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Abstract. This paper examines Zeno’s Dichotomies from the
perspective of w-order. The conclusion is a contradictory result
that compromises the Axiom of Infinity from which w-order de-
rives.

1. Introduction: Zeno’s Paradoxes and Modern Science

Zeno’s Paradoxes have interested philosophers of all times (see [13],
[14], [83], [73], [48], [84], [25] or [56] for historical background), al-
though until the middle of the XIX century they were frequently con-
sidered as mere sophisms [13], [14], [72], [73]. From that time, and
particularly along the XX century, they became the unending source
of new philosophical, mathematical and physical discussions. Authors
as Hegel [44], James [49], Russell [72], Whitehead [86], [87] or Berg-
son [9], [10] focused their attention on the challenging world of Zeno’s
paradoxes. At the beginning of the second half of the XX century the
pioneering works of Black [11], Wisdom [88], Thomson [79], [80], and
Benacerraf [8] introduced a new way of discussing the possibilities of
performing an actual infinity of actions in a finite time (a performance
involved in most of Zeno’s paradoxes). I refer to Supertask Theory
[69], [74]. In fact, infinity machines, or supermachines, are our modern
Achilles substitutes. A supermachine is a theoretical devices suppos-
edly capable of performing countably many actions in a finite interval
of time. The possibilities of performing an uncountable infinity of ac-
tions were ruled out by P. Clark and S. Read [23], for which they made
use of a Cantor’s argument on the impossibility of dividing a real inter-
val into uncountably many adjacent parts [20]. Although supertasks
have also been examined from the perspective of nonstandard analysis
([58], [57], [1], [54]), as far as I know the possibilities to perform an
hypertask along an hyperreal interval of time have not been discussed,
although finite hyperreal intervals can be divided into hypercountably
many successive infinitesimal intervals, the so called hyperfinite parti-
tions ([77], [35], [50], [45], etc.). Supertask theory has finally turned its
attention, particularly from the last decade of the XX century, towards
the discussion of the physical plausibility of supertasks ([63], [65], [69],
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[73], [40], [42], [41]) as well as on the implications of supertasks in the
physical world ([65], [66], [67], [31], [68], [61], [2], [3], [70]), including
relativistic and quantum mechanics perspectives [85], [46], [29], [30],
[61], [28], [74]

In the second half of the XX century, several solutions to some of
Zeno’s paradoxes have been proposed. Most of those solutions were
found in the context of certain new branches of mathematics as Can-
tor’s transfinite arithmetic, topology, measure theory [38], [39], [91],
[40], [42], [41], and more recently internal set theory (a branch of non-
standard analysis) [58], [57]. It is also worth noting the solutions pro-
posed by P. Lynds within a classical and quantum mechanics framework
[52], [53]. Some of these solutions, however, have been contested [62],
[1]. And in most of cases the proposed solutions do not explain where
Zeno’s arguments fail [62], [69]. Moreover, some of the proposed so-
lutions gave rise to a new collection of problems so exciting as Zeno’s
paradoxes [73], [48] [74].

The four most famous Zeno’s paradoxes are usually regarded as ar-
guments against motion ([4], ([39], [43], [24], [73] etc.) be it performed
in a continuous or in a discontinuous world. Achilles and the Tortoise

and the Dichotomy in the continuous case, the Stadium and the Arrow

in the discontinuous one. The paradoxes of the second case (together
with the paradox of Plurality) are more difficult to solve, if a solution
exists after all, particularly in a quantum spacetime framework. Most
of the proposed solutions to Zeno’s paradoxes are, in effect, solutions
to the paradoxes of the first group or to the second one in a dense
and continuous spacetime framework. This situation is very significant
taking into account the increasing number of contemporary physical
theories suggesting the quantum nature of spacetime, as for instance
Superstring theory ([36], [37] [81], [32]), Loop Quantum Gravity ([75],
[5] [76]), Quantum Computation Theory ([78], [6], [51]) or Black Hole
Thermodynamics [6], [78]. Is at this quantum level where physics (the
science of changes) will finally meet the problem of Change [7] whose
insolvability probably motivated Zeno’s’ arguments? Is the problem of
Change really inconsistent as some authors ([59], [60]) have defended?
These are in fact two intriguing and still unsolved questions related to
Zeno’s arguments [62].

2. Zeno’s paradoxes and ω∗-order

Not less intriguing, though for different reasons, is the fact that one
immediately perceives when examining the contemporary discussions
on Zeno’s paradoxes. Surprisingly, the Axiom of Infinity is never in-
volved in such discussions. Zeno’s arguments have never been used
to question the Axiom of Infinity, as if the existence of actual infinite
totalities were beyond any doubt [33]. Grünbaum, for instance, pro-
posed that if it were the case that from modern kinematics together
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with the denseness postulate a false zenonian conclusion could be for-
mally derived, then we would have to replace current kinematics by
other mechanical theory [39, page 39]. Anything but questioning the
hypothesis of the actual infinity from which the involved topological
denseness derives. And this in spite of the lack of selfevidence of that
hypothesis, which is even rejected by some schools of contemporary
mathematics as constructivism, among whose precursors we find schol-
ars as Newton, Fermat or Euler [55] and XX century thinkers of the
intellectual stature of Poincaré [64] or Wittgenstein [89].

In the first half of the XIX century Bernard Bolzano, and in the sec-
ond one Richard Dedekind, tried unsuccessfully1 to prove the existence
of infinite totalities [12], [27]. For his part, G. Cantor, the founder
of transfinite mathematics, simply took it for granted the existence of
such totalities. Thus, in §6 of his famous Beiträge (pp. 103-104 of the
English translation) we can read:

The first example of a transfinite set is given by the
totality of finite cardinals.

although, as could be expected, he gave no proof of that existence. In
accordance with his profound theological platonism [26], Cantor was
firmly convinced of the actual existence of complete infinite totalities.
He never explicitly declared the hypothetical nature of his infinitist
assertions (at least not in his most relevant works on the transfinite
[16], [17], [15], [21], [22]). He even tried to give a proof on the existence
of actual infinities (quoted in [71], p. 3, from [18], p. 404):

... in truth the potential infinite has only a borrowed re-
ality, insofar as potentially infinite concept always points
towards a logically prior actually infinite concept whose
existence it depends on.

Evidently this is not a formal proof but a personal belief. Cantor’s infi-
nite totality is evidently isomorph to the set N of natural numbers and
then his implicit assumption on the existence of that complete totality
is equivalent to our modern Axiom of Infinity. But convictions do not
suffice in mathematics and we had finally to state the actual existence
of complete infinite totalities by the expeditious way of axioms.

The (assumed) infinite totality of finite cardinals led Cantor to the
essential notion of ω-order (Beiträge, p. 115 [19]):

By ω we understand the type of a well ordered aggregate

(e1, e2, . . . , eν , . . . )

in which
eν ≺ eν+1

and where ν represents all finite cardinal numbers in
turn.

1Their respective proofs were compatible with the potential infinity.
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Cantor then defined the notion of fundamental series of ordinals of
which he proved the existence of a limit (Beiträge, Theorem §14 I). This
limit plays a capital role in the proofs of the following 10 theorems in
Beiträge §15 the last of which is the fundamental theorem K-15 stating
that every ordinal of the second class (transfinite) is either the result of
increasing by one the next smaller ordinal (ordinals of the first kind), or
it is the limit of a fundamental increasing sequence of ordinals (ordinals
of the second kind). Cantor construction of transfinite ordinals, from
ω to the ǫ-numbers of the second number class, strongly depends on
Theorem K-15. The imposing cantorian edifice was really founded on
that theorem. And that theorem, in turn, depends on the hypothetical
existence of a complete infinite totality: that of the finite cardinal
numbers (Axiom of Infinity in modern terms), which is anything but
selfevident.

In modern terms, we say a sequence is ω-ordered if it has a first
element and each element has an immediate successor. Similarly, a
sequence is ω∗-ordered if it has a last element and each element has an
immediate predecessor. Evidently, both type of ordering are intimately
related to Zeno’s Dichotomies, although surprisingly, the analysis of
Zeno’s arguments as formal consequences of ω-order remains still un-
done. For some unknown reasons, it seems we are not interested in
analyzing the consistency of the hypothetical existence of actual com-
plete infinite totalities. And this in spite of the enormous problems
the actual infinity poses to experimental sciences as physics (recall for
example the problems of renormalization in elementary particle physics
[34], [47], [36], [90], [37]). The discussion that follows is just oriented
in that direction. Its main objective is to analyze Zeno’s Dichotomies
I and II from the perspective of both ω-order and ω∗-order .

3. The aleph-zero or zero dichotomy
2

In what follows, and for the sake of clarity, I will consider a canonical
version of the famous Achilles’ race whose logical impossibility Zeno
claimed. In fact, Achilles will be considered as a single point moving
rightwards along the X axis, from point -1 to point 1, at a finite velocity
v. In the place of the uncountable and densely ordered sequence of
points within the real interval [−1, 1] we will only consider the ω∗-or-
dered sequence of points:

. . . ,
1

24
,

1

23
,

1

22
,
1

2
, 1 (1)

2Although the usual way of reading ℵ0 is aleph-null -it can also be read as aleph-
zero- the original english translation by P. E. B. Jourdain of Cantor’s Beiträge was
”aleph-zero”. Section 6 is entitled ”The Smallest Transfinite Cardinal Number
Aleph-Zero. The current English edition of Cantor’s Beiträge is from 1955.
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all of which Achilles must successively traverse in order to reach point
1 from the starting point -1. In fact, this denumerable sequence of
points (Z∗-points according to classical Vlastos’ terminology [82]) is
not densely by successively ordered, which means that between any
two successive Z∗-points no other Z∗-point exists. In consequence, and
at a finite velocity, Z∗-points can only be traversed in a successive
way: one after the other. Assume now Achilles is just on point 0 at
the precise instant t0. According to classic mechanics he will reach
point 1 just at t1 = t0 + 1/v. But before reaching his goal, he has
to successively traverse the controversial Z∗-points. We will focus our
attention just on the way Achilles performs such a traversal. For this,
let f(t) be the number of Z∗-points Achilles has traversed at the precise
instant t, being t any instant within the closed real interval [t0, t1]. It
is quite clear that f(t0) = 0 because at t0 Achilles is just on point
0. For any other instant t in [t0, t1] Achilles has already passed over
countably many Z∗-points, for if there were an instant t in [t0, t1] at
which Achilles were passed only over a finite number n > 0 of Z∗-points,
these n Z∗-points would have to be the impossible firsts n points of an
ω∗-ordered sequence of points. So we can write:

f(t) =

{

0 if t = t0

ℵ0 if t0 < t ≤ t1
(2)

Notice f(t) is well defined for each t in [t0, t1]. Consequently, f maps
the real interval [t0, t1] into the set of two elements {0, ℵ0}. In this way
f defines a clair dichotomy, the aleph-zero or zero dichotomy, regarding
the numbers of Z∗-points Achilles has traversed when moving rightward
from -1 to 1 along the X axis. Accordingly, with respect to the number
of the traversed Z∗-points, Achilles can only exhibit two states:

(1) State A0: Achilles has traversed no Z∗-point.
(2) State Aℵ0

: Achilles has traversed aleph-zero Z∗-points.

Thus, Achilles directly becomes from having traversed no Z∗-point
(state A0) to having traversed ℵ0 of them (state Aℵ0

). Finite inter-
mediate states, as An at which he would have traversed only a finite
number n of Z∗-points, simply do no exist. The set of states Achilles
exhibits with respect to the number of traversed Z-points is well defined
and has only two elements, namely A0 and Aℵ0

Let us now examine the transition from A0 to Aℵ0
under the in-

evitable restriction of the above aleph-zero or zero dichotomy. The
topological successiveness of Z∗-points makes it impossible to traverse
them other than successively. And taking into account that between
any two successive Z∗-points a finite distance greater than 0 exists, to
traverse ℵ0 Z∗-points -whatever they be- means to traverse a finite dis-
tance greater than 0. This traversal, at the finite Achilles’ velocity v,
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can only be accomplished by lasting a certain amount of time necessar-
ily greater than 0. Achilles, therefore, has to expend a certain amount
of time τ > 0 in becoming Aℵ0

from A0. The ω∗-ordering imposes this
time τ has to be indeterminable, otherwise we would know the precise
instant at which Achilles becomes Aℵ0

and, consequently, we would
also know the precise Z∗-point point on which he reaches that state,
and this is impossibly because in that case a natural number n would
have to exist such that n + 1 = ℵ0. The indeterminacy of τ means
both the existence of more than one alternative and the impossibility
to determine the actual alternative. Now then, indeterminable as it
may be, τ must be greater than 0, and this inevitable requirement im-
posed by Achilles’ finite velocity is incompatible with the aleph-zero
or zero dichotomy. In fact, let τ be any real number greater than zero
and assume the transition from A0 to Aℵ0

lasts a time τ . Consider
the real interval (0, τ), along this interval Achilles state cannot be nei-
ther A0 nor Aℵ0

. It cannot be A0 because it that were the case the
process of becoming Aℵ0

would not have begun, which is false because
it is being performed. It cannot be Aℵ0

because in that case the pro-
cess would have already finished, which is also false for it is still being
performed. Now then, Achilles’ state has to be either A0 or Aℵ0

be-
cause it is well defined along the real interval [0, 1] of which (0, τ) is a
proper subinterval. Consequently, and being τ any real number, it is
impossible for Achilles to become Aℵ0

from A0 by lasting a time greater
than zero. Notice this is not a question of indeterminacy but of im-
possibility: no real number greater than zero exists for the duration of
Achilles’ transition from A0 to Aℵ0

. He, therefore, has to become Aℵ0

from A0 instantaneously. But this is impossible at his finite velocity
v. He must, therefore, remain A0. Or in other words, he cannot begin
to move. Evidently, this conclusion is the same absurdity of Zeno’s
Dichotomy II, although in our case it has been directly derived from
the topological successiveness of ω∗-order, which in turn derives from
assuming the existence of complete denumerable totalities [19] (Axiom
of infinity). To be complete (as the actual infinity requires) and un-
completable (because no last -first- element completes them) could be
a contradictory attribute rather than a permissible eccentricity of both
ω-ordered and ω∗-ordered sequences.

The above argument is confirmed by the following variant. Let us re-
place each Z∗-point with a mass Z∗-sensor capable of emitting a visible
laser beam when it is activated by any mass passing over it. Assume
the system of Z∗-sensors is regulated in such a way that each sensor
emits its corresponding laser beam if, and only if, it is activated and no
other laser beam is being emitted by other Z∗-sensor of the system. So
only one laser beam can be being emitted by the system of Z∗-sensors:
the one corresponding to the first activated Z∗-sensor, whatsoever it
be. Assume Achilles performs his canonical race from point -1 to point
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1. Will any laser beam being emitted at t1? Evidently not, because
it would have to be the impossible first Z∗-sensor of an ω∗-ordered se-
quence of Z∗-sensors. But on the other hand, why not? Is there any
reason to explain the inevitable malfunctioning of Z∗-sensors system
other than the inconsistency of assuming that it is possible to begin
a sequence of discrete and successive actions without a first action to
begin?

Let us now examine Zeno’s Dichotomy I under the same canonical
conditions of the above Dichotomy II. Consider again the real interval
[−1, 1] in the X axis. Let now 〈zi〉i∈N be the ω-ordered sequence of
Z-points:

zi =
2i − 1

2i
, ∀i ∈ N (3)

Achilles has to traverse in his race from point -1 to point 1. Assume
also we remove from [0, 1] all points except just Z-points (we would
have a sort of Zeno’s powder). In the place of a continuous race from
point -1 to point 1, assume that Achilles is on point 0 just at instant t0
and then he begins to step to z1, to z2, to z3, . . . , so that he is on each
zi just at ti as a consequence of a Z-jump ji, being ti the i-th term of
an ω-ordered sequence of instants 〈ti〉i∈N whose limit is tb.

The one to one correspondence f(ti) = zi proves3 that at tb Achilles
has completed the ω-ordered sequence of Z-jumps 〈ji〉i∈N on the ω-or-
dered sequence of Z-points 〈zi〉i∈N. Thus, at tb Achilles has to be on
a point x ≥ 1 of the X axis. Otherwise, if he were on a Z-point zi,
only a finite number i of jumps would have been performed. We have
now an uncomfortable asymmetry between the ω-ordered sequence of
Z-jumps 〈ji〉i∈N and an (ω + 1)-ordered sequence of points: the ω-
ordered sequence of Z-points plus the last point x Achilles ends up
his ω-ordered sequence of Z-jumps, i.e. the (ω + 1)-ordered sequence
〈〈zi〉i∈N, x〉.

By definition Achilles is on each zi at ti as a consequence of the i-th
Z-jump ji. The one to one correspondence f(ji) = zi proves that:

(1) No Z-jump ji makes Achilles to reach point x.
(2) Achilles comes to point 1 from no Z-point.

But the only actions Achilles performs from t0 is the ω-ordered sequence
of Z-jumps 〈ji〉i∈N on the ω-ordered sequence of Z-points 〈zi〉i∈N. So,
Achilles can only come from a Z-point as a consequence of a Z-jump.
How is then possible Achilles reaches point x at tb if none of the per-
formed Z-jumps places him there? At this point of the discussion, most

3This is the way infinitists pretend to explain how an ω-ordered sequence of
actions can be completed: by pairing off two endless sequences, the one of actions
the other of instants at which the successive actions are carried out. Thus, in order
to end an endless sequence of actions we only need to pair the endless sequence of
actions with the endless sequence of instants as which they are performed, as if by
pairing off two impossibilities a possibility could result.
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infinitists claim that although Achilles comes to point x from no Z-point
as a consequence of no Z-jump, it reaches that point at tb as a con-
sequence of having completed the (uncompletable) ω-ordered sequence
of Z-jumps 〈ji〉i∈N. As if the completion of the ω-ordered sequence of
Z-jumps 〈ji〉i∈N were a place where one may come from (as well as an
additional jump). But if the completion of the ω-ordered sequence of
Z-jumps 〈ji〉i∈N means the completion of the ω-ordered sequence of Z-
jumps 〈si〉i∈N, i.e. that each one of the countably many Z-jumps j1, j2,
j3, . . . , and only them, have been performed, then it is quite clair that
Achilles cannot reach point x at tb. Simply because no Z-jump j1, j2,
j3, . . . ends on point x. And if no Z-jump j1, j2, j3, . . . , end on point
x and Achilles only performs Z-jumps, then he cannot end on point x
either. On the other hand, if the completion of the ω-ordered sequence
of Z-jumps 〈ji〉i∈N were an additional jump then we would have an (ω
+ 1)-ordered sequence of jumps rather that an ω-ordered one. But we
have proved the ω-ordered sequence of Z-jumps 〈ji〉i∈N suffices to place
Achilles on point x at tb. It is therefore that ω-ordered sequence 〈ji〉i∈N

which places and does not place Achilles on point x.
Achilles ends his ω-ordered sequence of Z-jumps on point x and this

final position is unexplainable because no final jump places him there.
And no final jump places him there because no final Z-jumps exists
in the ω-ordered sequence of Z-jumps 〈ji〉i∈N. The asymmetry is quite
clair: there exists a last effect (to reach point x) but not a last jump
causing it. Infinitist, therefore, have to make use of a mysterious last
jump by converting the completion of an ω-ordered sequence of jumps
in a subsequent additional jump different from all previously performed
ones. But an ω-ordered sequence of jumps plus an additional last
jump is not an ω-ordered sequence of jumps but an (ω + 1)-ordered
one. Thus, this assumed additional jump does not solve the question,
because Achilles reaches and does not reaches point x as a consequence
of an ω-ordered (not of an (ω + 1)-ordered) sequence of jumps.

As in the case of Dichotomy II, assume that each Z-point zi is pro-
vided with a mass Z-sensor, being the system of Z-sensors regulated
in such a way that, once a Z-sensor is activated, it will be emitting
its corresponding laser beam until other Z-sensor be activated. In con-
sequence, once the system is activated there will always be a Z-beam
being emitted: the one corresponding to the last activated Z-sensor.
So, once activated, it is impossible to turn off the emission of Z-beams.
Assume now Achilles performs an ω-ordered sequence of Z-jumps on
the ω-ordered sequence of Z-sensorized Z-points. For the same rea-
sons above, Achilles completes this ω-ordered sequence of Z-jumps at
tb. And now the question is: will any laser beam being emitted at
tb? According to the functioning of the Z-sensors system, once Achilles
activates the first Z-sensor by Z-jumping on the first Z-point, it is im-
possible to turn off the emission of Z-beams. So, at tb a Z-beam has to
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be being emitted. Although, on the other hand, no Z-beam can be be-
ing emitted at tb because, if Achilles has completed his uncompletable
ω-ordered sequence of Z-jumps, that Z-beam would have to be being
emitted by the impossible last Z-sensor of the ω-ordered sequence of
Z-sensors. Thus, if Achilles has completed the uncompletable ω-orde-
red sequence of Z-jumps, a laser beam will and will not being emitted
by the system of Z-sensors. This seems rather contradictory.
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