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Abstract—We consider the problem of adjusting speeds of mul-
tiple computer processors, sharing the same thermal environment,
such as a chip or multichip package. We assume that the speed
of each processor (and associated variables such as power supply
voltage) can be controlled, and we model the dissipated power of
a processor as a positive and strictly increasing convex function of
the speed. We show that the problem of processor speed control
subject to thermal constraints for the environment is a convex
optimization problem. We present an efficient infeasible-start
primal-dual interior-point method for solving the problem. We
also present a distributed method, using dual decomposition. Both
of these approaches can be interpreted as nonlinear static control
laws, which adjust the processor speeds based on the measured
temperatures in the system. We give numerical examples to illus-
trate performance of the algorithms.

Index Terms—Convex optimization, distributed control,
primal-dual interior-point methods, temperature-aware processor
control.

1. INTRODUCTION

E consider a multiprocessor system, in which many

processors share a common thermal environment, e.g.,
many processor cores on a single chip, or processors on sepa-
rate chips in a multichip package. We assume that the speed of
each processor (along with associated variables such as power
supply voltage) can be varied over a range. The speed of each
processor affects its power dissipation, which in turn affects
the overall temperature distribution of the system. The goal is
to adjust the speeds (and associated variables) and to obtain the
maximum total processing capability while respecting limits
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on the temperature at various points in the system. A variation
on this problem is to choose the processor speeds to minimize
the maximum temperature in the system while meeting a given
required total processing capability.

In this paper, we show that the problem of static processor
speed control with thermal constraints can be posed as a convex
optimization problem. We then give two methods to solve the
problem. The first method is an efficient primal-dual interior-
point method, which is extremely fast and can solve a problem
instance with a hundred processors in tens of milliseconds and
can scale to much larger problems. This method can be warm-
started to track the temperature changes due to other thermal
sources beyond our control and therefore can be considered as a
complex nonlinear control law. The second method is based on
solving a dual problem of the (primal) processor speed problem.
The benefit of this approach is that it gives a distributed method,
where each processor adjusts its speed based only on temper-
ature measurements at nearby points. This method too can be
interpreted as a nonlinear feedback control law, which is in ad-
dition distributed.

Processor speed control with power and thermal constraints
has been a topic of extensive research in the last few years,
see, e.g., the surveys [1]-[3] and the references therein. Here,
we briefly discuss some of the results. Several authors have
applied formal control techniques to derive various feedback
control laws for the processor speeds [4]-[9]. In particular,
Donald and Martonosi propose an effective proportional-inte-
gral (PI) controller for thermal management in [3]. Skadron et
al. have implemented a thermal modeling tool for electronic
devices, called HotSpot; using it they provide and simulate a
temperature-aware processor system in [10]. (For more details
and references about thermal modeling, see the Appendix.) A
more general approach of optimization with thermal constraints
described as partial differential equations is given in [11]. Other
approaches for temperature control of systems and devices
can be implemented using fuzzy controllers [12] or thermal
compensation circuits [13], [14]. Pruhs and coauthors formu-
late the processor speed control problems with power, thermal,
and task precedence constraints as scheduling optimization
problems and present heuristic algorithms to solve them [15],
[16]. Recently, the authors in [17] use a variational approach
to derive an analytical optimal solution for a single processor
speed control with thermal constraints. In [18], energy aware
task scheduling in real-time systems is posed as a convex opti-
mization problem and solved using the ellipsoid method. For
some work on using convex optimization for multiprocessor
frequency assignment, and some experimental results, see [19]
and [20].

The main contributions of the present paper are as follows.
We describe the first highly efficient interior-point algorithm,
and the first distributed algorithm (with convergence proof), for
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solving the problem of processor speed control with thermal
constraints. In this paper, we emphasize algorithm and system
aspects of the problem; we do not devote much attention to phys-
ical and circuit-level modeling. In particular, the numerical ex-
amples given in this paper are chosen for simplicity and clarity
and are primarily meant to illustrate the algorithms and their
performance.

We outline the rest of the paper. In Section II, we describe our
power and thermal model and provide the problem formulation.
In Section III, we present a custom infeasible-start primal-dual
algorithm, together with its convergence properties, implemen-
tation details, and some algorithm enhancements. In Section I'V,
we describe our dual decomposition method and prove conver-
gence and show how we can recover a primal solution (optimal
processor speeds) from the dual problem solution. In Sections V
and VI, we present some numerical results for the algorithms
and provide a comparison with a decentralized PI controller
method. In Section VII, we list some variations and extensions
of the problem and the proposed algorithms. We conclude the
paper in Section VIII.

II. PROBLEM FORMULATION

A. Power Dissipation Model

We consider n processors, sharing the same environment,
where processor 4 operates at speed $; € [Smin, Smax|. FOr ex-
ample, these could be n processor cores collocated on the same
chip or n processor chips in a multichip package. Each processor
can change its frequency and possibly also associated variables
such as supply voltage, in order to regulate its speed. The power
dissipation of processor ¢ is a function of its speed variable:

pi = ¢i(5i),

where ¢; : [Smin, Smax] — R is a strictly increasing convex
function. (The monotonicity assumption means the faster we
run the processor, the more power it consumes; the convexity
assumption means that the energy efficiency of the processor, in
Joules per operation, decreases with increasing speed.) We also
assume that the functions ¢; are differentiable and that gb: (Smin)
and ¢;(Smax) are well defined. We use p = (py,...,p,) and

1=1,...,n

ey

s = ($1,...,8n) to denote vectors of processor powers and
speeds. For future reference we define
p=¢(s) €eR" @)

where ¢(s) = (¢1(s1),...,Pn(sn)) denotes componentwise
application of functions ¢1, ..., ¢, to the vector s.

One common power dissipation function is ¢;(s;) = (;s;",
where a; > 1 and §; > 0. In particular, in the well-known
“cube” model (i.e., «; = 3),the power is proportional to the
cube of processor speed [15].

B. Thermal Model

‘We observe the temperature (in °C) at m points in the system
and denote the temperature vectoras T' = (T4, ..., T,,) € R™.
The ambient temperature is denoted T,,,;, € R. We assume
that m > n, since we will always have at least one temperature

measurement at or near each processor.

1995

In this paper, we focus on a steady-state thermal model, which
does not capture any thermal transients. This is justified when
power updates are carried out on a time scale exceeding ten
or so milliseconds, since the thermal time constants for single
chip and multichip packages are in the range of milliseconds
[21]. For faster power updates, a dynamic thermal model will
be needed. The methods in this paper can be extended to handle
such problems, but for simplicity, we focus here on the steady-
state model.

We use a linear model of the form

T= Gp + Tother + Tamb]- = G¢(8) + Tother + Tamb]- (3)

where G € RTX"./ 1 denotes the vector of ones, and Tyoiper €
R™. The matrix G maps the vector of processor powers into a
temperature rise vector; Tiiher € R™ is the contribution to the
temperature due to other (uncontrollable or fixed) heat sources.

For future use, we give some properties of the matrix G. The
entry G;; has units of °C/W and gives the temperature rise at
the point 7 due to 1 W of power dissipated by processor j. The
matrix G is elementwise nonnegative (G;; > 0) and, in theory,
is always dense, i.e., G;; > 0. However, it can be very well
approximated by a sparse matrix by truncating small entries to
zero. In this case, the nonzeros in the jth column of G corre-
spond to the points that are thermally affected by the jth pro-
cessor. The matrix G can be found by finite-element analysis
(see the Appendix) or by direct measurements in an existing
system, e.g., using the sensors described in [22].

C. Optimization Problem

The total processing capability (throughput) of the system is

given by the sum of the processor speeds

U(s)=s14 - +s, =175, @)
This is a simple and a common choice for the overall utility
derived by the system. Later, we will comment on the use of
more complex system utility functions. We should also mention
that processor speed itself need not give a good measure of pro-
cessing utility; a more sophisticated utility model would include
cache effects, threading, and other phenomena. For simplicity,
though, we will use a utility based only on processor speeds in
this paper.

The thermal constraint for the system is that no observed tem-
perature in the system can exceed a given maximum temperature
Tmax

T = G¢(S) + Tother + Tamb]- S Tmax]- (5)
where < denotes componentwise inequality. If there is a tem-
perature sensor at (or in practice, near) each heat source, then
T < Thax1 will imply that temperatures everywhere are less or
equal to T},.x, by the maximum principle for the heat equation,
which states that the maximum temperature will always be lo-
cated at a point where there is a power (heat) source.

The processor speed control problem is to choose processor
speeds s (between the given limits) so as to maximize the overall
system utility, subject to the thermal constraint

maximize U(s)
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Subject to G¢(S) + Tot,her + Tambl S Tmaxl
Smin < 8 < Smax- (6)

The problem variables are s € R"; the problem data are G €
R, Tambs Tmax € R, Tother € R™, Smin, Smax € R™, and
the functions are ¢1, ..., ¢y.

The problem (6) is a convex optimization problem since the
objective is a linear function, and all the constraint functions
are convex; see, e.g., [23, Ch. 4]. To see that the thermal con-
straint (5) is convex, i.e., the components of its left-hand side are
convex functions of s, we note that the matrix G is nonnegative,
so each entry of 7" is a nonnegative-weighted linear combination
of convex functions, and therefore convex. The problem (6) is
readily solved using standard interior-point methods. Moreover,
by exploiting the particular structure of the problem, we will see
that interior-point methods can solve very large-scale instances
of the problem, very efficiently.

For future use, we define the temperature slack vector z €
R™ as

2= Tnaxl =T = Tpaxl — Gd)(S) — Tother — Tampl. (7)
The slack z; gives the slack or margin in the thermal constraint
T; < Thax. The thermal constraint (5) then means that every
element of z is nonnegative, i.e., z > 0. Note that z is readily
found from the temperature measurements. For future use, we
also define nonnegative slacks between the processor speeds and
the lower and the upper speed limits as

Z] = 8 — Smin, Zu = Smax — S- (8)

We finish this section with an important assumption. We as-
sume that problem (6) is strictly feasible, which means that
when all processors operate at minimum speed (i.e., $ = Spin),
the thermal constraint (5) is satisfied strictly (i.e., with a positive
margin):

Gd’(smin) + Tothor + Tamb]- < Tmax]-- (9)

This assumption is just Slater’s condition for the problem (6)
and, among other things, guarantees that strong duality holds;
see [23, Sec. 5.2.3].

III. A PRIMAL-DUAL INTERIOR-POINT METHOD

In this section, we present an infeasible-start primal-dual
interior-point method [23, Sec. 11.7], [24], [25, Ch. 19] to
solve problem (6). The primal-dual interior-point method uses
Newton’s method, applied to a suitably modified form of the
optimality conditions, which we describe shortly.

We start with the optimality conditions for (6). Let A € R
be the dual variables associated with the thermal constraint (5),
and \; € R} and A\, € R} the dual variables associated
with the lower and the upper speed limits, respectively. The La-
grangian function [see, e.g., [23, Ch. 5] of problem (6) is

L(37 )‘7 /\u7 )‘l) :1T3_/\T(G(b(s)+Tothor+Tamb1_Tmax]-)
- /\5(3 — Smax) — )‘IT(_S + Smin)

=1Ts+ ATz + /\SZU + )\,Tzl.
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The Karush—Kuhn—Tucker (KKT) optimality conditions for the
problem are

1 — diag(Vp(s)GTA = A + A =0
diag(\)z =0

diag(Ay )z, =0

diag(M\)z; =0

A Aus, A >0

2y Zus 2l Z 0.

A. Primal-Dual Search Direction

Next, we explicitly specify the slack variables in terms of the
speeds and modify the complementary slackness conditions to
obtain

1 - diag(Ve(s))GTA = Ay + A\ =0
Go(3) + Tother + Tambl — Trnax1 + 2 =0
$— Smax +2u =0
Smin—8+21=0

diag(A)z = opl

diag()\u)zu =oul

diag(A;)z = opl
A Au, At >0

2y Zus 2l Z 0

where a centering parameter o € [0,1] and a duality measure
i > 0 are parameters that set the accuracy of the approxima-
tion. (These parameters define a point on the so-called central
path and describe the biased search directions in the primal-dual
methods [24, Ch. 1].) In our case, the duality measure p is
defined by

(/\Tz + /\Zzu + /\szl)
(m + 2n)

I’L:

which is the average value of the pairwise product between the
slack and the dual variables. The goal is to reduce this duality
measure as close to zero as possible.

The modified optimality conditions can be compactly written
as

(8, A, A, ALy 2, Zu, 21)

T 1 —diag(Vo(s))GTA = Ay + X 1
G(b(S) + Tothor + Tamb]- - Tmax]- +z
S — Smax + Zu

= Smin — S+ 21
diag(M\)z — opl
diag(A\y)zy — opl
L diag(A\)z —opl _
=0

where we require A, Ay, A7, 2, 24,21 > 0.

The primal-dual search direction is the Newton step for
solving the nonlinear equations r(s, A, Ay, A1, 2, 24, 21) = 0.
If y = (s,A Au, A1, 2, 24, 21) denotes the current point, the
Newton step Ay = (As, AN, ANy, AN, Az, Az, Az)) is
characterized by the linear equations
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r(y + Ay) = r(y) + Dr(y)Ay = 0.
Therefore, we can find the Newton step from
Dr(y)Ay = —r(y)

which can be written out explicitly as shown at the bottom of
the page (10), where

H, = —V?¢(s)diag(G*\)
D, = diag(V(s))

rg=1—D,GTX - A+ \i

Tp = GP(8) + Tother + Tambl — Tinax1 + 2
Tu = 8 — Smax T 2u

Tl = Smin — S+ 2

Teentp = diag(A)z — opl
Tcentu = diag()\u)zu - 0_/1'1

Tcentl = dlag()\l)Z[ — 0'/1,1

B. Primal-Dual Algorithm

At each iteration of the algorithm, we solve the Newton
system (10) to find a new search direction and then choose
the step length, so the inequalities A\, Ay, \j, 2, 2y, 21 > 0 are
strictly satisfied and the duality measure p, together with the
primal, dual, and centrality residuals, are properly reduced. It is
important for the progress of the algorithm to balance out these
various aims and as the primal and dual variables approach
optimality, we equally need to drive the residuals to zero.
Our infeasible primal-dual interior-point algorithm for solving
problem (6) loosely follows the IPF algorithm in [24, p. 166],
and it proceeds as follows:

given
e>0,0€(0,1)
Initialize: s with s, < 8 < Smax; 2 = 1, A =1

while ;1 > ¢
1) Compute search direction Ay by solving (10).
2) Find a step length oo € (0, 1] using the line search
method described next.
3) Update: y := y + aAy.

The line search in step 2 is a standard backtracking line
search, based on the reduction of the duality measure p
and norm of the residuals and modified to ensure that

1997

A Aus A1, 2, 20,21 > 0. We denote the current iterate as
5,A = (A Ay, A1) and Z = (2, 2y, 2), and the next iterate as
st, AT and 7, ie.,

st=s+als, A =X+aA), 3T =z+aAz

With the new dual and slack iterates \* and %, we associate

the new duality measure
L (;\+)T5+
 (m+2n)

We first compute the largest positive step length, not ex-
ceeding one, that gives AT > 0 and z+ > 0, i.e.,
o™ = sup{a € (0,1] | A + AN > 0,% + aAZ > 0}
= min{1, min{—X\; /AN | AX; < 0}, ...
min{—éi/Aii | Az; < 0}}

We start the backtracking with & = 0.99a™#* and multiply «
by p € (0,1) until we have

()
<|| (T](J]TS,O 7"?) ||2> /3/1'+

[I7all2

IA

(11)

TpsTu,Tl)|[2
[I(rp ) .

diag(\)z > ypt,  pt < (1-0.0la)u (12)
where 3 > 0 and v € (0,1) are the backtracking parameters,
and 79, rg, 0 7P, 10 are residual values and the duality measure
given the initial starting points, respectively. The criteriain (11)
enforce a decrease in the dual and primal residuals, while the
criteria in (12) enforce reduction in the centrality residual and
mandatory decrease in the duality measure.

Common choices for the algorithm and backtracking param-
eters are 0 = 0.5, § = 5, v = 0.05, and p = 0.85. We take the
tolerance to be ¢ = 1075,

The most expensive part of computing the primal-dual search
direction is solving the linear system (10). Next, we present an

efficient method for solving these equations.

C. Solving the Newton System

The linear system (10) has 5n + 2m linear equations in 5n +
2m variables, which can be solved directly for small n and m
(e.g., using the PLU factorization and the forward/backward
solve steps). However, more efficient solution methods can be
obtained by exploiting structure in the problem, which we do
next.

r H, —-D.,GT -1 I 0

GD; 0 0 0 I

1 0 0 0 0

-1 0 0 0 0
0 diag(2) 0 0 diag(\)

0 0 diag(z.) 0 0

L 0 0 0 diag(z) 0

0 0 771 As 7 rrqg ]
0 0 AN Tp
1 0 AN, Ty
0 1 A)\l = — Tl (10)
0 0 Az Tcentp
dlag()\u) 0 AZU Tcentu
0 dlag()‘ )— L AZl - L T'centl -

Authorized licensed use limited to: MIT Libraries. Downloaded on September 30, 2009 at 12:05 from IEEE Xplore. Restrictions apply.



1998

We note that the matrix Dr(y) is highly structured since most
of the blocks are diagonal. We also note that n will be a small or
a modest number, probably at most in thousands [26]. (Current
multiprocessor systems have n small, no more than a hundred.
For example, Intel has recently demonstrated a prototype multi-
processor system with 80 processor cores [27]). Also recall that
we usually have m > n, which will guide our choice of the
pivoting order during block elimination of the system (10).

We first eliminate the variables Az = —GD,As—rp, Az, =
—As —r,,and Az; = As — r; to obtain

H, -D,GT -1 I As
—diag(A\)GD,  diag(z) 0 0 AV
—diag(A\y) 0 diag(zy) 0 ANy
diag(\) 0 0 diag(z) AN

Td

Teentp — diag(A)r,
Tcentu — diag()\u)ru
Tcentl — diag(/\l)"‘l

Next we eliminate the dual variables

AN = diag(M/2)(GD,As +7,,) — diag(z )T centp
A)‘u = diag()‘u/zu) (AS + 7"u) - dlag (Zgl) T'centu
AN = diag(\i/21) (—As + 1) — diag (2,1) Feent

to obtain the linear system

HAs =rg (13)

where H € R™*™ and rs € R™ are given by

H = V2¢(s)diag(GT\) + DG diag(\/2)G D
+ diag(Au/z4) + diag(Ai/z1)

Ty =Tq+ DSGT(diag(z_l)rccmp — diag(A/z)rp)
+ diag (z;l) Teentu — diag( Ay /2y )Ty
— diag (2, ") Teentt + diag(Ai1/z1)r1.

The matrix H is a symmetric n X n positive semidefinite
(PSD) matrix (since each of the summation terms is a sym-
metric PSD matrix) and thus the preferred method to solve (13)
is via Cholesky factorization [23, App. C3]. Since 7 is modest
(say, not more than 1000 or so) and H is generally dense (even
when G is sparse), the cost of solving (13) is (1/3)n® flops.
What dominates is forming the matrix H, specifically forming
the subcomponent matrix

Y = D,G"diag(\/2)GD,.

In the dense case, the cost of forming Y is mn? flops. When
G is sparse, we can exploit the sparsity to form Y faster [28].
In summary, the flop count per iteration is approximately mn?
when G is dense and can be as small as > when G is sparse.

D. Convergence of the Method

Convergence properties of the primal-dual interior-point
methods as applied to convex optimization problems have
been investigated in numerous works and summarized in [23,
Sec. 11.7], [24], [29]. Various theoretical results have been
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shown, such as polynomial-time complexity results for the total
iteration count and the total computational cost, for similar
algorithms. In practice, primal-dual interior-point algorithms
typically converge to a very high accuracy in a few tens of
iterations (between 20 and 100) regardless of the problem
dimensions. In extensive computational experiments with the
primal-dual algorithm described earlier, we found no case
in which more than 36 iterations were required to achieve
accuracy of € = 1078,

E. Warm-Starting

Suppose that we solve an instance of the processor speed con-
trol problem (6), and subsequently the problem data changes
slightly. For example, To1er changes due to variations in the ex-
ternal (uncontrollable) power sources. In this case, we can reuse
our knowledge of the previous optimal solution to initialize (i.e.,
warm-start) the primal-dual method when solving the perturbed
problem [30], [31]. Extensive numerical tests show that with
warm-starting the number of iterations to achieve ¢ = 10~* ac-
curacy drops down from around 23 to around 2—4 iterations.

We list some applications of the warm-start technique:

1) Efficient Generation of Optimal Tradeoff Curves: We can
efficiently solve the problem as we sweep one parameter
over some range, e.g., computing the optimal tradeoff be-
tween Tax and U.

2) Tracking Changes in Togner and Tapm,: We can recom-
pute the optimal processor speeds as the ambient tempera-
ture or temperature due to other heat sources, change. We
can interpret this tracking of optimal speeds as a compli-
cated nonlinear feedback law, where we reoptimize as the
problem parameters change.

3) Adjusting to Changes in G: We can take into account
changes in G, which can occur due to variation of the
thermal conductance as a function of temperature. To
model this effect, we can update G based on the cur-
rent temperatures, reoptimize processor speeds (using
warm-start), then update G again, and so on. In [19],
experimental results show that this iterative procedure
converges quickly (takes about 3—4 reoptimization steps).

IV. DUAL DISTRIBUTED METHOD

In the previous section, we interpreted a warm-starting
primal-dual interior-point method as a complex nonlinear con-
trol law for the processor speed control given the temperature
constraints, which can track changes in the problem data. In
this section, we use the method of dual decomposition applied
to problem (6) to derive a simpler nonlinear feedback law,
which is in addition distributed.

A. Dual Problem

We start by deriving a dual problem for (6). The partial La-
grangian function for maximizing U (s) = 17's is given by

L(87 /\) = 1Ts_/\T(Gd)(s)‘l'Tother"f'Tambl_Tmaxl)
= Z (SZ_gLT)‘gbZ(SJ) +)‘T(Tmax1_Tother_Tamb1>
1=1

(14)
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where g; € R™ is the ith column of G and A € R" are the dual
variables associated with the thermal constraint (5), as used in
Section III. The dual variable \; > 0 can be viewed as the price
of temperature violation at node 7. The dual function is

n

g()‘) = Zq/}i (g;T)‘) + )‘T(Tmaxl - Tother - Tamb]-)
i=1
where
Yi(y) = max  (s; — yoi(s;)).

S;€ [SminasmaX]

(For brevity, we omit the index 7 from the components of vectors
Smin and Spmax, and we follow this convention throughout this
section.) The functions ); are convex, since by definition they
are pointwise maximums of affine functions [23, Ch. 3]. Then
the dual function g() is also convex since it is a sum of convex
functions with linear terms.

The dual problem is

minimize g(\)
subject to A >0 (15)
where the optimization variables are the dual variables A € R™.
This is a convex optimization problem since it is a minimization
of a convex function over a convex set (positive orthant). Let \*
denote an optimal solution of the dual problem (15).

Before we proceed to give an algorithm for solving (15), we
will give some properties of the dual function g and the func-
tions ;. We can readily find the value of the function v;, which
is attained at the optimal solution sf(y) given by

max

(si —yodi(si))
53 €[Smin;Smax

63 G (1) € [Sumins Sman]
Smin ¢;_1(1/y) S Smin
¢i71<1/y) Z Smax-

s7(y) = arg

(16)

Smax

The function value is

s3(y) — yoi (s*(v))
Smin — y¢i(smin)
Smax — y(z)i(smax)

3:((?/) € [Smin7 Smax]
Sf(y) S Smin
S:((y) > Smax-

Yi(y) =

Because s*(G7'\) is the unique maximizer of L(s, \) in (14),
it follows that s*(GT \*) is equal to an optimal solution s* of the
primal problem (6) given that the strong duality holds, which is
true because of the assumption (9). (For more details, see [23,
Sec. 5.5.5]). In other words, if prices are optimal, they lead to
optimal speeds.

The function 1; is differentiable with

—¢i(s7(y)) 57 (y) € [Smin; Smax]

_¢i<3min) Sf(y) S Smin
_¢i(3max) S:(y) Z Smax-

7

¥ (y)

The gradient of the dual function is then given by

Vg()‘) = Z 1/); (97,T)\) 9i + (Tmax]- - Tother - Tamhl)
i=1

= Tmaxl - GQS(S*(GT/\)) - Tother - Tamb]-

1999

= 2(s*(G"N))

which is precisely the temperature slack at each location, eval-
uated for speeds s*(GT ).

B. Distributed Algorithm

We describe a distributed algorithm for solving the dual
problem (15) based on the projected gradient method with
smoothing of the speeds. The given solution method is often
called the dual decomposition method [32]-[34], [35, ch. 6].

In the algorithm, we start with any positive A and repeatedly

carry out the update
Ai=(A—aVg), (17)

where a > 0 is the step size, and (z)4 denotes the entrywise
nonnegative part of the vector z (i.e., projection onto the non-
negative orthant). The full algorithm proceeds as follows.

given

a>0,0=(0,1]

Initialize: s with s, < 8 < Spax; A > 0(e.g, A =1)

repeat
1) Compute processor speeds, given current prices, using
(16), and smooth out.

5:= 05" (GTA) + (1 - 0)s.

2) Measure (or compute) temp. slacks at the sensors.

2= Tmaxl —T.
3) Update temperature prices.
A=A —az)y.

The parameter 6 acts to smooth out the sequence of speeds
generated. When f = 1, the algorithm reduces to the classical
projected subgradient method for the dual problem. We will
show that for small enough «, s and A converge to s* and \*,
respectively. Also note that the temperature slack z can have
negative entries during the algorithm execution, but at the op-
timum will be nonnegative.

The given algorithm is completely distributed (decentral-
ized). Each processor updates its speed based on its previous
speed and price information obtained from the neighboring
sensors (i.e., sensors for which its power is affecting their tem-
perature), while each sensor updates its price based on its local
(measured or calculated) temperature slack. We can interpret
the algorithm as a simple nonlinear feedback control law.

The method described here is one of the simplest projected
subgradient dual algorithms. Far more sophisticated methods
are described and analyzed in, e.g., [34], [36], [37].

C. Convergence Proof

In this section, we give a convergence proof for the distributed
algorithm presented in Section IV-B, when the smoothing pa-
rameter # is 1. (For an analysis of the algorithm for § < 1, see
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[38, Sec. 3.2], [39]). The algorithm is based on the projected
gradient method and a standard result is that the projected gra-
dient method converges for a small enough fixed stepsize a > 0;
see, e.g., [35], [38], [40]. We give the convergence proof here for
completeness, since we can explicitly evaluate the constants and
estimate the rate of the convergence.

The distributed algorithm is given by the repeated updates of
the form

AERD = (30 — 4y (A0))
+
Let A\* be an arbitrary optimal point. Then we have
(A= aVg(X))y = A
which comes from the (optimality) condition that —Vg(A*)
supports R at \*.
We consider the squared distance from the current point to

an optimal point, and we show that this distance decreases with
each iteration. We have

HA(k+1)__A* 2

2
2

- H ()\(’“) —aVy (,\U“)))+ — (A = aVg(\)4

2
2

< H/\(k) —aVy (,\<k>) — A~ aVg(\¥)
2

-

2

~ 2% (vg (A(k)) - Vg()\*))T (A<k> - )\*)
+a? va (A(k)) — V(M) z

where the inequality comes from the fact that a projection onto
a convex set is contractive, i.e., after projection the distance be-
tween the projected points cannot increase.

Since g is a convex function, we always have

(vg (/\(’“)> - Vg(A*))T (A<k> - /\*) > 0.

To proceed with the proof, we need to derive a lower bound on
the inner product in (18) and an upper bound for the quantity
IVg(A®) = Vg(A)]la-

We obtain the lower bound

(18)

(V9 (x) = o))" (- x)
_ (ng(s*(GT/\*)) —Gé (s* (GTA<k>)))T (A<k> - /\*)

' 2
2 01 ) it 8 i) [ A = 2

where o min(G) is the smallest singular value of G. Defining

M = 0min(G)(min ¢; (Smin)) (19)
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we have

* < (vg (w) - Vg()\*))T (A<k> - )\*) .
(20

MHN) — A

The upper bound is given by the Lipschitz condition on the
gradient Vg,

IVg(M) = Vg(ha)ll = [G(s*(GT A1) = Go(s*(GT Aa))|
< ||G||||¢>(8*(§?TA1)) — ¢(s"(GTA))
< N1Gll(max ¢ (smax)) [ A1 = Azl

Defining
L = 01nax(G) (max ¢ ($max)) @1
where 0, (G) = ||G]| is the largest singular value of G, we
have
va ()\(’“)) — V(N z <L Hw e z (22)

Combining the bounds (20) and (22) with the inequality men-
tioned earlier, we get

2

H/\(k‘l’l) —\* 2
2

< (1—-2aM + o2L) H/\(k) o

(23)
2
which proves the convergence of the algorithm given that the
stepsize satisfies
0<a<2M/L. (24)

The convergence rate is linear with the rate determined by the
constant K = 1—2aM + a2 L. This constant is minimized with
the stepsize choice « = M/L and is equal to K* =1 — M/L.
In practice

!

M _ Umin(G)(Hlini ¢i(3min)) _ 1

min; (,b;(smin)
(@) max; ¢;(Smax)
(25)

L Umax(G) (Hlaxi (f);(Smax))

can be very small since it is related to the inverse of the condition
number of G(x(G)) and the minimum and maximum slope of
the functions ¢;.

V. NUMERICAL EXAMPLE

In this section, we present some numerical results for a syn-
thetic problem instance in order to illustrate performance of the
proposed algorithms: the primal-dual algorithm in Section III
and the distributed algorithm in Section IV. The example is
meant only to illustrate our methods; in particular, it is not meant
to be a realistic model of any real multicore processor.

As our example, we consider a chip with a 10 x 10 array
of processors and a 55 x 75 grid of thermal sensors, which
could be actual hardware sensors or nodes in the finite-element
thermal model. Thus, our problem dimensions are n = 100 and
m = 4125. The locations of processors and sensors are shown
in Fig. 1. We take Ty, = 40°C (the ambient temperature
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Fig. 1. Locations of processors (squares) and thermal sensors (dots) on the
chip.

15°C

10°C

Fig. 2. Map of temperature rise due to other uncontrollable sources.

in a closed system environment), 7Tiax 75°C, and we
use the synthetically generated temperature map in Fig. 2 as
Tother- The matrix G was generated using the finite-element
model, as described in the Appendix, with thermal conductance
k = 1 between all the nodes, and thermal conductance k¥ = 10
between all boundary nodes and the external environment. We
take Smin = 1 and smax = 3 - 1. We take the power functions
to all be the same, p; = ¢;(s;) = s3, following the well-known
cube speed-power model.

We implemented the algorithms in Matlab and performed nu-
merical simulations on a 2.8-GHz Athlon CPU, with 1 GB of
RAM, running Linux. We used the CVX package [41] to verify
correctness of the results obtained by our algorithms.

A. Comparison With Equal-Speed Scheme

We compare performance of the primal-dual algorithm
versus a simple suboptimal scheme for (6), in which we set
all processor speeds to be equal and increase the speed until
the thermal constraint becomes active. The equal-speed (left)
and optimal (right) temperature distributions are shown in
Fig. 3, together with the values of the system throughput. We
note that the optimal speed allocation achieves about 12%
throughput improvement while respecting the thermal con-
straint. A histogram of the optimal processor speeds is shown

2001

Ueaval — 148.8

75°C

70°C
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160°C

155°C

150°C

45°C

40°C
U°P* = 166.3
75°C

70°C

165°C

160°C

155°C

150°C

45°C

40°C

Fig. 3. Top: Temperature distribution with all speeds equal. Bottom: Tempera-
ture distribution with optimal speed allocation.

in Fig. 4, together with the value of the speed chosen for all the
processors when the speeds are all equal.

Fig. 5 shows the optimal tradeoff curve between 7y, ,x and the
maximum achievable throughput U°P* and U°"?!, for the op-
timal primal-dual method and the equal-speed scheme, respec-
tively. We note that the optimal scheme considerably outper-
forms the equal-speed scheme for all values of Ty,ax.

B. Performance of the Primal-Dual Method

Fig. 6 shows the plot of the duality measure 1 and the residual
|(7p, 74)]||2 versus the iteration number for a single run of the al-
gorithm. We see that the primal-dual algorithm converges within
35 iterations.

Our simple Matlab implementation requires 2.3 s to solve the
problem, using dense GG (with all 412 500 entries). We truncated
the entries in G with values below 0.15 and then rescaled each
column to have the same column sum as the original matrix.
(This preserves the total temperature rise from each source.)
This results in a sparse matrix G with 27680 entries, i.e., a spar-
sity around 6.7%. This results in less than 1.3% error in the com-
puted speeds. The time required to solve the problem, using the
sparse thermal model with G, was around 0.7 s. We estimate that
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Fig. 4. Histogram of optimal processor speeds, together with the value of op-
timal equal speed s°ua!,
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Uopt and Uequal

100 :
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100 125

Tmax
Fig. 5. Optimal tradeoff curve for T ,.x versus U°P* (solid curve) and tradeoff

curve between Timax and suboptimal 92! when all speeds are equal (dashed
curve).
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iteration k

Fig. 6. Convergence of the primal-dual method: duality measure ¢ and norm
of the residual ||(7p, 74)||2-

a C implementation of our algorithm would execute in around
0.1 s for the same sparse instance.
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Fig. 7. Histogram of the total number of iterations needed for warm-start ini-
tialization (left, darker) versus cold-start initialization (right, lighter).

C. Warm-Starting the Primal-Dual Method

In this section, we experimentally verify some benefits of
the warm-starting technique for the primal-dual method, as de-
scribed in Section III-E.

We first investigate the benefit of warm-starting when the
primal-dual method is used to track changes in the problem data.
We consider the following experiment. Suppose that the uncon-
trollable power sources and the ambient temperature vary +1%
around their nominal values. We randomly generate 100 in-
stances of these parameters, satisfying the aforementioned setup
and solve the perturbed problems, using both the warm-start and
cold-start techniques. In the warm-start technique, we initialize
each new problem with the solution of the previous problem,
while in the cold-start technique, we initialize the problem with
speeds just above the minimum speed of the processors, e.g.,
$ = Smin + 0.01.

Fig. 7 shows the histograms of the number of iterations until
each problem is solved within accuracy of e = 10~%. We note
that the warm-start technique performs very well and solves
each instance of the problem within 1-7 iterations (typically
2 iterations), as compared to about 20-25 iterations needed by
the cold-start. These results confirm that the primal-dual method
coupled with warm-starting can act as an effective (though com-
plex) nonlinear control law, which tracks changes in the problem
parameters. Our Matlab implementation can execute the warm-
start optimization in around 100 ms; we estimate that a C im-
plementation would execute in around 10 ms.

As the second experiment, we investigate the use of warm-
starting to efficiently generate optimal tradeoff curves between
competing problem parameters. The optimal tradeoff between
Tmax and U°Pt in Fig. 5 was generated using the warm-starting
technique. The first point was obtained using the cold-start and
then subsequently we used warm-starting to obtain remaining
100 points on the curve. The primal-dual method required 30
iterations to obtain the first point, after which it needed only
about 2-3 iterations for each new point. In our example, the
total tradeoff curve was generated using about 280 total itera-
tions, while the cold-start method required close to 2180 iter-
ations. Therefore, warm-starting can be used to efficiently per-
form tradeoff analysis and explore the problem design space.
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Fig. 8. Convergence of the control law with no smoothing § = 1, o = 1074,
and starting from A = 0.11. Top: Primal objective value. Bottom: Maximum
temperature on the chip versus I p,.x (dashed line).

D. Performance of the Distributed Algorithm

In this section, we investigate performance of the distributed
algorithm when used as a simple distributed control law, which
tracks changes in the problem parameters.

We test the algorithm, using the problem setup described at
the beginning of Section V. For our problem instance, we found
constants M = 1.48 and L = 1057.1, which imply that the
proposed algorithm will converge as long as 0 < o < 2.8 X
10~3. However, extensive numerical experiments suggest that
the algorithm when used with smoothing actually converges for
larger values of «, up to around 0.05.

We investigate how well the distributed algorithm tracks
changes in the ambient temperature and the power supplied by
uncontrollable external sources. We introduce the following
event: at iteration k& = 200, we randomly perturb the ambient
temperature and the powers of the external sources by +£10%
around their initial values. Figs. 8 and 9 show convergence of
the maximum temperature and the system throughput, for the
distributed method with no smoothing (¢ = 1) and one with
smoothing (where we set # = « = 0.03), respectively. We
compare the convergence curves versus the optimal values ob-
tained by the primal-dual method. We note that the distributed
algorithm with smoothing reacts very well to the changes,
much better than the standard method without smoothing
(which takes a longtime to converge to the optimal values). In
our computational experiments, we also found that the method
with smoothing was much more robust to more aggressive
stepsizes and initialization from different A.

VI. CELL PROCESSOR CASE STUDY

As a more realistic example, we consider the first-genera-
tion cell processor [42], a nine core system jointly developed
by Sony, Toshiba, and International Business Machines Corpo-
ration. The processor features eight Synergistic Processing Ele-
ments (SPEs), to which the workloads are assigned by a Power
Processor Element (PPE). The fastest operation of each core
was clocked at 5.6 GHz with a 1.4 V supply at 56 °C under lab-
oratory conditions; however, the cores are commercially usually
run at 3.2 GHz [42].
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Fig. 9. Convergence of the control law with smoothing 8 = o = 0.03 and
starting from A = 1. Top: Primal objective value. Bottom: Maximum tempera-
ture on the chip versus Trax (dashed line).
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Fig. 10. Cell processor floorplan and thermal contour map during a regular
loading of the processor.

In [43], the authors show that due to an aggressive low-cost
thermal design of the cell processor, the PPE exhibits a thermal
hot spot during standard operation when all the cores ran at 3.2
GHz. Using the setup in [43] and our simplified thermal model
(see the Appendix), we reproduce these results in Fig. 10, which
shows the processor floorplan overlaid with a thermal contour
map. (In this case, the maximum die temperature is 60 °C, mea-
sured at the PPE.) As a solution to this uneven processor heating,
the processor implements a sophisticated thermal sensing and
system cooling techniques. Its ten local digital thermal sensors
provide early warnings of any temperature increase, and a linear
thermal sensor measures the die’s global temperature.

A. Speed Assignment for SPEs

We use the centralized method (see Section III) to find an op-
timal speed assignment for the processor, where we set sy, =
2 GHz and s,,.x = 5 GHz based on the data-sheet and take
the power functions to follow the cube speed-power model, i.e.,
pi = ¢i(si) = s3. We let Tomp, = 20°C and Tyay = 60 °C (a
safe operating temperature for the given speed limits).

‘We obtain the optimal speeds

sspE = (3.77,3.62,3.58,3.90,3.47, 3.88,3.46,4.10) GHz

and sppg = 4.46 GHz. The total processing capability of the
processor in the (nominal) equal-speed case is Upom = 9 X
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Fig. 11. Thermal contour map given an optimal speed assignment for the
processor.

3.2 = 28.8 GHz, while the optimal result is Uypy = 34.3
GHz, which is a 19% increase. The resulting temperature pro-
file is shown in Fig. 11. We note that the temperature is now
more evenly distributed across the system. Our methodology
can be used to quickly calculate optimal speed assignment poli-
cies given various operating conditions, thus exploring the per-
formance limits of the processor.

B. Dynamic Thermal Management

We investigate a simple dynamic thermal management of
the processor, using the dual distributed method described
in Section IV. We present some comparative results versus
a decentralized PI control [3], [5], in which individual PI
controllers govern each core, typically selecting the hottest
of the available temperature sensors as the input signal. This
decentralized control was shown to achieve large gains over
suboptimal schemes such as, e.g., the equal-speed scheme. In
particular, we use the decentralized PI controller proposed by
Donald and Martonosi in [3, Sec. 4.1], parametrized by the
proportional gain K, = 0.0107 and the integral term K; tuned
to give the best performance for the following setup.

We let T, vary sinusoidally between 5 °C and 35 °C as

Tamb = 20 + 15sin(27k/1000) °C

where k is the iteration number. We use the dual distributed
control law with smoothing (f# = « = 0.03) and PI controller
to compute processor speeds given the varying T, such that
T < Thax = 60 °C while maximizing the total processing
capability. We initialize both of the methods from s = spy;, =
2 GHz. Since the PI controller does not handle speed constraints
directly, we modify the algorithm to clip the speeds if they go
past their limits.

For comparison purposes, we compute U°Pt at each itera-
tion, using warm-started centralized method from Section III.
The performance results are shown in Fig. 12. We observe that
the dual-distributed method, after a brief settling time, perfectly
tracks the optimal speed assignments. The PI controller also per-
forms very well; however, at some instances it is up to 8% sub-
optimal to the distributed method (which obtains globally op-
timal performance). In contrast, the PI controller has a faster
settling time and it was tuned not to overshoot T},,,x, while the
distributed method briefly overshoots 7},,,x by 1.6 °C.

Figs. 13 and 14 show processor speed allocations versus the
iteration number for the dual distributed and PI control scheme,
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Fig. 12. Dynamic thermal tracking using the dual-distributed method (solid
line) and the PI control law (dash-dotted line). Top: Obtained throughput versus
the optimal value (dashed line). Botfom: Maximum temperatures on the chip
versus 1. (dashed line).
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Fig. 13. Processor speeds versus iteration using the dual-distributed algorithm.

respectively. We note that the PI controller due to its decentral-
ized nature does not take into account temperature cross-cou-
pling between cores, while the dual-distributed method han-
dles this cross-coupling through the dual variables and at some
instances switches relative order of core speeds.

We make some final comments, concerning the comparison
of our proposed method and the PI controller in [3]. Our first
comment is that the methods are not as different as they appear,
since our dual-distributed method can be interpreted as a non-
linear feedback control law. Moreover, both methods have a low
computational complexity. One difference is that our method di-
rectly takes into account constraints, whereas [3] handles con-
straints indirectly. On the other hand, historically, decentral-
ized PI control has worked very well in a wide variety of real
applications.

VII. EXTENSIONS

We also list some variations and extensions of the processor
speed control problem (6) and the proposed algorithms. First,
we can easily substitute a nonlinear concave differentiable
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Fig. 14. Processor speeds versus iteration using the PI controller.
utility function for the total throughput U(s) = 17s used

in this paper. For example, we can use a logarithmic utility,
Ules(s) = Y7, log s;, as is commonly used in economics and
networking. This utility function will achieve proportional fair-
ness, at least when the lower and upper processor speed bounds
are not active. Both the primal-dual and dual decomposition
methods are readily modified to handle such problems.

A second extension is to the case in which active cooling is
used. Here, we have some additional actuators, also within our
control, that can pump heat out of the environment, up to some
given maximum rate. Active cooling can be modeled by adding
the term —Bwu to the model for 7', where B is an elementwise
nonnegative matrix and « is the nonnegative vector of cooling
rates. If there is no cost to using cooling, we would obviously
operate the cooling at maximum rate. But we can subtract a cost
(say, in energy) of using the cooling or limit its total. The result
is still a convex optimization problem.

Third, we can turn the problem formulation around and min-
imize the maximum temperature subject to obtaining a speci-
fied level of throughput, or some other convex constraint on the
speed variable. This problem can be formulated as the following
optimization problem (in epigraph form):

minimize 7T
subject to  GP(s) + Tother + LTambl < T
Smin S S S Smax
w(s) € W (26)
where the variables are 7' € R and s € R". The problem data
are G € Rmxn7 Tothcr € Rm7 Tamb € R7 Smin; Smax € Rn,
the functions ¢, . . . , ¢,,, and the speed constraint set V', which
specifies the system workload. A simple example, in which a
given throughput is required, is W = {s|17s = U4},

This is a convex optimization problem, when the workload
constraint set is defined by a set of linear equalities and convex
inequalities. We can construct an infeasible-start primal-dual in-
terior-point method for (26) similar to the one proposed in this
paper. For more details on solving a particular instance of such
a problem using geometric programming, see [44].

2005

A fourth extension is to the dynamic case. In this paper, we
have ignored the thermal dynamics, assuming that the speed
control takes place on a slower time scale than the thermal time
constant of the system. But the same basic ideas used here for
the static case can be used to handle the case where the system
thermal dynamics are taken into account.

VIII. CONCLUSION

In this paper, we have presented two algorithms for adjusting
speeds of multiple processors subject to common thermal con-
straints. The first algorithm is an efficient implementation of
an infeasible-start primal-dual interior-point method, while the
second one is a distributed method based on dual decomposi-
tion. Both algorithms can be interpreted as nonlinear control
laws that can track changes in the problem data and therefore
can be used for real-time processor speed control in modern
multiprocessor systems. Numerical simulations on the exam-
ples shown (and others) verify that both algorithms perform
well in practice. In the future, we will experimentally verify per-
formance of these algorithms, implemented on a real multipro-
cessor system.

Our final comments concern the question of how the con-
trol laws proposed in this paper might be used in a real mul-
ticore processor. First, it seems to us that unless n is substan-
tial (say, tens), the benefits of sophisticated speed control would
not justify the cost. If the methods were deployed, we would
imagine using aggressively simplified thermal models (which
might, indeed, be formed or updated using system identification
[45] in actual operation), which would reduce the computational
burden associated with the control law. This would also bring
the update time down to below the millisecond range, allowing
fast speed updates if needed. We hope that future research will
address these issues.

APPENDIX

Thermal modeling of electronic (and other) devices is a well-
developed field. For example, finite-difference and finite-ele-
ment methods are discussed in [10], [11], [46], [47]; Green’s
function methods are considered in [48]. In this appendix, we
show how the simple thermal model (3) used in this paper can
be derived from the finite-difference method.

The steady-state temperature distribution over a region R,
with boundary isothermal at temperature 7,1, is governed by
the Poisson (steady-state heat) equation

V- (k(x)VT(z)) — P(z) =0, T(x)=Tamp forz € OR.

27)

Here, T'(x) is the temperature, k() is the thermal conductivity,
and P(x) is the power density of the heat source(s), at location
x € R3. (Here we ignore nonlinear terms in the thermal model,
such as temperature dependence of thermal conductivity.)

We approximate the partial differential equation (27), using
finite-difference discretization with m sample points, and a spe-
cial (ground) node, which represents the ambient environment,
assumed to be isothermal, with temperature 7,1, Heat flows
along edges of a directed graph (typically a mesh) with m + 1
nodes (the sample points and the ground node), and [ directed
edges between the points. We associate temperatures with the
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nodes, and heat flow with the edges, with positive heat flow
meaning heat flow in the direction of the edge, and negative heat
flow meaning heat flow in the opposite direction. The graph can
represent a 1-D, 2-D, or 3-D physical system and can include
nodes for the substrate, packaging and heat sinks, effects of the
outside environment, and so on.

We let T; € R denote the temperature at the +th node. Then
the vector T = (Ty,...,T,,) € R™ gives the (discrete) tem-
perature distribution of the system. Welet P = (P, ..., Pp,) €
R} denote the powers injected into the nodes (due to the pro-
cessors and other power sources). We have

P = Bp + Pother

where B € R} *™ gives the distribution of the processor powers
p = (p1,--.,pn) into the nodes, and Poiper € R} is the power
injected into the nodes due to other sources. (B;; gives the frac-
tion of the power dissipated by the processor j into the node z.)
Typically, B and P,her are sparse.

With each edge we associate a thermal conductance k; € R,
which is (roughly) the average of k(z) over the region between
the nodes connected by the ¢th edge. The thermal conductivity
vector is then k = (k1,...,k) € RL.

Let A € R™*! denote the reduced node-incidence matrix for
the graph, defined as

+1, edgej goestonode ¢
A;j =14 —1, edgej goesfrom node i
0, otherwise.

Each column of A describes a directed edge. If the edge goes
between two sample nodes, the column has exactly two nonzero
entries, one +1 and one —1. If the edge goes to or from the
ground node, the column has only one nonzero entry.

The discrete analog of the steady-state heat equation (27) is
then

(AKA™YT — Taupy1) = P =0 (28)

where K = diag(k) € R™!. The matrix AK AT € R™*™ s
a weighted Laplacian matrix and is positive definite when A is
full rank (which occurs when the graph, including the ground
node, is connected). We solve (28) to obtain

T =(AKAT)'P + Ty 1

(AKAT>_1BP + (AKAT)_IP()ther + Tambl

which has the form (3), with

G = (AKAT)_1B7 Tother = (AKAT)_lpother-

It is well known that (AK AT)~! has all positive entries (since
the graph is connected), so the matrix G also has all nonnegative
entries.
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