
Variations and Extensions of the Convex-Concave Procedure

Thomas Lipp and Stephen Boyd

August 7, 2014

Abstract

We investigate the convex-concave procedure (CCP), a local heuristic that utilizes
the tools of convex optimization to find local optima of difference of convex (DC)
programming problems. The class of DC problems includes many difficult problems
such as the traveling salesman problem. We extend the standard procedure in two
major ways and describe several variations. First, we allow for the algorithm to be
initialized without a feasible point. Second, we generalize the algorithm to include
vector inequalities. We then present several examples to demonstrate these algorithms.

1 Introduction

In this paper we present several extensions of and variations on the convex-concave procedure
(CCP), a powerful heuristic method used to find local solutions to difference of convex (DC)
programming problems. We then demonstrate the algorithms with several examples.

1.1 Difference of convex programming

In this paper we consider DC programming problems, which have the form

minimize f0(x)− g0(x)
subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m,

(1)

where x ∈ Rn is the optimization variable and fi : R
n → R and gi : R

n → R for i = 0, . . . ,m
are convex. The class of DC functions is very broad; for example, any C2 function can be
expressed as a difference of convex functions [Har59]. A DC program is not convex unless the
functions gi are affine, and is hard to solve in general. To see this, we can cast the Boolean
linear program (LP)

minimize cTx
subject to xi ∈ {0, 1}, i = 1, . . . , n

Ax ≤ b,
(2)

1

where x ∈ Rn is the optimization variable and c ∈ Rn, A ∈ Rm×n, and b ∈ Rm are problem
data, in the DC form (1) as

minimize cTx
subject to x2

i − xi ≤ 0, i = 1, . . . , n
xi − x2

i ≤ 0, i = 1, . . . , n
Ax− b ≤ 0.

(3)

Here the objective and constraint functions are convex, except for the second block of n
inequality constraint functions, which are concave. Thus the Boolean LP (2) is a subclass of
DC programs (1). The Boolean LP, in turn, can represent many problems that are thought
to be hard to solve, like the traveling salesman problem; for these problems, no polynomial
time algorithm is known, and it is widely believed none exists [Kar72]. We will examine one
instance from this class, 3-satisfiability, in §5.

The global solution to (1) can be found through general branch and bound methods
[Agi66, LW66]. There is also an extensive literature on solving DC programming problems
which we will review later. Alternatively, one can attempt to find a local optimum to this
problem through the many techniques of nonlinear optimization [NW06].

1.2 Convex-concave procedure

We now present the basic convex-concave procedure, also known as the concave-convex
procedure [YR03]. This is one heuristic for finding a local optimum of (1) that leverages the
ability to efficiently solve convex optimization problems.

We will assume that all of the fi and gi are differentiable for the ease of notation, but the
analysis holds for nondifferentiable functions where the gradient at a point is replaced by
a subgradient at that point. This basic version of the algorithm requires an initial feasible
point x0, i.e., fi(x0)− gi(x0) ≤ 0, for i = 1, . . . ,m.

Algorithm 1.1 Basic CCP algorithm.

given an initial feasible point x0.
k := 0.

repeat

1. Convexify. Form ĝi(x;xk) , gi(xk) +∇gi(xk)
T (x− xk) for i = 0, . . . ,m.

2. Solve. Set the value of xk+1 to a solution of the convex problem
minimize f0(x)− ĝ0(x;xk)
subject to fi(x)− ĝi(x;xk) ≤ 0, i = 1, . . . ,m.

3.Update iteration. k := k + 1.
until stopping criterion is satisfied.

One reasonable stopping criterion is that the improvement in the objective value is less than
some threshold δ, i.e.,

(f0(xk)− g0(xk))− (f0(xk+1)− g0(xk+1)) ≤ δ.

2

We will see the lefthand side is always nonnegative. Observe that the subproblem in step 2
of algorithm 1.1,

minimize f0(x)−
(

g0(xk) +∇gi(xk)
T (x− xk)

)

subject to fi(x)−
(

gi(xk) +∇gi(xk)
T (x− xk)

)

≤ 0, i = 1, . . . ,m
(4)

is convex, since the objective and constraint functions are convex, and can therefore be solved
efficiently.

Initialization. CCP is a local heuristic, and thus, the final point found may (and often
does) depend on the initial point x0. It is therefore typical to initialize the algorithm with
several (feasible) x0 and take as the the final choice of x the final point found with the
lowest objective value over the different runs. The initial point x0 can be chosen randomly
(provided that feasibility is ensured) or through a heuristic, if one is known.

Line search. Unlike some algorithms, CCP does not require a line search. However, a
line search may still be performed. In particular taking a larger step can lead to faster
convergence.

Algorithm 1.2 Line search for CCP.

given a solution xk+1 to (4) and α > 1.
t := 1.

while f0 (xk + αt(xk+1 − xk))− g0 (xk + αt(xk+1 − xk)) ≤ f0(xk)− g0(xk) and
fi (xk + αt(xk+1 − xk))− gi (xk + αt(xk+1 − xk)) ≤ 0, for i = 1, . . . ,m,
t := αt.

xk+1 := xk + t(xk+1 − xk).

1.3 Convergence proof

We will first observe that all of the iterates are feasible, and then show that CCP is a descent
algorithm, i.e.,

f0(xk+1)− g0(xk+1) ≤ f0(xk)− g0(xk).

Assume xk is a feasible point for (1). We know that xk is a feasible point for the convexified
subproblem (4) because

fi(xk)− gi(xk; xk) = fi(xk)− gi(xk) ≤ 0,

so a feasible point xk+1 exists to the convexified subproblem (4). The convexity of gi gives
us ĝi(x; xk) ≤ gi(x), for all x, so

fi(x)− gi(x) ≤ fi(x)− ĝi(x; xk).

3

It then follows that xk+1 must be a feasible point of (1) since

fi(xk+1)− gi(xk+1) ≤ fi(xk+1)− ĝi(xk+1; xk) ≤ 0.

Thus, because x0 was chosen feasible, all iterates are feasible.
We will now show that the objective value converges. Let vk = f0(xk)− g0(xk). Then

vk = f0(xk)− g0(xk) = f0(xk)− ĝ0(xk; xk) ≥ f0(xk+1)− ĝ0(xk+1; xk),

where the last inequality follows because at each iteration k we minimize the value of f0(x)−
ĝ0(x; xk), and we know that we can achieve vk by choosing xk+1 = xk. Thus

vk ≥ f0(xk+1)− ĝ0(xk+1; xk) ≥ vk+1.

Thus the sequence {vi}∞i=0 is nonincreasing and will converge, possible to negative infinity. A
proof showing convergence to critical points of the original problem can be found in [LS09].

Although the objective value converges, it does not necessarily converge to a local mini-
mum. Consider the problem

minimize x4 − x2,

where x ∈ R is the optimization variable, which has optimal value −0.25 at x = ±1/
√
2. If

the algorithm is initialized with x0 = 0, then the algorithm will converge in one step to the
local maximum value, 0.

1.4 Advantages of convex-concave procedure

One of the advantages of CCP over other algorithms, like sequential quadratic programming
(SQP), is that more information is retained in each of the iterates. In SQP the problem
at each iteration is approximated by a quadratic program (convex quadratic objective and
linear constraints). Thus all information above the second order is lost in the objective and
even more is lost in the constraints. On the other hand, CCP is able to retain all of the
information from the convex component of each term and only linearizes the concave portion.

Another advantage of CCP is that the over estimators fi(x)− ĝi(x; xk) are global. Many
approximation procedures, like SQP, require trust regions which limit progress at an iteration
to a region where the approximation is valid [BGN00]. Because of the global nature of the
inequalities for convex and concave functions, our bounds are valid everywhere. We therefore
do not need to limit the progress at each step or perform a line search. Although SQP
and other approximation algorithms were popular for the ease of solving each step, as the
technology for solving more general convex programs has improved it has become beneficial
to take advantage of greater information.

1.5 Outline

In §2 we examine previous work in solving DC programs and the history of iterative convexi-
fication procedures. In §3.1 we will introduce our first extension to CCP in which constraints

4

are loosened. In §4 we present our second extension of CCP, giving a vector version of the
algorithm, which is particularly relevant for matrix constraints. In §5 we present several
examples using these methods including 3-satisfiability, circle packing, circuit layout, and
multi-matrix principal component analysis.

2 Previous work

Difference of convex programming problems of the form (1) have been studied for several
decades. Early approaches to solving the problem globally often involved transforming the
problem into a concave minimization problem (minimize a concave function over a convex
set) or a reverse convex problem (a convex optimization problem except for a constraint of
the form f(x) > 0 where f is convex) [Tuy86, TH88, HPTDV91]. Good overviews of the
work that has been done in solving DC programs globally can be found in [HPT95, HT99],
and the references therein.

Solving DC problems globally, and the related concave minimization and reverse convex
optimization problems, most often rely on branch and bound or cutting plane methods
as in [MF97]. Branch and bound methods were originally popularized for combinatorial
problems [Agi66, LW66] but soon made the transition to general nonconvex optimization
[FS69, Sol71, Hor86]. Branch and bound methods involve splitting the domain into partitions
on which simpler problems can be solved to find upper and lower bounds on the optimal
value in that region. Further subdividing these regions will produce tighter bounds. The
hope is that these bounds will eliminate regions so that exploration of the entire domain will
prove unnecessary.

The subproblems created by branch and bound methods are often reverse convex prob-
lems, a term first coined in [Mey70], or concave minimization problems. These problems are
often approached with simplicial algorithms as in [Hil75, HJ80a] or cutting plane methods
as in [HJ80b, TT80, Muu85]. Cutting plane methods, an early optimization technique as
seen in [Zan69], involve adding constraints that eliminate regions of the domain known not
to contain the solution. Another popular approach for addressing the concave minimization
problem is outer approximation as discussed in [FH76, Tuy83, HTB91] and the less common
inner approximation as in [YTI00]. A more in depth discussion of these problem classes and
approaches can be found in [HT96].

However, these global methods often prove slow in practice, requiring many partitions
or cuts. Therefore, we are instead concerned with local heuristics that can find improved
solutions rapidly. The sequential nature of CCP draws from the tradition of sequential
quadratic programming (SQP). SQP was introduced in [Wil63] with convergence properties
shown in [Rob72]. SQP typically involves approximating an optimization problem by a
quadratic objective with linear constraints. This approximation is then used to find a search
direction for descent of the original problem. SQP is a well developed field and much more
can be learned about the process from [BT95, GW12, NW06] and the references therein.

CCP can also be considered a generalization of majorization minimization (MM) algo-
rithms, of which expectation maximization (EM) is the most famous. Expectation maxi-

5

mization was introduced in [DLR77] and although MM algorithms are just as old, as seen in
[DL77], the term majorization minimization was not coined until Hunter and Lange’s rejoin-
der to [LHY00]. In MM algorithms, a difficult minimization problem is approximated by an
easier to minimize upper bound created around a particular point, a step called majoriza-
tion. The minimum of that upper bound (the minimization step) is then used to sequentially
create another, hopefully tighter, upper bound (another majorization step) to be minimized.
Although the name may be new, many algorithms, including gradient and Newton methods,
may be thought of as MM schemes. Many EM and MM extensions have been developed
over the years and more can be found on these algorithms in [LR87, Lan04, MK07]. There
have even been approaches that have started to address the DC programming problem as in
[LHY00].

Although many algorithms reduce to CCP, including EM, it is not the only time that
sequential convex optimization algorithms have been created. In the field of structural
optimization, an algorithm called sequential convex optimization is used. First introduced
as the method of moving asymptotes in [Sva87] and later expanded in [Zil01] this method
similarly involves sequential convexification, although the parameters are rescaled to drive
solutions away from variable limits. In vehicle avoidance and trajectory problems, many
have independently developed their own sequential convexification procedures which are
effectively CCP procedures. A few examples include [ML08] and [SLA+13].

The convex-concave procedure was first introduced geometrically in [YR03] although
without inequality constraints. Our approach and analysis more closely follows that in
[SVH05] which considered the procedure as a sequence of convex optimization problems
and added inequality constraints; algorithm 1.1 is almost identical to their “Constrained
Concave Convex Procedure”. CCP is already used in a variety of settings including image
reconstruction as in [Byr00], Support Vector Machines (SVM) with additional structure
as in [YJ09], and even for tuning multi-input multi-output proportional-integral-derivative
control as in [BHÅ14] which includes matrix constraints. In extending CCP we draw from
techniques developed in many of its predecessors.

3 Penalty convex-concave

3.1 Basic algorithm

In this section we present our first extension to CCP, which removes the need for an initial
feasible point. We relax our problem by adding slack variables to our constraints and penaliz-
ing the sum of the violations. It is well known in SQP and other iterative techniques that the
individual iterates may not be feasible, prompting the use of slack variables [GPM76, Pow78].
Here, rather than using slack variables as a quick fix, we leverage them in our algorithm. By
initially putting a low penalty on violations, we allow for constraints to be violated so that
a region with lower objective value can be found. Thus this approach may be desirable even
if a feasible initial point is known. This approach can similarly be thought of as modeling
our constraints with a hinge loss. Penalizing the sum of violations is equivalent to using the

6

ℓ1 norm and is well known to induce sparsity [BV04, §6.3.2]. Therefore, if we are unable to
satisfy all constraints, the set of violated constraints should be small.

Algorithm 3.1 Penalty CCP.

given an initial point x0, τ0 > 0, τmax, and µ > 1.
k := 0.

repeat

1. Convexify. Form ĝi(x;xk) , gi(xk) +∇gi(xk)
T (x− xk) for i = 0, . . . ,m.

2. Solve. Set the value of xk+1 to a solution of
minimize f0(x)− ĝ0(x;xk) + τk

∑m
i=1 si

subject to fi(x)− ĝi(x;xk) ≤ si, i = 1, . . . ,m
si ≥ 0, i = 1, . . . ,m.

3. Update τ . τk+1 := min(µτk, τmax).
4. Update iteration. k := k + 1.

until stopping criterion is satisfied.

One reasonable stopping criteria would be when the improvement in objective when solving
the convexified problem is small, i.e.,

(

f0(xk)− g0(xk) + τk

m
∑

i=1

ski

)

−
(

f0(xk+1)− g0(xk+1) + τk

m
∑

i=1

s
(k+1)
i

)

≤ δ,

where ski is the slack variable si found at iteration k, and either xk is feasible, i.e.,

m
∑

i=1

s
(k+1)
i ≤ δviolation ≈ 0,

or τk = τmax.
This algorithm is not a descent algorithm, but the objective value will converge, although

the convergence may not be to a feasible point of the original problem. To see this conver-
gence observe that once τ = τmax, we can rewrite the problem with slack variables as (1) and
then algorithm 3.1 is equivalent to algorithm 1.1 and the objective will therefore converge.

The upper limit τmax on τ is imposed to avoid numerical problems if τi grows too large
and to provide convergence if a feasible region is not found. The theory of exact penalty
functions tells us that if τi is greater than the largest optimal dual variable associated with
the inequalities in the convexified subproblem (4), then solutions to (4) are solutions of the
relaxed convexified problem, and subject to some conditions on the constraints, if a feasible
point exists, solutions to the relaxed problem are solutions to the convexified problem (e.g.,
∑m

i=1 si = 0) [HM79, DPG89]. Provided τmax is larger than the largest optimal dual variable
in the unrelaxed subproblems (4) the value of τmax will have no impact on the solution. This
value is unlikely to be known; we therefore choose τmax large. Observe that, for sufficiently

7

large τmax, if (1) is convex, and the constraint conditions are met, then penalty CCP is not
a heuristic but will find an optimal solution.

In the case of nondifferentiable functions, we do not specify a particular subgradient.
However, the choice of subgradient can have an impact on the performance of the algorithm.
We will see an example of this in §5.3.

3.2 Enforcing constraints

There are many modification possible to this algorithm in the way constraints are handled.
For example, the value of τ could be chosen on a per constraint basis, prioritizing the
satisfaction of certain constraints over others.

Another variation is that constraints that are purely convex (gi(x) = 0) could be enforced
at all iterations without a slack variable. If a feasible point exists to the problem then clearly
it must obey all of the convex constraints, so a feasible point will be found at each iteration
without slack for the convex constraints. In the standard algorithm slack variables are
included for convex constraints because temporarily violating a convex constraint may allow
the algorithm, on subsequent iterations, to reach a more favorable region of a nonconvex
constraint. Enforcing the constraints without slack, on the other hand, reduces the search
area for the solution, and may lead to faster convergence and greater numerical stability.

Yet another variation is that once a constraint becomes satisfied, it could be handled as
in algorithm 1.1, without a slack variable, guaranteeing that the constraint will be satisfied
for all future iterates. It has been our experience in numerical implementation, that this
last variation is ill advised and may constrain the algorithm prematurely to a region without
feasible points

3.3 Cutting plane techniques

Often DC programs may have large numbers of constraints, as we will see in the circle packing
problem of §5.2. However, most of these constraints are inactive (fi(x)−gi(x) ≪ 0). In these
instances, cutting plane or column generation techniques can be used [EM75, dMVDH99,
MB09]. These methods keep track of a set of active and likely to become active constraints
to include at each iteration while ignoring well satisfied constraints. There are many ways
to choose these active constraints with various convergence properties; we describe two basic
approaches here.

In the first approach, one can include every constraint that has been violated at any
iteration of the algorithm. In the worst case scenario, this could result in all of the constraints
being included, but is guaranteed to converge. In the second approach the n constraints
with the largest value (fi(x)− gi(x)) are included at each iteration. This approach does not
guarantee convergence, but for appropriate n works very well in many situations. By greatly
reducing the number of constraints that need to be considered, much larger problems can be
handled.

Although they may seem different, these methods derive from the same source as the
cutting plane methods mentioned in §2 for solving concave minimization problems [Kel60].

8

The difference in this implementation is that when adding a constraint (cutting plane), it is
simply chosen from the list of constraints in the original problem statement, in the methods
in §2, new constraints need to be generated.

4 Vector convex-concave

We now generalize the DC problem (1) to include vector inequalities. Our problem statement
is now

minimize f0(x)− g0(x)
subject to fi(x)− gi(x) �K 0, i = 1, . . . ,m,

(5)

where x ∈ Rn is the optimization variable, f0 : Rn → R and g0 : Rn → R are convex,
K ⊆ Rp is a proper cone, and fi : Rn → Rp and gi : Rn → Rp for i = 1, . . . ,m are
K-convex. We use �K to represent generalized inequalities with respect to the cone K, e.g.,
x �K y means y − x ∈ K, and x ≺K y means y − x ∈ intK. For more background on
generalized inequalities and proper cones see [BV04, §2.4.1]. For more on convexity with
respect to generalized inequalities see [BV04, §3.6.2]

We can now construct a generalization of algorithm 1.1 for the vector case. Again we
require x0 feasible, e.g., fi(x0)− gi(x0) �K 0 for i = 1, . . . ,m.

Algorithm 4.1 Vector CCP.

given an initial feasible point x0.
k := 0.

repeat

1. Convexify. Form ĝi(x;xk) , g0(xk) +∇g0(xk)
T (x− xk) and

gi(x;xk) , gi(xk) +Dgi(xk)(x− xk) for i = 1, . . . ,m.
2. Solve. Set the value of xk+1 to a solution of

minimize f0(x)− ĝ0(x;xk)
subject to fi(x)− ĝi(x;xk) �K 0, i = 1, . . . ,m.

3.Update iteration. k := k + 1.
until stopping criterion is satisfied.

In the above algorithm we use Dgi(xk) to represent the derivative or Jacobian matrix of gi
at xk. The proof of feasible iterates and convergence is identical except for the substitution
of the generalized inequalities for inequalities and the Jacobian for the gradient. For more
on convex optimization problems with generalized inequalities see [BV04, §4.6, 11.6].

Similarly we can extend algorithm 3.1 for the vector case.

Algorithm 4.2 Penalty vector CCP.

9

given an initial point x0, t0 ≻K∗ 0, τmax, and µ > 1.
k := 0.

repeat

1. Convexify. Form ĝi(x;xk) , g0(xk) +∇g0(xk)
T (x− xk) and

gi(x;xk) , gi(xk) +Dgi(xk)(x− xk) for i = 1, . . . ,m.
2. Solve. Set the value of xk+1 to a solution of

minimize f0(x)− ĝ0(x;xk) +
∑m

i=1 t
T
k si

subject to fi(x)− ĝi(x;xk) �K si, i = 1, . . . ,m
si �K 0, i = 1, . . . ,m.

3. Update t.

if ‖µtk‖2 ≤ τmax

tk+1 := µtk,
else

tk+1 := tk.
4. Update iteration. k := k + 1.

until stopping criterion is satisfied.

In the above algorithm K∗ represents the dual cone of K. Since K is a proper cone, K∗ is
a proper cone, and therefore has an interior. Furthermore, if ti ≻K∗ 0 then µti ≻K∗ 0 so all
ti ≻K∗ 0 for i ≥ 0. Note that because si �K 0, tTk si ≥ 0 at all iterations. Observe that if
tTk si = 0, then tTk si ≤ 0 and −si ∈ K, so si �K 0, and

fi(x)− gi(x) �K fi(x)− ĝi(x; xk) �K si �K 0,

so the inequality is satisfied. As in algorithm 3.1, our objective increases the cost of violating
the inequality at each iterate, driving the violations or slacks si towards zero. For more
information on dual cones and generalized inequalities see [BV04, §2.6].

As before, once ‖µtk‖2 > τmax, we can rewrite our problem as (5) and then algorithm 4.2
is equivalent to 4.1, and will therefore converge, although not necessarily to a feasible point
of the original problem.

5 Examples

We now present several examples using these algorithms. Each of these examples comes
from a large field where much time has been spent developing algorithms targeted at these
applications. It is not our intention to beat these algorithms but rather to show that this
general approach performs remarkably well in a variety of settings.

5.1 3-satisfiability

General description. Satisfiability problems ask if there exists an assignment of Boolean
variables such that an expression evaluates to true. In 3-satisfiability (3-SAT) the expression
is a conjunction of expressions with three disjunctions and possibly negations.

10

Mathematical description. We can represent the 3-SAT problem as a Boolean LP (2)
where m is the number of expressions and the entries of A are given by

aij =

−1 if expression i is satisfied by xj true

1 if expression i is satisfied by xj false

0 otherwise,

and the entries of b are given by

bi = 2− (number of negated terms in expression i).

In this case, there is no objective, since we are only looking for a feasible point; c can be the
zero vector.

Initialization procedure. We present two initialization procedures for this algorithm. In
the first procedure we initialize the entries of x0 by drawing from the uniform distribution
on [0, 1]. In the second procedure we choose x0 to be an optimal value of x in a linear
programming (LP) relaxation of the problem

minimize
∑n

i=1 |xi − 0.5|
subject to 0 � x � 1,

Ax � b,
(6)

where x is the optimization variable, A and b are problem data, and the objective function
is chosen to not bias assignments towards true or false.

Algorithm variation. To solve the problem we use the variant of algorithm 3.1 presented
in 3.2 that enforces the convex constraints at each iteration with no slack. Note that when
we run the algorithm there is no guarantee that the resulting values will be integers, so to
evaluate the solution we round the values of x.

Problem instance. To demonstrate the algorithm we used randomly generated 3-SAT
problems of varying sizes. For randomly generated 3-SAT problems as defined in [MSL92]
there is a threshold around 4.25 expressions per variable when problems transition from
being feasible to being infeasible [CA96]. Problems near this threshold are generally found
to be hard satisfiability problems. We only test problems below this threshold, because the
algorithm provides no certificate of infeasibility.

For each problem and constraint size below the feasibility threshold, 10 problem instances
were created and the existence of a satisfiable assignment was verified using the integer
programming solver MOSEK [MOS13]. In the case of random initialization, 10 initializations
were tried for each problem and if any of them found an x that, when rounded, satisfied all
expressions, success was reported.

11

10 20 30 40 50 60 70 80 90 100

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
Random initialization LP relaxation

n
u
m
b
er

of
co
n
st
ra
in
ts

number of variablesnumber of variables

Figure 1: Percentage of runs for which a satisfying assignment to random 3-SAT problems
were found for problems of varying sizes.

Computational details. The subproblems were solved using CVX [CR12, GB08] as the
interface to the SDPT3 solver [TTT99, TTT03] on a 2.66 GHz Intel Core 2 Duo machine.
For a problem with 100 variables and 430 expressions, the algorithm took between 5 and 25
steps, depending on the initialization with an average of 11 steps; the average solve time for
each subproblem was under one second.

Results. Figure 1 compares the results of random initialization with the LP relaxation
initialization (6). Using random initializations, satisfying assignments could be found con-
sistently for up to 3.5 constraints per variable at which point success started to decrease.

Figure 2 depicts a histogram of the number of expressions not satisfied over 1000 random
initializations for a problem with 100 variables and 430 expressions. Observe that in the
linear inequality formulation of 3-SAT used, there is no constraint driving the number of
violations to be sparse. When the convex constraints are enforced, the objective encourages
fewer variables to be noninteger valued, rather than fewer expressions to be unsatisfied.

5.2 Circle packing

General description. The circle packing problem finds the largest percentage of a polygon
that can be covered by a set number of circles of equal radius. This problem has long been
studied in mathematics, and databases exist of the densest known packings for different
numbers of circles in a square [Spe13].

12

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

number of violations

n
u
m
b
er

of
in
st
an

ce
s

Figure 2: Histogram of the number of unsatisfied expressions for a hard 3-SAT problem
instance with 100 variables and 430 expressions.

Mathematical description. For our example we will consider n circles and take the
polygon to be a square with side length l. Let xi ∈ R2 for i = 1, . . . , n represent the position
of circle i and r be radius of the circles. The problem is

maximize r
subject to ‖xi − xj‖22 ≥ 4r2, i = 1, . . . , n− 1, j = i, . . . n

xi � 1(l − r), i = 1, . . . , n
xi � 1(r), i = 1, . . . , n,

(7)

where x and r are optimization parameters, n and l are problem data, and 1 is the vector
of ones. Note that maximizing r is the same as minimizing −r and, by monotonicity,
maximizing nπr2 for r ≥ 0.

Initialization procedure. For this example we draw x0 from the uniform distribution
[0, l]× [0, l]. Although it is an optimization parameter, r does not occur in any of the gi so
no r0 is needed.

Small problem instance. In our examples we take l = 10, without loss of generality, and
take n = 41. We use algorithm 3.1 with τ0 = 1, µ = 1.5, and τmax = 10, 000, which was
never reached.

Small problem instance computational details. The subproblems were solved using
CVXPY [DCB14] as the interface to the ECOS solver [DCB13] on a 2.20GHZ Intel Xeon
processor. The algorithm took between 6 and 20 steps depending on the initialization with
an average of 14. steps, and an average solve time for each subproblem of under 2 tenths of
a seconds.

13

71 72 73 74 75 76 77 78 79 80

percentage covered

0

10

20

30

40

50

60

70

80

n
u
m
b
er

o
f
tr
ia
ls

Figure 3: Histogram of the percentage of a square covered for the circle packing problem
with 41 circles over 1000 random initializations.

Small problem instance results. Figure 3 shows a histogram of the coverages found for
this problem over 1000 initializations. In 14.0 percent of the cases we found a packing within
1 percent of the best known packing for 41 circles of 79.273 percent. The densest packing
found by the algorithm of 79.272 percent is shown in figure 4. In 0.3 percent of the cases
the algorithm failed due to numerical issues.

Algorithm variation. The number of non-intersection constraints for the circle packing
problem grows as n2, so for large n it may be impossible to impose all of the constraints. We
note that for any configuration with 0 < xi < l with xi distinct for all i, the configuration
can be made feasible with sufficiently small r. We therefore enforce the boundary constraints
without slack variables at all iterations for numerical stability. We apply the remaining con-
straints with slack variables using a cutting plane method which includes, at each iteration,
the 22n constraints with the smallest margin or all currently violated constraints, whichever
set is larger. These 22n (or more) constraints represent the constraints currently violated
or most likely to be violated at the next iteration. This simple method does not have a
guarantee of convergence, and more sophisticated cutting plane procedures can be found in
the references in §3.3. This method is sufficient for our example.

Large problem instance. We tested the algorithm using n = 400 so that approximately
13 percent of all of the constraints were included at each iteration. We set l = 10, τ0 = 0.001,
µ = 1.05, and τmax = 10, 000, which was never reached.

Large problem instance computational details. The subproblems were solved using
CVXPY [DCB14] as the interface to the ECOS solver [DCB13] on a 2.20GHZ Intel Xeon

14

0 2 4 6 8 10
0

2

4

6

8

10

Figure 4: Densest packing found for 41 circles: 79.27.

processor. The algorithm took between 86 and 160 steps depending on the initialization with
an average of 125 steps, and an average solve time for each subproblem of under 4 seconds.

Large problem instance results. Figure 6 shows a histogram of the coverages found
for this problem over 450 random initializations. In 84.2 percent of cases we were within 3
percent of the best known packing of 86.28 percent coverage. In 28.0 percent of cases we
were within 2 percent of the best known packing. The densest packing we found shown in
figure 5 is 85.79 percent, within 0.6 percent of the densest known packing. Given that this
is a general purpose algorithm, almost always getting within 3 percent is significant. In less
than 1 percent of cases, the algorithm failed due to numerical issues.

5.3 Circuit layout

General description. In the circuit layout problem we place components on a chip to
minimize the wire length between components. This is a well developed field with an entire
industry and numerous books devoted to it. For early work in the field see [HK72] while
more recent work can be found in [NC07]. A description of the circuit placement problem
we consider can be found in [BV04, §8.8].

Mathematical description. For our components we will consider n square components
which may not be rotated. Let xi, yi, and li for i = 1, . . . , n be the x position, y position,
and side length respectively of component i. The chip is a rectangle with side lengths bx and
by. We are given a set of pairs E representing the connections between the components, and
we would like to minimize the ℓ1 distance (wire length) between the components such that
none of the components overlap. In order for two components not to overlap they must be

15

0 2 4 6 8 10
0

2

4

6

8

10

Figure 5: Densest packing found for 400 circles: 85.79.

82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0

percentage covered

0

5

10

15

20

25

30

35

40

45

n
u
m
b
er

o
f
tr
ia
ls

Figure 6: Histogram of the percentage of a square covered for the circle packing problem
with 400 circles over 30 random initializations.

16

either far enough apart in the x direction or the y direction, e.g.,

|xi − xj| ≥
li + lj
2

or |yi − yj| ≥
li + lj
2

i = 1, . . . , n− 1, j = i, . . . , n.

We can therefore express the circuit placement problem as

minimize
∑

(i,j)∈E |xi − xj|+ |yi − yj|
subject to min

(

li+lj

2
− |xi − xj|, li+lj

2
− |yi − yj|

)

≤ 0, i = 1, . . . , n− 1, j = i+ 1, . . . , n

|xi| ≤ (bx − li)/2, i = 1, . . . , n
|yi| ≤ (by − li)/2, i = 1, . . . , n,

where xi and yi are the optimization parameters and li, bx, by, and the connectivity graph are
problem data. The objective is convex, and the first constraint is the minimum of concave
functions and is therefore concave.

Initialization procedure. We will use two initialization procedures. One good initial-
ization procedure for this algorithm is to use the embedding of the graph Laplacian of the
circuit’s connections as introduced in [BN03]. In this method the eigenvectors correspond-
ing to the two smallest nonzero eigenvalues of the graph Laplacian are used to initialize
the xi and yi. We will also initialize xi and yi uniformly on [−bx/2, bx/2] and [−by/2, by/2]
respectively.

Algorithm variation. We observe that when two components are touching at a corner,
the non-overlap constraint is not differentiable, and therefore a subgradient must be chosen.
Any linear separator between the vertical and horizontal separator is a valid subgradient. In
breaking ties we choose the vertical separator for even values of k and the horizontal separator
for odd values of k. By aligning subgradients at each iteration, we allow components to easily
slide past each other.

Problem instance. To demonstrate the algorithm we generated an Erdös-Renyi connec-
tivity graph for n = 15 components with average degree 6. We took li = 1, bx = by = 7,
τ0 = 0.2, µ = 1.1, and τmax = 10000.

Computational details. The subproblems were solved using CVX [CR12, GB08] as the
interface to the SDPT3 solver [TTT99, TTT03] on a 2.66 GHz Intel Core 2 Duo machine.
The algorithm took between 34 and 50 steps depending on the initialization with an average
of 41 steps, and an average solve time for each subproblem of 0.29 seconds.

Results. Although this problem was too large for us to solve a mixed integer linear pro-
gramming representation of it, using the observation that the first four connections to a
given component have at least wire length 1, and the next 4 at least wire length 2, we can
lower bound the optimal value by 42. Figure 7 shows the best solution we were able to find,

17

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

1

2

3

4 5

6

7

8

910 11

12 1314

15

Figure 7: Best circuit layout found for the Erdös-Renyi random graph with average degree
6. Components that are connected are represented by dotted lines.

which has wire length 57. Connected components are signaled by a red dotted lines (note,
these are not the paths of the wires). Figure 8 shows a histogram of the wire lengths found
over 1000 random initializations . Using the Laplacian initialization finds a layout with wire
length 60.

5.4 Multi-matrix principal component analysis

General description. Principal component analysis (PCA) finds the orthogonal direc-
tions in data with the greatest variance (and therefore the most significance). Multi-matrix
PCA is similar, except that the data is not known exactly, but rather a set (often drawn
from a distribution) of possible data is known. Multi-matrix PCA then looks for directions
of significance across all of the possible data sets.

Mathematical description. The multi-matrix PCA problem is

maximize mini=1,...,p Tr
(

XTAiX
)

subject to XTX = I,
(8)

where X ∈ Rn×m is the optimization variable, Ai ∈ Sn
+, where S+ is the set of n×n positive

semidefinite matrices, and I is the identity matrix. The equality constraint is also known
as the Steifel manifold [Sti36], and has its own history of optimization techniques; see, e.g.,
[ETS98, AMS09].

18

56 58 60 62 64 66 68 70 72
0

50

100

150

200

250

300

n
u
m
b
er

of
tr
ia
ls

wire length

Figure 8: Histogram of wirelengths found over 1000 random initializations.

Problem (8) is equivalent to

maximize mini=1,...,p Tr
(

XT (Ai − λI)X
)

+mλ
subject to XTX = I,

where X is the optimization parameter and λ is a scalar. From this we can see that, without
loss of generality, we can assume that all of the Ai in (8) are negative definite by choosing
λ to be the larger than the largest eigenvalue of any Ai. Therefore we can represent (8) in
DC form as

minimize −mini=1,...,p Tr
(

XTAiX
)

subject to XTX − I � 0,
I −XTX � 0,

where X is the optimization parameter, the Ai are negative definite, and � is with respect
to the positive semidefinite cone. The objective is the negative of a concave function, which
is the minimum of concave functions, and is therefore convex, and XTX − I is convex with
respect to the semidefinite cone.

Initialization procedure. We look at two initialization procedures in addition to random
initialization. It is well known for the case when p = 1 that the principal components can be
found by looking at the singular vectors of A corresponding to the m largest singular values.
We can therefore calculate an Xi for each of the Ai by solving the PCA problem. We can
then set X0 to be the Xi with the best objective value for (8). Another initialization for X0

we will look at is to use the solution to PCA using the average of the Ai as X0.

19

9.24 9.26 9.28 9.3 9.32 9.34 9.36 9.38 9.4 9.42
0

10

20

30

40

50

60

70

80

n
u
m
b
er

of
tr
ia
ls

objective value

Figure 9: Histogram of the objective value of multi-matrix PCA over 1000 initializations.

Problem instance. For our example we generate a positive definite matrix by creating
a diagonal matrix with entries drawn uniformly from the interval [0, 1], and then apply a
random orthogonal transformation. We then generate the Ai by varying the entries by up
to 50 percent by drawing uniformly from the interval [−50, 50]. We then verified that the
resulting matrix is positive definite. We used algorithm 4.2 with m = 10, n = 100, p = 8,
τ0 = 0.5I, τinc = 1.05, τmax = 10, 000. Observe that the positive semidefinite cone is self
dual, and that 0.5I is clearly on the interior of the semidefinite cone.

Computational details. The subproblems were solved using CVX [CR12, GB08] as the
interface to the SDPT3 solver [TTT99, TTT03] on a 2.66 GHz Intel Core 2 Duo machine.
The algorithm took between 62 and 84 steps depending on the initialization with an average
of 72 steps, and an average solve time for each subproblem of 35.74 seconds.

Results. Clearly the solution to (8) cannot be larger than the smallest solution for any
particular Ai, so we can upper bound the optimal value by 11.10. Using the best X found
by solving PCA individually for each of the Ai yields an objective of 7.66 and solving PCA
with the average of the Ai yields an objective value of 8.66,. Initializing the algorithm using
these values yields 9.33 and 9.41, respectively. The best value found over 1000 random
initializations was also 9.41. A histogram of the results can be seen in figure 9.

6 Acknowledgements

This research was made possible by the National Science Foundation Graduate Research
Fellowship, grant DGE-1147470 and by the Cleve B. Moler Stanford Graduate Fellowship.

20

References

[Agi66] N. Agin. Optimum seeking with branch and bound. Management Science,
13:176–185, 1966.

[AMS09] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix
Manifolds. Princeton University Press, 2009.

[BGN00] R. H. Byrd, J. C. Gilbert, and J. Nocedal. A trust region method based on inte-
rior point techniques for nonlinear programming. Mathematical Programming,
89(1):149–185, 2000.

[BHÅ14] S. Boyd, M. Hast, and K. J. Åström. MIMO PID tuning via iterated
LMI restriction. https://web.stanford.edu/~boyd/papers/pdf/mimo_pid_
tuning.pdf, 2014.

[BN03] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6):1373–1396, 2003.

[BT95] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numer-
ica, 4(1):1–51, 1995.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, 2004.

[Byr00] C. Byrne. Block-iterative interior point optimization methods for image recon-
struction from limited data. Inverse Problems, 16(5):1405, 2000.

[CA96] J. M. Crawford and L. D. Auton. Experimental results on the crossover point
in random 3-SAT. Artificial Intelligence, 81(1):31–57, 1996.

[CR12] Inc. CVX Research. CVX: Matlab software for disciplined convex programming,
version 2.0. http://cvxr.com.cvx, aug 2012.

[DCB13] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded
systems. In European Control Conference, pages 3071–3076, 2013.

[DCB14] S. Diamond, E. Chu, and S. Boyd. CVXPY: A Python-embedded modeling
language for convex optimization, version 0.2. http://cvxpy.org/, May 2014.

[DL77] J. De Leeuw. Applications of convex analysis to multidimensional scaling. In
R. R. Barra, F. Bordeau, G. Romier, and B. Ban Cutsem, editors, Recent Devel-
opments in Statistics, pages 133–146. North Holland Publishing, Amsterdam,
1977.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), pages 1–38, 1977.

21

[dMVDH99] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column
generation. Discrete Mathematics, 194(1):229–2–37, 1999.

[DPG89] G. Di Pillo and L. Grippo. Exact penalty functions in constrained optimization.
SIAM Journal on Control and Optimization, 27(6):1333–1360, 1989.

[EM75] J. Elzinga and T. J. Moore. A central cutting plane algorithm for convex
programming problems. Mathematical Programming, 8:134–145, 1975.

[ETS98] A. Edelman, A. A. Tomás, and T. S. Smith. The geometry of algorithms with
orthogonality constraints. SIAM Journal on Matrix Analysis and Applications,
20(2):303–353, 1998.

[FH76] J. E. Falk and K. R. Hoffmann. A successive underestimation method for con-
cave minimization problems. Mathematics of Operations Research, 1(3):251–
259, 1976.

[FS69] J. E. Falk and R. M. Soland. An algorithm for separable nonconvex program-
ming problems. Management Science, 15(9):550–569, 1969.

[GB08] M. Grant and S. Boyd. Graph implementation for nonsmooth convex programs.
In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning
and Control, Lecture Notes in Control and Information Sciences. Springer-
Verlag Limited, 2008. http://stanford.edu/~boyd/graph_dcp.html.

[GPM76] U. M. Garcia Palomares and O. L. Mangasarian. Superlinearly convergent
quasi-newton algorithms for nonlinearly constrained optimization problems.
Mathematical Programming, 11(1):1–13, 1976.

[GW12] P. E. Gill and E. Wong. Sequential quadratic programming methods. In Mixed
Integer Nonlinear Programming, pages 147–224. Springer, 2012.

[Har59] P. Hartman. On functions representable as a difference of convex functions.
Pacific Journal of Math, 9(3):707–713, 1959.

[Hil75] R. J. Hillestad. Optimization problems subject to a budget constraint with
economies of scale. Operations Research, 23(6):1091–1098, 1975.

[HJ80a] R. J. Hillestad and S. E. Jacobsen. Linear programs with an additional reverse
convex constraint. Applied Mathematics and Optimization, 6(1):257–269, 1980.

[HJ80b] R. J. Hillestad and S. E. Jacobsen. Reverse convex programming. Applied
Mathematics and Optimization, 6(1):63–78, 1980.

[HK72] M. Hanan and J. Kurtzberg. Placement techniques. In M. A. Breuer, editor,
Design Automation of Digital Systems, volume 1, pages 213–282. Prentice-Hall,
1972.

22

[HM79] S.-P. Han and O. L. Mangasarian. Exact penalty functions in nonlinear pro-
gramming. Mathematical Programming, 17(1):251–269, 1979.

[Hor86] R. Horst. A general class of branch-and-bound methods in global optimization
with some new approaches for concave minimization. Journal of Optimization
Theory and Applications, 51(2):271–291, 1986.

[HPT95] R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimization.
Kluwer Academic Publishers, Dordrecht, Netherlands, 1995.

[HPTDV91] R. Horst, T. Q. Phong, N. V. Thoai, and J. De Vries. On solving a DC
programming problem by a sequence of linear programs. Journal of Global
Optimization, 1(2):183–203, 1991.

[HT96] R. Horst and H. Tuy. Global Optimization. Springer, New York, New York,
third edition, 1996.

[HT99] R. Horst and N. V. Thoai. DC programming: overview. Journal of Optimization
Theory and Applications, 103(1):1–43, 1999.

[HTB91] R. Horst, N. V. Thoai, and H. P. Benson. Concave minimization via conical
partitions and polyhedral outer approximation. Mathematical Programming,
50:259–274, 1991.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computation, pages 85–104.
Plenum, 1972.

[Kel60] J. E. Kelly, Jr. The cutting-plane method for solving convex programs. Journal
of the Society for Industrial & Applied Mathematics, 8(4):703–712, 1960.

[Lan04] K. Lange. Optimization. Springer Texts in Statistics. Springer, New York, New
York, 2004.

[LHY00] K. Lange, D. R. Hunter, and I. Yang. Optimization transfer using surrogate
objective functions. Journal of Computational and Graphical Statistics, 9(1):1–
20, 2000.

[LR87] R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data. John
Wiley & Sons, New York, New York, 1987.

[LS09] G. R. Lanckreit and B. K. Sriperumbudur. On the convergence of the concave-
convex procedure. In Advances in Neural Information Processing Systems,
pages 1759–1767, 2009.

[LW66] E. L. Lawler and D. E. Wood. Branch-and-bound methods: a survey. Opera-
tions Research, 14:699–719, 1966.

23

[MB09] A. Mutapcic and S. Boyd. Cutting-set methods for robust convex optimization
with pessimizing oracles. Optimization Methods and Software, 24(3):381–406,
2009.

[Mey70] R. Meyer. The validity of a family of optimization methods. SIAM Journal on
Control, 8(1):41–54, 1970.

[MF97] C. D. Maranas and C. A. Floudas. Global optimization in generalized geometric
programming. Computers & Chemical Engineering, 21(4):351–369, 1997.

[MK07] G. McLachlan and T. Krishnan. The EM algorithm and extensions. John Wiley
& Sons, 2007.

[ML08] J. B. Mueller and R. Larsson. Collision avoidance maneuver planning with
robust optimization. In International ESA Conference on Guidance, Navigation
and Control Systems, Tralee, County Kerry, Ireland, 2008.

[MOS13] MOSEK ApS. MOSEK version 7.0. http://www.mosek.com, 2013.

[MSL92] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions and
SAT problems. In Proceedings of the tenth National Conference on Artificial
Intelligence, volume 92, pages 459–465, 1992.

[Muu85] L. D. Muu. A convergent algorithm for solving linear programs with an addi-
tional reverse convex constraint. Kybernetika, 21(6):428–435, 1985.

[NC07] G-J Nam and J. Cong, editors. Modern Circuit Placement. Springer, 2007.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.

[Pow78] M. J. D. Powell. A fast algorithm for nonlinearly constrained optimization
calculations. Numerical Analysis, pages 144–157, 1978.

[Rob72] S. M. Robinson. A quadratically-convergent algorithm for general nonlinear
programming problems. Mathematical Programming, 3(1):145–156, 1972.

[SLA+13] J. Shulman, A. Lee, I. Awwal, H. Bradlow, and P. Abbell. Finding locally opti-
mal collision-free trajectories with sequential convex optimization. Submitted.
Draft at https://sites. google. com/site/rss2013trajopt, 2013.

[Sol71] R. M. Soland. An algorithm for separable nonconvex programming problems
ii: Nonconvex constraints. Management Science, 17(11):759–773, 1971.

[Spe13] E. Specht. Packomania. http://www.packomania.com/, October 2013.

[Sti36] E. Stiefel. Richtungsfelder und fernparallelismus in n-dimensionalem mannig
faltigkeiten. Commentarii Mathematici Helvetici, 8(305–353), 1935–1936.

24

[Sva87] K. Svanberg. The method of moving asymptotes–a new method for structural
optimization. International Journal for Numerical Methods in Engineering,
24(2):359–373, 1987.

[SVH05] A. J. Smola, S. V. N. Vishwanathan, and T. Hofmann. Kernel methods for
missing variables. In Proceedings of 10th international workshop on artificial
intelligence and statistics, 2005.

[TH88] H. Tuy and R. Horst. Convergence and restart in branch-and-bound algo-
rithms for global optimization. Applications to concave minimization and DC
optimization problems. Mathematical Programming, 41(2):161–183, 1988.

[TT80] N. V. Thoai and H. Tuy. Convergent algorithms for minimizing a concave
function. Mathematics of Operations Research, 5(4):556–566, 1980.

[TTT99] K. C. Toh, M. J. Todd, and R. H. Tutuncu. SDPT3 — a MATLAB software
package for semidefinite programming. Optimization Methods and Software,
11:545–581, 1999.

[TTT03] R. H. Tutuncu, K. C. Toh, and M. J. Todd. Solving semidfinite-quadratic-linear
programs using SDPT3. Mathematical Programming, 95(2):189–217, 2003.

[Tuy83] H. Tuy. On outer approximation methods for solving concave minimization
problems. Acta Mathematica Vietnamica, 8(2):3–34, 1983.

[Tuy86] H. Tuy. A general deterministic approach to global optimization via D.C.
programming. North-Holland Mathematics Studies, 129:273–303, 1986.

[Wil63] R. B. Wilson. A Simplicial Algorithm for Concave Programming. PhD thesis,
Gradaute School of Business Administration, Harvard University, 1963.

[YJ09] C.-N. J Yu and T. Joachims. Learning structural SVMs with latent variables. In
Proceedings of the 26th Annual International Conference on Machine Learning,
pages 1169–1176, 2009.

[YR03] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Com-
putation, 15(4):915–936, 2003.

[YTI00] S. Yamada, T. Tanino, and M. Inuiguchi. Inner approximation method for
a reverse convex programming problem. Journal of optimization theory and
applications, 107(2):355–389, 2000.

[Zan69] W. I. Zangwill. Nonlinear Programming: A Unified Approach. Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1969.

[Zil01] C. Zillober. Global convergence of a nonlinear programming method using
convex optimization. Numerical Algorithms, 27(3):265–289, 2001.

25

