{R}^T$ and $\Sigma \in \mathbf{S}^T$ are known. The mean demand is given by $$\bar{d}_t = \exp(\mu_t + \Sigma_{tt}/2), \quad t = 1, \dots, T.$$ The demand covariance matrix is $$\Sigma_d = \mathbf{E}(d - \bar{d})(d - \bar{d})^{\mathrm{T}} = (\bar{d}\bar{d}^{\mathrm{T}}) \circ (\exp(\Sigma) - 1),$$ where $\exp(\cdot)$ is entrywise, and \circ is the Hadamard product, i.e. entrywise multiplication. The conditional distribution \mathcal{D}_t of $d_{t:T}$ given $d_{1:t-1}$ is also log-normal: $$\log(d_{t:T})|d_{1:t-1} \sim \mathcal{N}(v_t, \Lambda_t), \tag{13}$$ where $log(\cdot)$ is entrywise, and $$v_t = \mu_{t:T} + \sum_{t:T,1:t-1} \sum_{1:t-1,1:t-1}^{-1} (\log((d_1,\ldots,d_{t-1})) - \mu_{1:t-1}),$$ $$\Lambda_t = \Sigma_{t:T,t:T} - \Sigma_{t:T,1:t-1} \Sigma_{1:t-1,1:t-1}^{-1} \Sigma_{t:T,1:t-1}^{T}$$ (The subscripts denote subvectors or submatrices of μ and Σ , with the given index ranges). The marginal distribution of $d_{t:T}$ under \mathcal{D}_t is log-normal too: the product measure $\tilde{\mathcal{D}}_t$ is log-normal with parameters v_t and $\operatorname{diag}(\Lambda_t)$. In particular, we can easily determine the marginal distributions of d_t, \ldots, d_T , conditioned on $d_{1:t-1}$. ### 7.2. Numerical instance We consider a particular problem instance with T = 10 periods, a total initial asset level B = 1, and linearly increasing prices $p_t = (4t+5)/9$, t = 1, ..., 10, which vary from $p_1 = 1$ to $p_{10} = 5$. The parameters μ and Σ , which determine the demand distribution, come from a constant-elasticity model, and a model for inter-period demand dependence. We choose the mean demands to follow a constant-elasticity price-response function, i.e. $$\bar{d}_t = c p_t^{-\varepsilon}, \quad t = 1, \dots, T,$$ where c=0.2 and $\varepsilon=0.4$. We describe Σ via its diagonal elements and correlations, $\Sigma_{ij} = \sigma_i \sigma_j \rho_{ij}$, where σ_t is the standard deviation of $\log d_t$, and ρ_{ij} is the correlation of $\log d_i$ and $\log d_j$. We take $\sigma_t = 0.2$ for all t, which means each demand often varies $\pm 20\%$, and sometimes $\pm 40\%$. We use a simple model of decaying correlation: for $i \neq j$, $$\rho_{ii} = \alpha \exp(-\beta |i - j|),$$ with $\alpha = 0.7$, $\beta = 0.1$. Thus, the correlation between $\log d_t$ and $\log d_{t+1}$ is 63%; the smallest correlation is between $\log d_1$ and $\log d_{10}$, around 28.5%. Figure 2 shows the mean and standard deviation of the demands versus time. It also shows the evolution of the price versus time. The mean total demand is 1.38, which is slightly more than the initial asset level. To evaluate each $V_{\tau}(z)$, we discretize x and u over an evenly spaced grid of 100 points over the interval [0, B]. We approximate the expectations in (11) and (12) by replacing them by their empirical mean over 100 samples of d_t generated from the marginal of d_t under \mathcal{D}_t . We generate 1000 realizations of d, and for each one, we work out the revenue obtained using CE-OLC, CE-MPC, SHDP, and the prescient control policy. The results are shown below. | Policy | Revenue mean \pm std. dev. | |-----------|------------------------------| | CE-OLC | 3.05 ± 0.26 | | CE-MPC | 3.02 ± 0.29 | | SHDP | 3.11 ± 0.25 | | Prescient | (3.28 ± 0.27) | Figure 2. Mean and standard deviation of demand *d* versus *t* (decreasing curve), and price *p* versus *t* (increasing curve), for the continuous RM example. We can see that SHDP substantially outperforms CE-OLC and CE-MPC. The mean revenue obtained with SHDP is only 5% under that achieved with full knowledge of future demand. In particular, the SHDP control policy is at most 5% suboptimal. (It is likely to be substantially less suboptimal). #### ACKNOWLEDGEMENTS We thank Trevor Hastie for suggesting the AR-Poisson model for discrete demand, and we thank Michael Harrison for introducing the RM problems to us. #### REFERENCES - Åström K. Introduction to Stochastic Control Theory. Dover Publications: New York, 2006. - 2. Bertsekas D. *Dynamic Programming and Optimal Control*. Athena Scientific: Belmont, MA, U.S.A., 2005. - Birge J, Louveaux F. Introduction to Stochastic Programming. Springer: Berlin, 1997. - Kumar P, Varaiya P. Stochastic Systems: Estimation, Identification and Adaptive Control. Prentice-Hall: Englewood Cliffs, NJ, 1986. - Prekopa A. Stochastic Programming. Kluwer Academic Publishers: Dordrecht, 1995. - 6. Whittle P. Optimization Over Time: Dynamic Programming and Stochastic Control. Wiley: New York, 1982. - 7. Denardo E. *Dynamic Programming: Models and Applications*. Prentice-Hall: Englewood Cliffs, NJ, 1982. Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; **20**:1993–2002 DOI: 10.1002/rnc - Puterman M. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley: New York, NY, U.S.A., 1994. - Ross S. Introduction to Stochastic Dynamic Programming: Probability and Mathematical. Academic Press, Inc.: Orlando, FL, U.S.A., 1983. - Bertsekas D. Neuro-Dynamic Programming. Athena Scientific: Belmont, MA, U.S.A., 1996. - 11. Powell W. Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley: New York, 2007. - Bemporad A. Model predictive control design: new trends and tools. *Proceedings of the 45th IEEE Conference on Decision* and Control, San Diego, CA, U.S.A., 2006; 6678–6683. - Kwon W, Han S. Receding Horizon Control. Springer: Berlin, 2005. - 14. Meyn S. Control Techniques for Complex Networks. Cambridge University Press: Cambridge, 2006. - Cutler C. Dynamic matrix control: an optimal multivariable control algorithm with constraints. *Ph.D. Thesis*, University of Houston, 1983. - 16. Cho E, Thoney K, Hodgson T, King R. Supply chain planning: rolling horizon scheduling of multi-factory supply chains. Proceedings of the 35th Conference on Winter Simulation: - Driving Innovation, New Orleans, LA, U.S.A., 2003; 1409–1416. - 17. Talluri K, Van Ryzin G. *The Theory and Practice of Revenue Management*. Springer: Berlin, 2005. - Bellman R. Dynamic Programming. Courier Dover Publications: New York, 1957. - Bellman R, Dreyfus S. Applied Dynamic Programming. Princeton University Press; Princeton, NJ, 1962. - Bertsimas D, Popescu I. Revenue management in a dynamic network environment. *Transportation Science* 2003; 37(3):257–277. - Farias V. Revenue management beyond estimate, then optimize. Ph.D. Thesis, Stanford University, 2007. - Levi R, Pál M, Roundy R, Shmoys D. Approximation algorithms for stochastic inventory control models. Mathematics of Operations Research 2007; 32(2):284–302. - McGill J, Van Ryzin G. Revenue management: research overview and prospects. *Transportation Science* 1999; 33: 233–256. - Thiele A. A robust optimization approach to supply chains and revenue management. *Ph.D. Thesis*, Massachusetts Institute of Technology, 2004.