
Identification of Stable Genetic Networks

using Convex Programming

Michael M. Zavlanos, A. Agung Julius, Stephen P. Boyd and George J. Pappas

Abstract— Gene regulatory networks capture interactions
between genes and other cell substances, resulting in various
models for the fundamental biological process of transcription
and translation. The expression levels of the genes are typically
measured in mRNA concentrations in micro-array experiments.
In a so called genetic perturbation experiment, small perturba-
tions are applied to equilibrium states and the resulting changes
in expression activity are measured. This paper develops a novel
algorithm that identifies a sparse stable genetic network that
explains noisy genetic perturbation experiments obtained at
equilibrium. Our identification algorithm can also incorporate
a variety of possible prior knowledge of the network structure,
which can be either qualitative, specifying positive, negative
or no interactions between genes, or quantitative, specifying a
range of interaction strength. Our method is based on a convex
programming relaxation for handling the sparsity constraint,
and therefore is applicable to the identification of genome-scale
genetic networks.

I. INTRODUCTION

Recent advances in the field of biotechnology have tar-

geted increasing interdisciplinary research into modeling and

simulation of biological networks at the molecular level.

In particular, the use of RNA micro-arrays that enables

experimental gene expression measurements for large scale

biological networks, has provided researchers with valuable

data that can be used to identify gene interactions in large

genetic networks. Besides promoting biological knowledge,

identification of such networks is also important in drug

discovery, where a systems-wide understanding of regulatory

networks is crucial for identifying the targeted pathways.

Due to the significance of its potential applications, genetic

network identification has recently received considerable at-

tention. Depending on whether identification aims at relating

the expression of a gene to the sequence motifs found in

its promoter or to the expression of other genes in the

cell, approaches can be characterized as gene-to-sequence

or gene-to-gene, respectively [1], [2]. The ensemble of both

classes consist the so called genetic network identification

problem and solution techniques can either ignore or explic-

itly consider the underlying gene dynamics.

Members of the former class are clustering algorithms [3],

[4] that group genes with similar expressions, due to the

high probability that they are functionally, but not necessarily

This work is partially supported by ARO MURI SWARMS Grant
W911NF-05-1-0219 and the NSF ITR Grant 0324977.

Michael M. Zavlanos, A. Agung Julius and George J. Pap-
pas are with the Department of Electrical and Systems Engi-
neering, University of Pennsylvania, Philadelphia, PA 19104, USA.
{zavlanos,agung,pappasg}@seas.upenn.edu Stephen P.
Boyd is with the Department of Electrical Engineering, Stanford University,
Stanford, CA 94305, USA. boyd@stanford.edu

directly, related to each other. Alternatively, grouping of co-

expressed genes may be achieved using information-theoretic

methods [5]. Both approaches, however, are restricted to

identifying undirected networks and hence, lack causality.

Causality may be recovered using Bayesian networks [6],

which can handle directed graphs. Nonetheless, Bayesian

networks typically do not accommodate cycles and hence,

can not handle feedback motifs that are common in genetic

regulatory networks. Both causality and feedback motifs are

no longer an issue when the network is modeled as a set of

differential equations [7]–[10]. Identification is then typically

optimization based, while approaches depend on whether the

data is obtained from dynamic time-series or steady-state

measurements.

The approach proposed in this paper falls under the latter

class of networks modeled as differential equations and aims

at obtaining a minimal model that explains given genetic per-

turbation data at steady-state. The minimality specification is

due to the observation that biological networks exhibit loose

connectivity [11], [12] and in the present framework, it was

first addressed in [7] in the form of a priori combinations

of constraints on the connectivity of the network. To avoid

the combinatorially hard nature of the problem, in this

paper, we employ a weighted ℓ1 relaxation [13]–[16], which

leads to a much more scalable linear program. Additional

linear constraints are introduced so that our model best fits

the given genetic perturbation data as well as satisfies a

priori knowledge on the network structure. We show that

the proposed linear program performs well for sufficiently

large data sets with low noise, while smaller and noisy data

sets hinder its performance, partly due to identification of

unstable networks, which also contradict the steady-state

assumption on the data.

The identification performance can, however, be greatly

improved by imposing a stability condition on the identified

network. This can be done using linear constraints, via

Geršgorin’s Theorem, or semidefinite ones, via a Lyapunov

inequality ensuring stability. To the best of our knowledge,

this is a first attempt to formally study the effect of stability

of the identified networks on the identification performance.

The rest of this paper is organized as follows. In Section II

we describe the genetic network identification problem, while

in Section III we develop the proposed ℓ1 relaxation and

discuss the aforementioned stability issues that could hinder

its identification performance. In Section IV we extend our

algorithm to account for stability of the identified solutions

and finally, in Section V, we illustrate the efficiency of our

approach by testing it on artificial noisy data sets.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB10.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2755

II. GENETIC NETWORK IDENTIFICATION

Genetic regulatory networks consisting of n genes can be

modeled as n-dimensional dynamical systems [7]. In general,

such models assume the form

˙̂x = f(x̂, u), (1)

where x̂(t) ∈ R
n and u(t) ∈ R

p. Here x̂i(t) ∈ R denotes

the transcription activity (typically measured as mRNA con-

centration) of gene i in the network, and ui is the so called

transcription perturbation.1 Nonlinear genetic networks as in

(1) can have multiple stable equilibria, each one typically

corresponding to a phenotypical state of the system. Then,

the dynamics in a neighborhood of any given equilibrium

xeq can be approximated by the set of linear differential

equations

ẋ = Ax + Bu, (2)

where x , x̂ − xeq [8]. The matrix A ∈ R
n×n encodes

pairwise interactions between the individual genes in the

network at the given equilibrium or phenotypical state, while

the matrix B ∈ R
n×p indicates which genes are affected by

the transcriptional perturbations. Assuming the equilibrium

x = 0 is stable and the perturbation u is sufficiently

small and constant, the system (2) will restabilize at a new

equilibrium x, at which

Ax + Bu = 0. (3)

Let m be the number of available transcription perturba-

tions2 and define the matrices U = [u1 · · ·um] ∈ R
p×m and

X = [x1 · · ·xm] ∈ R
n×m containing the transcription per-

turbations of all m experiments and their associated steady-

state mRNA concentrations, respectively. Then, collecting all

m experiments at steady-state, system (3) can be written as

AX + BU = 0. (4)

The matrices X , U can be measured (possibly with noise)

and are assumed to be known; the matrix B is also typically

known. Then, the network identification problem can be

stated as follows.

Problem 1 (Genetic Network Identification): Given

steady-state transcription perturbation and mRNA

concentration data X and U , determine the sparsest

stable matrix A that best satisfies (4), while incorporating

any a priori biological knowledge regarding the presence,

absence, or nature of specific gene interactions.

The requirement that A is sparse is due to biological

networks being sparse in nature [11], [12], while the stability

condition is necessary for the steady-state to be observed.

Finally, accordance with a priori biological knowledge is

both desired and naturally expected to result in improved

identification performance.

1For large scale networks, we may assume that not all genes are affected
by a given perturbation, resulting in p ≤ n.

2Typically, each transcription perturbation corresponds to a specific
experiment.

III. LINEAR PROGRAMMING FORMULATION

Given any genetic network described by (2), the problem

of identifying the sparsest matrix A that approximately

satisfies constraints (4), can be formulated as the following

optimization problem

minimize card(A)
subject to ‖AX + BU‖1 ≤ ǫ,

(5)

where card(A) denotes the number of zero entries in matrix

A, and ‖A‖1 =
∑n

i,j=1 |aij | denotes the (elementwise) ℓ1
norm of a matrix A. Variable in problem (5) consists the

matrix A, while the problem data are X , B, U and ǫ. The

positive parameter ǫ is used to control the trade-off between

sparsity, i.e., card(A), and best fit, i.e., ‖AX +BU‖1. Note

that any other norm could be used in the constraints here;

we use the ℓ1 norm since it handles outliers well.

When a priori knowledge about the network is also avail-

able, it is typically in the form of a partial sign pattern

S = (sij) ∈ {0,+,−, ?}n×n, which encodes known positive

interactions (+), negative interactions (−), no interactions

(0), or no a priori knowledge regarding interactions (?)

between any two genes in the network. Such knowledge can

be included in (5) by means of the set of linear constraints

A ∈ S ⇒















aij ≥ 0, if sij = +
aij ≤ 0, if sij = −
aij = 0, if sij = 0
aij ∈ R, if sij = ?

(6)

resulting in the problem

minimize card(A)
subject to ‖AX + BU‖1 ≤ ǫ, A ∈ S.

(7)

From a computational point of view, formulation (7) poses

a significant challenge. Although both constraints are convex

in the matrix A [17], the cost function card(A) is not convex.

Solving this problem globally can be done, for instance

by branch-and-bound methods or direct solution with all

possible 2n2

sparsity patterns for A. Nevertheless, these

methods are typically very slow, and cannot scale to networks

with more than a handful of genes.

To obtain a method that can scale to large networks, we

propose a convex relaxation of the cardinality cost function.

In particular, we replace the card(A) objective with the

weighted ℓ1-norm
∑n

i,j=1 wij |aij |, resulting in the following

convex program

minimize
∑n

i,j=1 wij |aij |

subject to ‖AX + BU‖1 ≤ ǫ, A ∈ S,
(8)

where the weights wij are chosen such that

wij =
δ

δ + |aij |
, for all i, j = 1, . . . , n (9)

for sufficiently small δ > 0 [14]. The main idea behind the

proposed heuristic is to uniformly initialize all weights by

wij = 1 (this corresponds to the standard ℓ1 relaxation of the

cost function) and repeatedly solve problem (8), each time

updating the weights using (9) (Algorithm 1). Then, large

2756

Algorithm 1 Network Identification (Ignoring Stability)

Require: Sign pattern S and possibly noisy experimental

data X ∈ R
n×m, U ∈ R

p×m,

1: Set ǫ , µ min{‖AX + BU‖1 | A ∈ S}, with µ > 1,

2: Initialize weights wij = 1 for all i, j = 1, . . . , n,

3: for it = 1 to J do

4: Solve the linear program (8),

5: Update the weights wij using (9),

6: end for

weights are always assigned to small matrix entries |aij | and

small weights to large entries |aij |, which can eliminate any

weak genetic interactions in the final identified matrix A.

In practice, Algorithm 1 requires no more than J =
10 iterations, regardless of the problem size. Furthermore,

recent theoretical results [18] show that, in some cases (not

including the present application), minimizing the weighted

ℓ1 norm of a matrix A, in fact does minimizes card(A)
with high probability. Despite, however, the computationally

appealing properties of Algorithm 1, its identification perfor-

mance can be significantly decreased in the presence of noisy

data or in the absence of a sufficient number of experiments

m. We illustrate this observation in the following example

and argue that it might be due to instability of the identified

network.

Example 3.1 (Identifying an unstable matrix): Consider

the following 5 × 5 matrix A to be identified

A =

[−1.2294 −1.5474 0 0 0
0.4153 −0.8308 0 0 0
0.3614 0 −0.5833 0 1.0243

0 0 0 −0.9589 −0.3565
0.0420 0 0 0 −1.3703

]

and assume the desired a priori sign pattern is given by

S =

[

? −1 ? ? ?
? ? 0 ? 0
? ? ? 0 1
? ? 0 ? ?
1 ? ? 0 ?

]

.

Let m = 4 be the number of available experiments and

assume a significantly high noise level of 80%. Using these

quantities we can construct noisy data by X = −A−1BU +
0.8N , where B = I5, U = 0.1I5×4 and N ∈ R

5×4 is a

zero mean and unit variance normally distributed random

variable.3 Applying J = 10 iterations of Algorithm 1, the

identified matrix Au becomes

3We denote by In×m the n × m identity matrix.

1 2 3 4 5 6
0

1

2

3

4

5

6

Iteration

C
o

n
v
e

rg
e

n
c
e

 E
rr

o
r

Fig. 1. Plot of the convergence error ‖Ak+1 −Ak‖1 as a function of the
iteration k of Algorithm 1 for Example 3.1.

TABLE I

PERFORMANCE OF ALG. 1 IN EXAMPLE 3.1

Correct Positives Identified† 1

Correct Negatives Identified† 4

Correct Zeros Identified† 4

False Positives Identified 3
False Negatives Identified 4
False Zeros Identified 1

† a priori sign knowledge not included.

Au =

[−0.5142 −1.2042 0 0 −0.4896
0.3685 −0.8354 0 0 0
−0.2332 −0.0689 −0.2916 0 8.7007
0.0151 0.0018 0 2.5766 0
0.2439 −0.0306 0 0 −8.6554

]

.

Fig. 1 shows the convergence rate of Algorithm 1. Clearly,

the desired sign pattern S is satisfied and Au is a sparse

enough matrix. Note, however, that Au is not a stable matrix

even though A is stable. Table I summarizes the performance

of Algorithm 1 in identifying matrix A. Note that the number

of false positives, negatives and zeros in the identified matrix

Au is significantly large, leading to the conclusion that

stability of Au might be an important aspect of the problem.

IV. INCORPORATING STABILITY

In Section III we developed an iterative procedure, based

on the solution of linear programs, able to identify a sparse

matrix that best fits possibly noisy network data, while sat-

isfying a priori knowledge about the network. Despite these

appealing properties of the proposed approach, it was also

shown in Example 3.1 that it is possible that the identified

matrix is unstable, violating the specifications of Problem 1

and hindering the algorithm’s performance. In this section,

we propose two different ways of incorporating stability in

Algorithm 1, both preserving its convex nature and hence,

having the associated scalability and global optimality prop-

erties. Furthermore, we show that these modified approaches

significantly increase the performance of our identification

algorithm.

A. Linear Approximation

Incorporating stability of the identified matrix A as a linear

constraint in Algorithm 1 relies on the following theorem by

Geršgorin.

Theorem 4.1 ([19]): Let A = (aij) ∈ C
n×n and for all

i = 1, . . . , n define the deleted absolute row sums of A by

Ri(A) ,
∑

j 6=i |aij |. Then, all eigenvalues of A are located

in the union of n discs G(A) , ∪n
i=1{z ∈ C | |z − aii| ≤

Ri(A)}. Furthermore, if a union of k of these n discs forms

a connected region that is disjoint from all the remaining

n−k discs, then there are exactly k eigenvalues of A in this

region.

The region G(A) is often called the Geršgorin region

(for the rows) of A, the individual discs in G(A) are called

the Geršgorin discs, while the boundaries of these discs are

called the Geršgorin circles. Since A and AT have the same

2757

Algorithm 2 Network Identification (Geršgorin Stability)

Require: Sign pattern S and possibly noisy experimental

data X ∈ R
n×m, U ∈ R

p×m,

1: Set ǫ , µ min{‖AX + BU‖1 | A ∈ S}, with µ > 1,

2: Initialize weights wij = 1 for all i, j = 1, . . . , n,

3: for it = 1 to J do

4: Solve the linear program (12),

5: Update the weights wij using (9),

6: If it = 1, update the weights vi using (13),

7: end for

eigenvalues, one can also obtain a similar Geršgorin disc

theorem for the columns of A. Clearly, if

aii ≤ −
∑

j 6=i

|aij |, for all i = 1, . . . , n (10)

then all discs {z ∈ C | |z − aii| ≤ Ri(A)} are in the left

half plane C− and Theorem 4.1 ensures that all eigenvalues

of A are also in C−, which implies that A is stable. What

is appealing about constraints (10) is that they are linear in

the entries of A and, hence, can be directly incorporated

in the linear program (8) in Algorithm 1, rendering a stable

matrix. However, constraints (10) also impose strict structural

constraints on the entries of A. In particular, they restrict

all diagonal entries of A to be non-positive and matrix

A to be diagonally dominant, namely |aii| ≥
∑

j 6=i |aij |
for all i = 1, . . . , n. This constraint can be relaxed by

applying a similarity transformation on A. In particular,

since V −1AV and A share the same eigenvalues for any

invertible matrix V , we can apply Geršgorin’s theorem to

V −1AV and for a smart choice of V we can obtain sharper

bounds on the eigenvalues. A particularly convenient choice

is V , diag(v1, . . . , vn), with vi > 0 for all i = 1, . . . , n.

Then, V −1AV = (vjaij/vi) and Geršgorin’s theorem states

that all eigenvalues of A lie in the region

G(V −1AV) , ∪n
i=1

{

z ∈ C | |z − aii| ≤
1

vi

∑

j 6=i

vj |aij |
}

.

Clearly, if we require that

aii ≤ −
1

vi

∑

j 6=i

vj |aij |, i = 1, . . . , n, (11)

then G(V −1AV) ⊂ C−, which implies that matrix A is

stable, but not necessarily diagonally dominant any more.

Constraints (11) are still convex in the entries of A and hence,

can be directly incorporated in (8) resulting in the linear

program

minimize
∑n

i,j=1 wij |aij |

subject to ‖AX + BU‖1 ≤ ǫ, A ∈ S
aii ≤ − 1

vi

∑

j 6=i vj |aij |, i = 1, . . . , n.
(12)

The identification procedure is then described in Algo-

rithm 2. Intuitively, the weights vi, should penalize Geršgorin

discs far in the left half plane and assign the remaining slack

to discs close to the imaginary axis, breaking in this way the

TABLE II

PERFORMANCE OF ALG. 2 IN EXAMPLE 4.2

Correct Positives Identified† 2

Correct Negatives Identified† 5

Correct Zeros Identified† 6

False Positives Identified 0
False Negatives Identified 3
False Zeros Identified 1

† a priori sign knowledge not included.

diagonal dominance in the associated row. In particular, for

any β > 0 we choose the weights vi by

vi ,

{

β + |aii|−Ri(A)
1+|aii|−Ri(A) , if |aii| − Ri(A) > 0

β, if |aii| − Ri(A) ≤ 0
, (13)

where Ri(A) denotes the deleted absolute sum for row i, as

in Theorem 4.1, and the quantity |aii|−Ri(A) > 0 indicates

how far in the left half plane the associated Geršgorin disc

is located. Note that the weights vi are updated only once

(line 6 in Algorithm 2) so that Algorithm 2 possesses similar

convergence properties with Algorithm 1. The following

example illustrates the performance of Algorithm 2 for the

data in Example 3.1.

Example 4.2 (Stable Identification using Algorithm 2):

Applying Algorithm 2 to the data given in Example 3.1 the

identified matrix As becomes

As =

[−0.5356 −1.1981 0 0 0
0.2499 −1.1036 0 0 0
0.0081 −0.0922 −0.2938 0 0.1843
−0.0016 0 0 −0.3190 0
0.6089 −0.0741 0 0 −21.4519

]

.

Clearly, the desired sign pattern S is satisfied, while As

is also sparse, stable and not diagonally dominant. Table II

summarizes the performance of Algorithm 2. Note that

the number of false positives, negatives and zeros in the

identified matrix As is significantly reduced compared to the

results in Table I, which implies that stability is indeed an

important identification specification.

B. Semidefinite Approximation

Let A be the matrix identified by Algorithm 1 which, as

shown in Example 3.1, can possibly be unstable. The goal in

this section is to characterize “small” perturbations to A that

render it stable, while satisfying the desired sign pattern and

maintaining its sparsity structure. For this, let D ∈ R
n×n be

the sought perturbation matrix and define the matrix A′ ,

A + D. A necessary and sufficient condition for stability of

A′ is the existence of a symmetric positive definite Lyapunov

matrix P such that

(A + D)T P + P (A + D) ≺ 0. (14)

Letting L , PD, equation (14) becomes

AT P + LT + PA + L ≺ 0, (15)

which is a linear matrix inequality in both P and L and can

be efficiently solved using semidefinite programming [17].

2758

Algorithm 3 Network Identification (Lyapunov Stability)

Require: Sign pattern S and possibly noisy experimental

data X ∈ R
n×m, U ∈ R

p×m,

1: Apply Algorithm 1 for matrix A,

2: if matrix A is unstable then

3: Solve (16) for stable matrix A′ = A + P−1L,

4: Solve (17) for robust Lyapunov matrix P ⋆,

5: Set A := A′,

6: Set ǫ , µmin{‖AX + BU‖1 | A ∈ S}, with µ > 1,

7: Initialize weights wij = 1 for all i, j = 1, . . . , n,

8: for it = 1 to J do

9: Solve the semidefinite program (20),

10: Update the weights wij using (9),

11: end for

12: end if

In particular, solving the following semidefinite program

minimize ‖LX‖2

subject to AT P + LT + PA + L ¹ 0, P º I,
(16)

gives D = P−1L and the desired stable matrix A′ becomes

A′ = A + P−1L. Since ‖(A′ − A)X‖2 = ‖P−1LX‖2 ≤
‖LX‖2

‖P‖2

and ‖P‖2 > 1,4 minimizing the objective ‖LX‖2

also minimizes the error between AX+BU and A′X+BU .

Clearly, matrix A′ may no longer satisfy the desired sign

pattern or sparsity specifications hence, we need to further

perturb it while maintaining its stability. For this, we need

to define the notion of a robust Lyapunov function.

Definition 4.3 (δ-robust Lyapunov function): We call P a

δ-robust Lyapunov function of the stable system A if for any

perturbation ‖∆‖2 < δ, the system A+∆ is also stable with

corresponding Lyapunov function P .

Obtaining a δ-robust Lyapunov function for the stable

matrix A′ relies on the solution of the following convex

optimization problem

minimize ‖P‖2
2 − µ,

subject to A′T P + PA′ ¹ −µI, P ≻ 0, µ > 0.
(17)

The idea is that the matrix P obtained by (17) should

robustly satisfy the Lyapunov equation by a positive constant

µ > 0. Let P ⋆ and µ⋆ be the solution to problem (17). Then,

we have the following result.

Proposition 4.4 (Geometric Interpretation of Robustness):

The Lyapunov function P ⋆ of the system A′ is δ-robust

with δ = µ⋆

2‖P ⋆‖2

.

Proof: Our goal is to find δ > 0 such that

(A′ + ∆)T P ⋆ + P ⋆(A′ + ∆) ≺ 0, (18)

for any perturbation ‖∆‖2 < δ. Let Q = ∆T P ⋆ + P ⋆∆.

Then, equation (18) becomes

Q − µ⋆I ≺ 0, (19)

4Observe that P ≻ I implies that 1 < λmin(P) and so 1 < ‖P‖2 since,
λmin(P) < maxi{|λi(P)|} = ρ(P) ≤ ‖P‖2, where ρ(P) denotes the
spectral radius of P .

TABLE III

PERFORMANCE OF ALG. 3 IN EXAMPLE 4.5

Correct Positives Identified† 2

Correct Negatives Identified† 5

Correct Zeros Identified† 7

False Positives Identified 0
False Negatives Identified 2
False Zeros Identified 1

† a priori sign knowledge not included.

since A′T P ⋆ + P ⋆A′ ≺ −µ⋆I , by the semidefinite program

(17). A sufficient condition for equation (19) to be true

is that λmax(Q) < µ⋆. But maxi |λi(Q)| = ρ(Q) ≤
‖Q‖2 ≤ 2‖∆‖2‖P

⋆‖2 by the triangle inequality and clearly

λmax(Q) ≤ ρ(Q). Hence, a sufficient condition for equation

(19) to hold is that 2‖∆‖2‖P
⋆‖2 < µ⋆, which completes the

proof.

Proposition 4.4 characterizes the allowable perturbations

to the matrix A′ that do not violate its stability. This result

enables us to safely search within a δ-neighborhood of the

matrix A′ for a sparser matrix that also satisfies the desired

sign pattern. In particular, we can extend (8) by

minimize
∑n

i,j=1 wij |aij |

subject to ‖AX + BU‖1 ≤ ǫ
AT P ⋆ + P ⋆A ¹ 0, A ∈ S

(20)

and iterate until convergence, as in Algorithm 1. This pro-

cedure is described in Algorithm 3.

The following example illustrates the performance of

Algorithm 3 for the data in Example 3.1.

Example 4.5 (Stable Identification using Algorithm 3):

Applying Algorithm 3 to the data given in Example 3.1 the

identified matrix As becomes

As =

[−0.5277 −1.2015 0 0 0
0.3685 −0.8347 0 0 0
0.0025 −0.0974 −0.2915 0 0.3982

0 0 0 −0.0064 0
0.0215 −0.0017 0 0 −0.7259

]

.

Clearly, the desired sign pattern S is satisfied, while As is

also sparse, stable and not diagonally dominant. Table III

summarizes the performance of Algorithm 3. Note that

the number of false positives, negatives and zeros in the

identified matrix As is significantly reduced compared to the

results in Table I, which implies that stability is indeed an

important identification specification.

V. RESULTS AND DISCUSSION

Example 3.1 indicates that partial data, i.e. m < n, and

high noise levels in the system might hinder the identification

performance of Algorithm 1, which, however, can be recov-

ered if stability of the identified network is incorporated in

the identification procedure, as shown in Examples 4.2 and

4.5. The goal in this section is to explore the identification

capabilities of Algorithms 1, 2 and 3 for various problem

sizes n, data set sizes m and noise levels and characterize

the regions where each one performs best.

In particular, we test Algorithms 1, 2 and 3 for problems

of size n = 5, 10, 20, data sets of size m = n (Full Data) and

2759

4 6 8 10 12 14 16 18 20 22 24
10

15

20

25

30

35

100% St.IDs

100% St.IDs

100% St.IDs

NO STABILITY

GERSGORIN STABILITY

SDP STABILITY

(a) Full Data - 5% Noise

4 6 8 10 12 14 16 18 20 22 24
15

20

25

30

35

40

45

77% St.IDs

22% St.IDs

2% St.IDs

NO STABILITY

GERSGORIN STABILITY

SDP STABILITY

(b) Partial Data - 5% Noise

4 6 8 10 12 14 16 18 20 22 24
15

20

25

30

35

40

91% St.IDs

62% St.IDs

66% St.IDs

NO STABILITY

GERSGORIN STABILITY

SDP STABILITY

(c) Full Data - 50% Noise

4 6 8 10 12 14 16 18 20 22 24
20

25

30

35

40

45

50

66% St.IDs

8% St.IDs

0% St.IDs

NO STABILITY

GERSGORIN STABILITY

SDP STABILITY

(d) Partial Data - 50% Noise

Fig. 2. Plots of the average total False Identifications (F.IDs) as a function
of the Problem Size n = 5, 10, 20 for data sets of size m = n (Full Data)
and m = ⌈n

2
⌉ (Partial Data) and noise levels ν = 5% and ν = 50%. Figs.

2(a)-2(b) and 2(c)-2(d) compare Algorithms 1, 2 and 3 for different data
set sizes m and the same noise level ν, while Figs. 2(a)-2(c) and 2(b)-2(d)
compare Algorithms 1, 2 and 3 for different noise levels ν and the same
data set size m. Note also Stable Identifications (St.IDs) returned by Alg. 1.

m = ⌈n
2 ⌉ (Partial Data) and noise levels ν = 5% and ν =

50%. For every tuple (n,m, ν), a set of 50 stable matrices

A to be identified is randomly generated from the normal

distribution, such that every gene is connected to 60% of the

genes in the network. The associated data sets are obtained

by X = −A−1BU + νN , where B = In, U = 0.1In×m

and N ∈ R
n×m is a zero mean and unit variance normally

distributed random matrix. The a priori sign pattern used

involves 30% of all gene interactions modeled in each matrix

A. All algorithms are implemented in MATLAB using the

cvx toolbox for convex optimization problems [20] and run

on an Intel Xeon 2.8GHz processor with 4GB RAM. For

problems of size n = 20, each iteration of Algorithms 1, 2

and 3 takes approximately 4, 6 and 10 seconds, respectively,

while no more than 10 iterations are in general required.

Figs. 2 show how False Identifications (F.IDs) vary as a

function of the problem size n for different pairs (m, ν)
of data set sizes and noise levels. Note that Algorithm 1

performs best for full data and low noise levels, where it

also returns 100% stable identifications (St.IDs), Algorithm 2

for partial data or high noise levels and large size problems

and Algorithm 3 for partial data or high noise levels and

small size problems. Note also that for large problems, best

identifications are achieved by means of linear programming

(Alg. 1 or Alg. 2) rather than semidefinite programming

(Alg. 3), significantly reducing computational complexity.

VI. CONCLUSIONS

In this paper, we considered the problem of identifying a

minimal model that best explains genetic perturbation data

obtained at the network’s equilibrium state. We relaxed the

combinatorially hard cardinality optimization specification

by employing its weighted ℓ1 approximation and extended

our formulation to account for a priori knowledge on the net-

work structure, as well as stability of the derived solutions.

We tested our algorithms on different size data sets corrupted

by various noise levels and showed that stability of the

identified network is an important aspect of the problem that

can significantly increase the performance of identification

algorithms, especially when partial and noisy data sets are

considered. The strength of our approach lies in its convex

nature that can handle large scale identification problems.

REFERENCES

[1] M. Bansal, V. Belcastro, A. Ambesi-Impiombato and D. di Bernardo.
How to Infer Gene Networks from Expression Profiles, Molecular
Systems Biology, vol. 3, 2007. (10.1038/msb4100120).

[2] T. Gardner and J. Faith. Reverse-Engineering Transcription Control

Networks, Physics of Life Reviews, vol. 2, pp. 65-88, 2005.
[3] M. Eisen, P. Spellman, P. Brown, D. Botstein. Cluster Analysis

and Display of Genome-Wide Expression Patterns, Proc. National
Academy of Science, vol. 95, pp. 14863-14868, 1998.

[4] R. Amato, A. Ciaramella, N. Deniskina, C. Del Mondo, D. di
Bernardo, C. Donalek, G. Longo, G. Mangano, G. Miele, G. Raiconi,
A. Staiano and R. Tagliaferri. A Multi-Step Approach to Time Series

Analysis and Gene Expression Clustering, Bioinformatics, vol. 22, pp.
589-596, 2006.

[5] R. Steuer, J. Kurths, C.O. Daub, J. Weise and J. Selbig. The Mutual

Information: Detecting and Evaluating Dependencies between Vari-

ables, Bioinformatics, vol. 182, pp. 231-240, 2002.
[6] D. Pe’er, I. Nachman, M. Linial and N. Friedman. Using Bayesian

Networks to Analize Expression Data, Journal of Computational
Biology, vol. 7, pp. 601-620, 2000.

[7] T. Gardner, D. di Bernardo, D. Lorenz and J. Collins. Inferring Genetic

Networks and Identifying Compound Mode of Action via Expression

Profiling, Science, vol. 301, pp. 102-105, 2003.
[8] E. Sontag, A. Kiyatkin and B. Kholodenko. Inferring Dynamic Archi-

tecture of Cellular Networks using Time Series of Gene Expression,

Protein and Metabolite Data, Bioinformatics, vol. 20(12), pp. 1877-
1886, 2004.

[9] F. Amato, C. Cosentino, W. Curatola and D. di Bernardo. LMI-

based Algorithm for the Reconstruction of Biological Networks, Proc.
American Control Conference, pp. 2720-2725, New York, NY, 2007.

[10] A. Papachristodoulou and B. Recht. Determining Interconnections in

Chemical Reaction Networks, Proc. American Control Conference, pp.
4872-4877, New York, NY, 2007.

[11] M. Arnone and E. Davidson. The Hardwiring of Development: Orga-

nization and Function of Genomic Regulatory Systems, Development,
vol. 124.

[12] D. Thieffry, A. Huerta, E. Pérez-Rueda and J. Collado-Vides. From

Specific Gene Regulation to Genomic Networks: A Global Analysis of

Transcriptional Regulation in Escherichia Coli, Bioessays, vol. 20.
[13] E. J. Candes, M. B. Wakin and S. Boyd. Enhancing Sparsity by

Reweighted ℓ1 Minimization, Manuscript, Oct. 2007. Available at
http://www.stanford.edu/˜boyd/papers.html.

[14] S. Boyd. ℓ1-norm Methods for Convex Cardinality Problems,
Lecture Notes for EE364b, Stanford University. Available at
http://www.stanford.edu/class/ee364b/.

[15] A. Hassibi, J. How and S. Boyd. Low-Authority Controller Design

via Convex Optimization, AIAA Journal of Guidance, Control, and
Dynamics, vol. 22(6), pp. 862-872, 1999.

[16] J. A. Tropp. Just Relax: Convex Programming Methods for Identifying

Sparse Signals, IEEE Trans. Inf. Theory, vol. 51(3), pp. 1030-1051,
2006.

[17] S. Boyd and L. Vandenberghe. Convex Optimization, Cambridge U.
Press, 2004.

[18] E. Candes, J. Romberg and T. Tao. Robust Uncertainty Principles:

Exact Signal Reconstruction from Highly Incomplete Frequency Infor-

mation, IEEE Trans. Inf. Theory, vol. 52(2), pp. 489-509, 2006.
[19] R. Horn and C. Johnson. Matrix Analysis, Cambridge U. Press, 1985.
[20] M. Grant, S. Boyd, and Y. Ye, cvx MATLAB Software for Disciplined

Convex Programming, Available at
http://www.stanford.edu/˜boyd/cvx/.

2760

