MIMO PID Tuning via Iterated LMI Restriction

S. Boyd M. Hast K. J. Astrom
Originally posted July 2014. Updated version February 2015.

Abstract

We formulate multi-input multi-output (MIMO) proportional-integral-derivative
(PID) controller design as an optimization problem that involves nonconvex quadratic
matrix inequalities. We propose a simple method that replaces the nonconvex matrix
inequalities with a linear matrix inequality (LMI) restriction, and iterates to conver-
gence. This method can be interpreted as a matrix extension of the convex-concave
procedure, or as a particular majorization-minimization (MM) method. Convergence
to a local minimum can be guaranteed. While we do not know that the resulting con-
troller is globally optimal, the method works well in practice, and provides a simple
automated method for tuning MIMO PID controllers. The method is readily extended
in many ways, for example to the design of more complex, structured controllers.

1 Introduction

Single-input single-output (SISO) proportional-integral-derivative (PID) control is the auto-
matic control scheme most widely used in practice, with a long history going back at least
250 years; see [AHO()’, §1.4]. It has only three parameters to tune, and achieves reasonable
or good performance on a wide variety of plants. The effect of the tuning parameters (or
gains) on the closed-loop performance are well understood, and there are well known simple
rules for tuning these parameters; see, e.g., [AH06, Chap. 6] or [Luy86]. Systems for auto-
matically tuning SISO PID controllers have been developed, and are available in commercial
controllers [AHOG, GHO08, GHA12, VV12|. The authors of this paper recently developed
yet another SISO PID tuning method in [HABB13], which is a precursor for the method
described in this paper.

SISO PID controllers have been used for multiple-input multiple-output (MIMO) plants
for many years. This is generally done by pairing inputs (actuators) and outputs (sensors),
and connecting them with SISO PID controllers. These SISO PID controllers can be tuned
one at a time (in ‘successive loop closure’) using standard SISO PID tuning rules. For
MIMO plants that are already reasonably well decoupled, multi-loop SISO PID design can
work well. Unlike SISO PID design, however, MIMO PID design is more complex; the SISO
loops have to be chosen carefully, and then tuned the correct way in the correct order.



An alternative to multi-loop SISO PID control is to design one MIMO PID controller,
which uses matrix coefficients, all at once. Such a controller potentially uses all sensors to
drive all actuators, but it is possible to specify a simpler structure by imposing a sparsity
constraint on the controller gain matrices. Like SISO PID controllers for SISO plants, MIMO
PID controllers can achieve very good performance on a wide variety of MIMO plants,
even when the plant dynamics are quite coupled. The challenge is in tuning MIMO PID
controllers, which require the specification of three matrices, each with a number of entries
equal to the number of plant inputs times the number of plant outputs. For example, a
MIMO PID controller for a plant with 4 inputs and 4 outputs requires the specification of
up to 48 parameters. This would be very difficult, if not impossible, to tune by hand one
parameter at a time. Hand tuning a MIMO PID controller with 10 inputs and 10 outputs
would be impossible in practice.

In this paper we describe a method for designing MIMO PID controllers. The method is
based on solving a small number of convex optimization problems, specifically semidefinite
programs (SDPs), which can be done efficiently. Our method is a local optimization method,
and we cannot guarantee that it finds the globally optimal controller parameter values. On
many examples, however, the method seems to work very well.

We first describe a basic form for the method. We impose constraints on the sensitivity
and complementary sensitivity transfer functions, which guarantees closed-loop stability and
a MIMO stability margin, and also a limit on actuator effort. The objective is to minimize the
low-frequency sensitivity of the closed-loop system, which is a MIMO analog of maximizing
the integral gain in the SISO case. In a later section we describe a number of generalizations
of the method.

There is an enormous literature on automated SISO PID tuning, and a very large lit-
erature on MIMO PID tuning (see, e.g., [APH98] and its references, or [PAH02, SKW07])
including some methods that are very close to the one we describe, and others that are
close in spirit. We give a more detailed technical analysis of other methods in §6.4, after
describing the details of our method. But we mention here some earlier work that is very
closely related to ours. In [LWLO04], the authors also form a linear matrix inequality (LMI)
based restriction of a problem with nonconvex quadratic matrix inequalities, and iterates
to convergence. Another previous work that is close in spirit to ours is [BMCO8], which
formulates the design problem as one involving bilinear matrix inequalities (BMIs), which
are in turn solved (approximately) by iteratively solving a set of SDPs. (The connection
between our method and BMI formulations will be discussed in §6.4.) The closest prior work
appears in [SOW10], which takes a very similar approach to ours. The authors consider
MIMO PID design, using frequency-domain specifications, and their algorithm involves LMI
restrictions of nonconvex matrix inequalities, as our method does. We will discuss some of
the differences in §6.4.



2 Model and assumptions

2.1 Plant

The linear time-invariant plant has m inputs (actuators) and p outputs (sensors), and is
given by its transfer function P(s) € CP*™, or more specifically by its frequency response
P(iw), for w € Ry. We do not assume that P is rational; it can, for example, include
transport delay. We assume that the entries of the plant input u(t) € R™ are measured
in appropriate units (or scaled), so their sizes are (roughly) the same order. We make the
same assumption about the plant output y(¢) € RP. These assumptions justify the use of the
(unweighted) fo-norm to measure the actuator effort and deviation of the plant outputs from
the reference signal, and more generally, it justifies the use of (unweighted) matrix norms to
measure closed-loop gains.

We make several assumptions about the plant. We assume that p < m, i.e., there are at
least as many actuators as plant outputs, and that P(0) is full rank. This makes it possible
to achieve perfect reference tracking at DC (s = 0). We will also assume that the plant is
stable and strictly proper, i.e., P(s) — 0 as s — oo. Most of our assumptions can be relaxed
or extended to more general settings, but our goal is to keep the ideas simple for now. We
will discuss various ways these assumptions can be relaxed in §7.

2.2 PID controller

The controller is a proportional-integral-derivative (PID) controller, given by

s
14+ 7s

C(s):Kp+§K1+ Kp,
where Kp, K1, Kp € R™? are the proportional gain matriz, integral gain matriz, and deriva-
tive gain matrix, respectively. The 3mp entries in these matrices are the design parameters
we are to choose. The constant 7 > 0 is the derivative action time constant, and is assumed
to be fixed and responsibly chosen, for example, a modest fraction of the desired closed-loop
response time.

The plant and controller are connected in the classical loop shown in figure 1, described
by the equations

e=r—y, u=Ce y=Pu+d),

where r is the reference input, e is the error, and d is an input-referred plant disturbance.
The signals u and y are the plant input and output, respectively.

2.3 Closed-loop transfer functions

We will be interested in several closed-loop transfer functions that we describe here.
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Figure 1: Classical feedback interconnection.

Sensitivity. The transfer function from reference input r to error e is the sensitivity S =
(I+PC)~'. The size of S gives a measure of the tracking error; for low frequencies S should
be small. When S(0) = 0 (a constraint we will impose), we have perfect static tracking.
The maximum size of S, which occurs near the crossover frequency, is closely related to
closed-loop damping and system stability.

Q-parameter. The transfer function from r to v is denoted @, defined as Q = C(I+PC)~ 1.
Its size is a measure of the actuator effort. (We use @ to match the notation often used in
Youla’s parametrization of closed-loop transfer functions; see [BB91].)

Complementary sensitivity function. The complementary sensitivity function is T =
PC(I+ PC)~!. Tt is the closed-loop transfer function from r to y. It is near the identity for
low frequencies, and will be small for high frequencies; its maximum size is also related to
closed-loop damping.

These three closed-loop transfer functions are sufficient to guarantee a sensible controller
design (since P is assumed stable). They are related in various ways; for example, we have

S+T=I T=PQ, Q=CS.

Other closed-loop transfer functions. Several other closed-loop transfer functions can
also be considered. For example, the closed-loop transfer function from the plant disturbance
d to the tracking error e is R = —(I + PC)~'P. It will be clear how our approach extends
to other transfer functions.

2.4 Notation

For a complex matrix Z € CP*? Z* is its (Hermitian) conjugate transpose, ||Z|| denotes
the spectral norm, i.e., the maximum singular value. For full rank Z, we let 0y, (Z) denote
its minimum singular value. A square matrix is Hermitian if Z = Z*. Between Hermitian
matrices the symbol > 0 is used to denote matrix inequality, so Z > 0 means that 7 is
Hermitian and positive semidefinite. We use the notation Z—* = (Z*)~1.

For a p x ¢ transfer function H, || H||« is its Hoo-norm, ||H ||oc = supg,=g || H(s)]|, which
can be expressed as -

|1H |0 = sup || H (iw)|
w>0
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when H is stable (i.e., H € HZX9).

3 Design problem

3.1 Objective and constraints

Sensitivity and complementary sensitivity peaking. We require ||S||oc < Smax, Where
Smax > 1. Reasonable values of S, are in the range 1.1 to 1.6; lower values give a more
damped closed-loop system. This constraint ensures closed-loop stability. We also require
1T |0 < Tmax, With Trax > 1. Reasonable values of Ty, are similar to those for Spax.

Static and low frequency sensitivity. Assuming that P(0)K] is nonsingular, we have
S(0) = 0, which means that we have zero error for constant reference signals. The next
term in the expansion of the sensitivity near s = 0 is S(s) &~ s(P(0)Kj)~! for |s| small.
Our objective will be to attain the best possible low-frequency sensitivity, which means we
will minimize ||(P(0)K7)!||. This objective indirectly imposes the condition that we achieve
perfect tracking since when it is finite we have P(0) K nonsingular.

Actuator authority limit. We require that ||Q]/cc < Qmax. This sets a maximum value
for the size of the closed-loop actuator signal in response to the reference signal. Since the
plant is stable, this constraint ensures that the closed-loop system is stable; see [BB91].

We can determine a reasonable value for Q... as follows. Any controller that has a
finite objective value (i.e., achieves perfect reference tracking at s = 0) satisfies 7'(0) = [ =
P(0)Q(0); this has the simple interpretation that at s = 0, the controller inverts the plant. It
follows that [|Q(0)]| > 1/0min(P(0)), from which we conclude ||@Q||ooc > 1/0min(P(0)). Thus
we must have Quax > 1/0min(P(0)). The righthand side can be interpreted as the minimum
actuator effort (measured by ||@Q]|«) required to achieve static tracking. A reasonable value
for Quax is therefore a modest multiple of 1/, (P(0)), say, three to ten.

Design problem. Putting it all together we obtain the problem

minimize  ||(P(0)K;) 7!
subject to  [|S]|oco < Smaxs (1)
17|oo < Trnax;

1Qlloc < Quax-

The variables to be chosen are the coefficient matrices Kp, K1, Kp; the problem data are
the plant transfer function P, the controller derivative time constant 7, and the design
parameters Spax, Tmax, and Qmax. This problem is not convex. Note that the objective
contains the implied constraint that P(0) K is invertible, which implies that perfect static
tracking is achieved for constant reference inputs.



3.2 Sampling semi-infinite constraints

The constraints on the closed-loop transfer functions can be expressed as, for example,
1S(iw)|| < Smax, Vw > 0.

This is a so-called semi-infinite constraint, since it consists of an infinite number of con-
straints, one for each w > 0. Semi-infinite constraints such as these (with one parameter,
w) are readily handled by choosing a reasonable finite (but large) set of frequency samples
0 < w < -+ < wg, and replacing the semi-infinite constraints with the finite set of con-
straints at each of the given frequencies. For example, we replace the constraint ||.S|occ < Smax
with ||S(iwg)|] < Smax, & = 1,..., N. Our optimization method has a computational com-
plexity that grows linearly with N, so we can choose a large enough value of N (say, several
hundred or more) that this sampling has no practical effect. By ‘reasonable’ we mean that
the frequency sampling is fine enough to catch any rapid changes in the closed-loop transfer
function with frequency, and also cover an appropriate range; in particular, we assume that
at w; and wy the transfer functions are near their asymptotic values,

S(0)=0, T(0)=1,  Q(0)=K(P(0)K)™,

and
S(oo) =1, T(o0) =0, Qo0)=Kp+ (1/7)Kp,

respectively.

We will use subscripts to denote a transfer function evaluated at the frequency s = iwy.
For example, P, = P(iwy), which is a (given) complex matrix. Note that the quantity
Cr = C(iwy) is a complex matrix, and is an affine function of the design variables Kp, Kp, Kp.

The sampled problem is then

minimize  ||(P(0)K7) 7!
subject to || Sk|l < Smax,

”Tk” < TmaXa (2)
”QkH < QmaXa
k=1,...,N.

This problem has 3N constraints, each of which has the form of a matrix norm inequality.
The arguments of the matrix norm inequalities, however, are complex functions of the design
variables Kp, K1, Kp, given by the various formulas for the closed-loop transfer functions.

4 Quadratic matrix inequality form

In this section we show how the (frequency sampled) design problem (2) can be cast in a
simple form in which every constraint has the same quadratic matriz inequality (QMI) form

77 = Y'Y, (3)



where both Z and Y are affine functions of the variables.

We start with the objective. First we note that we can just as well maximize o, (P(0)Kp) =
1/[[(P(0)K7)™||. We introduce a new scalar variable ¢, which we maximize subject to
Omin(P(0)K1) > t. (This is the standard epigraph transformation; see [BV04, §4.2.4].) We
then observe that

Omin(P(0)K7) >t < (P(0)K;)*(P(0)K7) = °1,

which has the form (3) with Z = P(0)K; and Y = ¢/, both of which are affine functions of
the variables.
Now consider the sensitivity peaking limit ||Sk|| < Smax. As above, we have

1Sl € Smax < (I + PCr)*(I + P.Cy) ' =82 1

max

= (] —+ Pka)*(I + Pkck) i (1/Sr2nax)]’

where in the second line we have multiplied the left and right sides by (I + P,C%)* and by
(I + PyCy), respectively. This has the QMI form (3) with Z = I + P,Cy and Y = (1/Spax) 1.
For the complementary sensitivity constraint ||7x|| < Tinax, We have

1Tkl € Toax & (I + PiCy) 'CiPP.C(I + PCy) ™ = T2 T

& (14 PCY I+ PCy) = (1/T2 )(Pkck;a(}kck).

ax

This has the QMI form (3) with Z = I + P,Cy and Y = (1/Tnax) PxC.
In a similar way we have

Q] € Quax & (I + PeCr)* (I + PuC) = (1/Q2) Ci Cr,

which has QMI form with Z = [ + P,C} and Y = (1/Qmax)Ck-
We arrive at a problem with the form

maximize t (4>
subject to Z;Z, = Y'Y, k=1,...,M,

with variables ¢, Kp, K1, Kp. (Here we have M = 3N +1.) This is the PID controller design
problem in QMI form.

5 Linear matrix inequality restriction

We first show how to form a (convex) linear matriz inequality (LMI) restriction for the QMI
Z*7 = Y*Y. (See [BGFB94] for background on matrix inequalities.) The QMI is already
convex in Y, so we can focus on Z. We start with the simple matrix inequality

0= (Z-2(2-2)=2"2—-2"2 -2+ 7*Z,
valid for any matrices Z and Z. Re-arranging we get
AV R AV RS AY A
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Figure 2: LMI restriction (shown in red) of QMI (shown in blue) for simple case when Z
and Y are scalar and real.

The lefthand side is a quadratic function of Z; the righthand side is an affine function of Z.
It follows that the matrix inequality

224+ 2*2 — 27 = Y'Y,

which is convex in (Z,Y"), implies Z*Z = Y*Y’; that is, it is a convex restriction of the QMI.
We can write this convex quadratic matrix inequality as an LMI

7L+ 27 —7*7 Y*

¥ ;| =0 (5)

(Here Z and Y are the variables; Z is an arbitrary matrix.) For any matrix Z, the LMI (5)
implies the QMI Z*Z > Y*Y. We call it the LMI restriction of the QMI, obtained at the
point Z.

The LMI restriction of the QMI is illustrated in figure 2, for the simple case of real scalar
Z and Y. In this case the QMI is 2% > 32, which gives the two lightly shaded cones in the
figure, with blue boundary. The LMI restriction at Z is given by 27z — 22 > 32, shown as
the shaded region bounded by the parabola, with red boundary. The two boundaries touch
at the point where z = Z.

Now consider the QMI form PID controller design problem (4). Given any matrices
Zi, ..., Zy, we can form the LMI restricted problem

maximize t
Ly + 22y — 232, Y5

subject to

This problem has linear objective and LMI constraints, and so is a semidefinite program
(SDP) [VB96]. It is readily solved (globally). Note that any solution of the LMI restriction
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is feasible for the QMI problem. The LMI restriction, however, need not be feasible; this
depends on the choice of Z.

Simplifications. In the inequalities associated with S, the matrix Y, does not depend
on the controller parameters (i.e., is constant). In this case we can work directly with the
smaller (equivalent) LMIs o o

Iyl + 2y 2y — 23 2y = Y7 Yy,
which can give a modest computational advantage.

Another simplification is to maximize the variable w = t?; in this case the single inequality
associated with the objective can be handled as the smaller LMI

ZfZl —|—ZikZ1 - ZTZ:[ i ’ZUI,

where Z; = P(0)K7. This simplification leads to slightly faster convergence, since t is only
an upper bound on |[(P(0)K;)~!|, whereas w~'/? is actually equal to the objective, after
optimization.

6 The method

6.1 Controller initialization
We first initialize the controller with
Kp=0, K =¢eP(0), Kp=0,
where € is small and positive, and P(0)T = P(0)T(P(0)P(0)T)~! is the pseudo-inverse of the
DC gain. For small enough ¢, this controller is feasible. Indeed, as ¢ — 0, we have

€ €
I, T(s)— I —
e+s (5) e+s ' Q) €+s

S(s) = P(0),

from which it follows that the constraints ||S|lc < Smaxs |70 < Tmax, and [|Q]lcc < Qmax
are feasible for small enough € (assuming Spax > 1, Thax > 1, and Quax > 1/0min(P(0))).
Note that ||@Q]| finite implies closed-loop stability of this initial controller.

6.2 Iteration

We then repeat the following steps. We form the LMI restriction (6), using Z;, = zZmr,
where Z;"™" is the current value of Zj. This choice guarantees the LMI restriction is feasible.
We solve this SDP to get the updated values of the design variables. These are feasible, since
they were constrained by the restrictions, and the objective ¢ (which is an upper bound on
the original objective ||(P(0)K7)7||) cannot decrease.



6.3 Convergence

The iterates are all feasible (and we have closed-loop stability since ||Q]|« is finite), and
the objective is nonincreasing. Since it is nonnegative, the objective converges. We can
stop when not much progress is being made, which is typically after ten or fewer iterations.
At convergence, the optimal value of ¢, which is in general an upper bound on the original
objective |[(P(0)K7)™|, is actually equal to this value. (When we optimize with the variable
w, it is directly equal to the objective.)

6.4 Connections, interpretations, and prior work

Our method is similar to, but not the same as, the convex-concave method for the SISO case
described in [HABB13]. In that paper we linearize a scalar inequality of the form |Z| > |Y],
which is not the same as linearizing (as we do here) the quadratic inequality |Z|? > |Y|%.
The idea of linearizing concave terms in an otherwise convex optimization problem, which
gives a convex restriction, is an old one that has been (re-)invented many times, for many
applications; see, e.g., the references in [LB14] or [YR03]. The idea of linearizing a matrix
inequality is given in [LB14].

The convex-concave procedure is in turn a special case of a very general method for
finding a local minimum of a nonconvex optimization problem. In each iteration we replace
the objective function and each constraint function by a convex majorization that is tight
at the given point, and solve the resulting convex problem. This idea traces back at least to
1970 [OR70], and has been widely used since then; see [LB14].

There is also a very close connection of our method to BMIs and methods for them, such
as alternating minimization over the two groups of variables. The connection is easiest to see
and state when Z and Y have the same dimensions (in general the inequality Z*Z = Y*Y
implies they have the same number of columns). Define

U=(1/2)(Z+Y), V=(1/2)(Z-Y),
so Z=U+Vand Y =U — V. Then we have

77 =YY & U4V (U+V)=U-V)U-V)
& UU+VUAUVHVV =UU-VU-UV+V'V
& VU+UV =0,

which we recognize as a BMI in U and V. Thus our quadratic matrix inequality can be
expressed as an equivalent BMI. MIMO PID design via BMIs is discussed in [BMCO08].
The closest prior work is [SOW10], which contains many of the ideas we use in the present
paper. The authors develop quadratic matrix inequalities similar to the ones we use here, and
derive a method for MIMO PID design that uses LMI restrictions, as we do. While the two
methods are clearly closely related, we are unable to derive our exact algorithm from theirs.
We can identify several differences in the approach. First, we consider separate closed-loop
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transfer functions (e.g., S, T, Q)), where they lump them together into one block closed-
loop transfer function. One advantage of considering these closed-loop transfer functions
separately is that we can give simple and universal choices for the upper bound (such as
1.4, for example, for S). Second, we consider stable plants, which allows us to give a simple
low gain PID initialization. Finally, we consider a generic quadratic matrix inequality, and
develop a simple universal LMI restriction.

7 Extensions and variations

In this section we list various extensions and variations on the MIMO PID controller design
problem, starting with simple ones and moving to more complex ones. While the basic
iteration will work in all of these variations, the design must start from a feasible initial
controller, which may be a challenge to find, depending on the variation. (We make more
specific comments about this below.)

Exchanging objectives and constraints. As always, we can exchange constraints and
objective; for example, we could impose a constraint on ||(P(0)K;)™!||, and instead minimize
another objective, such as ||@|«. In this example, we would be minimizing actuator effort
for a given fixed limit on the low-frequency sensitivity.

Frequency-dependent bounds. The bounds Spax, Timax, @max could be functions of fre-
quency. This could be used to shape the various closed-loop transfer functions in more
sophisticated ways than described here.

Other closed-loop transfer functions. The same approach works for other closed-loop
transfer functions. For example, consider R = —(I + PC)~'P, which is the closed-loop
transfer function from disturbance to error. A limit on R, say, ||R|lcw < Rmax, can be
expressed as a QMI as follows:

| Ri|| < Ruax & (I + PCL) (I + PCy)* = (1/R%, )PPy,

max

which has QMI form with Z = (I + P,Cy)* and Y = (1/Rpmax) Py (Note the Hermitian
conjugates in this case.)

Low frequency disturbance optimization. We can optimize low-frequency values of R
instead of S. At low frequencies we have

R(s) = =S(s)P(s) = —s(P(0)K1)~' P(0),

and we arrive at a very similar problem, which is also easily expressed in our QMI form.
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High frequency roll-off. Our method relies only on the fact that C'(s) is a linear function
of the design variables Kp, K1, Kp. This allows us to use many other variations on the PID
controller. As an example of simple variation that is very useful in practice, we can use the

controller . X
C(s) = K -K; K
(s) <1+57—|—(37)2/2) ( P+s 1ts D)’

where 7 > 0 is a (fixed) time constant. Here we have an ideal PID controller, with a
second-order high frequency roll-off.

Unstable plants. The method can be extended to handle unstable plants, but in this case
the initial controller must be stabilizing and also satisfy the constraints; see, e.g., [HABBIS]
for an example. (To satisfy the constraints, they can initially be relaxed.) When initialized
this way, all iterates (and the final controller design) will be stabilizing.

More outputs than actuators. We can handle the case when p > m (more outputs than
actuators), so perfect static tracking cannot be achieved. In this case we cannot have zero
sensitivity at s = 0, but we can optimize over the value of S(0), for example, minimize or
limit its norm.

Convex constraints on controller parameters. Any convex constraints on the con-
troller parameters can be imposed. For example, we can limit the values of any of the
coefficients. A very interesting option here is to limit the sparsity pattern of C' by requiring
some entries to be zero. This gives structured MIMO PID controller design [Sae06].

The simple initialization method described in §6.1 will generally not work when the con-
troller parameters are constrained, for example, when a specific sparsity pattern is imposed.

Convex cost terms. We can add any convex function of the controller parameters to
the objective. For example we can add regularization to the objective, i.e., a function that
encourages the controller parameters to be small. The classical example is the sum of squares

term
)\Z ((Ke)F; + (EK0)F; + (Kn)3))

where A > 0 is a parameter used to trade off low-frequency rejection and the size of the
controller parameters (measured by the sum of squares).

A very interesting regularization is one that encourages sparsity in the controller param-
eters, such as

A Z max{(Kp)i;, (K1)ij, (Kp)i;}-
ij

This regularization will encourage sparsity in C(s); for similar work, see, e.g., [LFJ12] (for
sparse controller design) and [ZHO05] (for sparsity of blocks of regressors in statistics).
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Closed-loop convex constraints. We can also add any contraint or objective term that
is convex in the closed-loop transfer functions; see the book [BB91]. For example, we could
include time-domain constraints such as a maximum step response settling time. The very
same method (with some added terms to handle the added constraints) will work.

Robustness to plant variations. We can wrap robustness to plant variations into the
method. A particularly simple (but very effective) method that gives robustness is to require
that the constraints hold not just for one plant, but for several or many plausible values of
the plant transfer function. This leads to a bigger problem to solve, but the same method
works.

More general controllers. Finally, it should be clear that the method works for any lin-
early parametrized controller, and not just the simple PID structure that we have focussed on
here. For more general structures the design initialization can become a challenge, however.

8 Examples

In this section we describe numerical results for a classic MIMO plant, the 2-input 2-output

Wood-Berry binary distillation column described in [WB73]. The computations were carried
out using CVX [Res12, GBO0S].
The plant transfer function is

12.8¢7%  —18.9¢73¢

_|167s+€1 21.0s+1
P(s) = 6.66¢8 —19.4¢3s

109s+1 14241

Each entry is a first order system with a time delay. The dynamics are quite coupled, so
finding a good MIMO PID controller is not simple. Several design methods and actual designs
for this plant have been proposed in the literature, including [DB97, WZLB97, TCMO02].
Our method produced quite similar results, with the same or better metrics judged by our
objectives (naturally).

We used design parameters

Smax = 1.4, Thax =14, Quax = 3/omin(P(0)) = 0.738.

The derivative action time constant is chosen to be 7 = 0.3. The semi-infinite constraints are
sampled using N = 300 logarithmically spaced frequency samples in the interval [1073, 10%].
The initial design uses the method described in §6.1 with € = 0.01.

The algorithm converges in 7 iterations (which takes a few minutes to run in our simple
implentation) to the values

Ko — 0.1750 —0‘0470} K= l0.0913 —0.0345} Ky = [0.1601 —0.0051} 7

~ |=0.0751 —0.0709 0.0402 —0.0328 0.0201 —0.1768
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Figure 3: Closed-loop transfer function singular values versus frequency, with constraints
shown in red.

which achieves objective value [[(P(0)K7)™!|| = 2.25. The resulting closed-loop transfer
function singular values are plotted versus frequency in figure 3, along with the imposed
limits.

To demonstrate one simple extension, we also carry out MIMO PID design with the
additional constraint that the controller is diagonal, i.e., consists of two SISO PID loops.
We initialize the algorithm with low gain PI control from y; to w; and from ys to us, using
the (diagonal) controller

Kp =103 {(1) _01] . Kij=10"° [(1] _01] . Kp=0.

(The minus sign in the 2,2 entry is due to the negative 2,2 value of the 2,2 entry of P(0).)
The algorithm converges in 8 iterations (taking a few minutes in our simple implementation)
to the controller

0.1535 0 0.0210 0 01714 0
KP_[ 0 —0.0692}’ KI_{ 0 —0.0136}’ KD_[ 0 —0.1725}’
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Figure 4: Closed-loop transfer function singular values versus frequency, with constraints
shown in red, for diagonal PID design.

which achieves objective value ||(P(0)K;) || = 13.36, considerably worse than the objective
value obtained with a general MIMO PID controller. The resulting closed-loop transfer
function singular values are plotted in figure 4. We can see that low frequency sensitivity is
considerably worse than that achieved by the full MIMO controller, for example by noting
the value of ||S(w)]|2 for w = 1072

The step responses of T, the transfer function from r to y, are plotted in figure 5, for both
the full MIMO PID controller and the diagonal PID controller. Here too we can observe
the worse low frequency rejection for the diagonal PID design, for example in the larger
off-diagonal entries of the step response. The step responses of (), the transfer function from
r to u, are plotted in figure 6, for both the full MIMO PID controller and the diagonal PID
controller.
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Figure 5: Closed-loop step response from r to y for the MIMO PID controller (blue) and the
diagonal PID controller (red).
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Figure 6: Closed-loop step response from 7 to u for the MIMO PID controller (blue) and

the diagonal PID controller (red).
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9 Conclusions

In this paper we have described a simple method for effectively designing MIMO PID con-
trollers for stable plants given by transfer function (at an appropriate set of frequencies).
The method relies on solving a short sequence of SDPs (typically 10 or fewer), and although
it cannot guarantee finding the globally optimal design, it appears to find very good designs
in practical problems. The method is related to several other methods for MIMO PID de-
sign, and relies on ideas that have been used in several other contexts in optimization, such
as the convex-concave procedure, and iterative convex restriction.
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