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Abstract: The behaviors of lateral and normal optical forces between 
coupled photonic crystal slabs are analyzed. We show that the optical force 
is periodic with displacement, resulting in stable and unstable equilibrium 
positions. Moreover, the forces are strongly enhanced by guided resonances 
of the coupled slabs. Such enhancement is particularly prominent near dark 
states of the system, and the enhancement effect is strongly dependent on 
the types of guided resonances involved. These structures lead to 
enhancement of light-induced pressure over larger areas, in a configuration 
that is directly accessible to externally incident, free-space optical beams. 
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1. Introduction 

There has been significant interest in using optical forces for applications such as 
manipulating nanoscale systems, optical cooling of mechanical motion of mesosopic objects, 
and demonstrating novel nonlinear optical effects [1–11]. The systems studied so far include 
coupled waveguides, waveguides coupled to substrates, as well as a variety of resonator 
structures such as micro-rings, disks or toroids that support whispering gallery modes, and 
point defects in photonic crystal slab structures that support standing-wave optical modes. 

In this paper we study optical forces between coupled photonic crystal slabs, in an 
exemplary system as shown in Fig. 1. We find that, due to in-plane periodicity of the 
structure, lateral and normal forces exhibit periodic dependence on position, leading to 
unstable and stable equilibrium positions. Moreover, near the frequencies of guided 
resonances, we see significant enhancement of the optical forces. In these systems, the 
presence of in-plane periodic index contrast enables phase-matched coupling between 
externally incident planewaves and guided modes that are supported by the slab, leading to 
strong resonant behaviors of individual slabs [12, 13]. The interaction between these 
resonances in two slabs (Fig. 1) leads to a rich set of effects and opportunities for optical force 
enhancement. In comparison to previous works, these structures lead to enhancement of light-
induced pressure over larger areas, in a configuration that is directly accessible to externally 
incident, free-space optical beams. 

One of the most intriguing aspects of guided resonances in photonic crystal slabs is the 
existence of dark states. These are states with their frequency and in-plane wavevectors 
satisfying the phase-matching conditions for coupling to external plane waves, and are 
nevertheless de-coupled from external planewaves due to either symmetric or dynamic 
reasons [14, 15]. Here we show that in spite of the fact that light cannot directly couple to 
these states, their presence nevertheless leads to divergence of light-induced pressure as a 
function of the displacement. Moreover, the characteristics of the divergence are intimately 
related to the nature of the dark states. 

The paper is organized as follows. In Section 2 we discuss the model system of a photonic 
crystal slab and the scattering matrix method used to compute the fields and forces. Section 3 
provides an overview of the modal properties and transmission behaviors of photonic crystal 
slab systems. Section 4 describes the behavior of optical forces as a function of the slab 
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position. Section 5 discusses the behavior and divergence of optical forces under various 
displacements. Finally, Section 6 provides estimates of the magnitude of forces in practically 
realizable systems. 

 

Fig. 1. Schematic of the double slab system. The red arrows indicate the directions of the 

incident light. Each slab consists of an array of high index rods ( 12ε = ) surrounded by air 

( 1ε = ). The empty rectangle indicates the surface over which the integration of the stress 

tensor is performed. In the right panel, the bottom slab is shifted relative to the first slab by a 

distance x∆ . 

2. Model system and computational methods 

We focus on systems consisting of two periodically patterned dielectric slabs (Fig. 1). Each 

slab consists of equally sized alternating regions of high-index material ( 12ε =  is used 

throughout this work) and air ( 1ε = ), with lattice constant a. The thickness of each slab is 

0.5a. The two slabs are separated from each other by an edge-to-edge distance d. Moreover 

the two slabs are possibly laterally shifted by x∆  along the x-direction. The excitation is 

assumed to be a normally incident planewave with electric field in the y-direction. The effects 
described here are quite general and apply to the alternate incident wave polarization as well. 
However, in the case of an electric field polarized in the x-direction, there is the possibility of 
field concentration in the air regions [16], which could possibly provide additional force [16]. 
We here use a field in the y-direction to explicitly focus on the resonance effect. 

Throughout this work we use the scattering matrix method (SMM) to compute both the 
transmission through the slabs and their optical force properties [17, 18]. In this technique, the 
simulated structures are divided into layers along the z-direction. Each layer is uniform along 
the z-direction. 

As a first step, one determines the eigenmodes that are appropriate for each layer, by 
considering a corresponding infinite structure that has the same dielectric profile in the xy-
plane, but is uniform and infinite in the z-direction. For such a corresponding infinite 
structure, the electric field distribution of its eigenmodes has the form: 

 ( ) ( ) ( )n,m n,m ,
, exp exp

n m
i iq = + ⋅    ∑

G

u r u G k G rz z   (1) 

Here ( , )x y=r . ( , )
x y

k k=k  is the in-plane wavevector for the incident wave. The 

summation is over all reciprocal lattice vectors G’s. The subscripts n and m label the m-th 

mode for the n-th layer. Both ( ),n m
u G  and the square of the longitudinal wavevectors, i.e. 

2

,n m
q , correspond to the m-th eigenmode and eigenvalue of an N N×

G G
 matrix, obtained by 

expressing Maxwell’s equations in the planewave basis. N
G

 is the number of planewaves 

used. Notice that in general 
,n m

q  can be complex. 

Using the eigenmodes as a basis, the field in the n-th layer can then be expanded as 

 ( ) ( ) ( ) ( ), , , , ,
, exp exp

n n m n m n m n m n m

m

a iq b iq = + − ∑E G u Gz z z   (2) 
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Here the forward and backward wave mode amplitudes are 
,n m

a  and 
,n m

b , respectively. 

Suppose a planewave is incident upon the structure from the air region above. In the air 
region above, we set all incoming planewave amplitudes to zero except for the actual incident 
wave. By matching boundary conditions at all interfaces, a linear system can be set up to 
determine all the a and b coefficients [17], and thus obtaining the field in the entire structure. 
This procedure provides exact results for a dielectric function of a finite number of Fourier 
components. But the results below, which use 27 plane-wave components to approximate a 
square wave dielectric profile, achieve good convergence (within 0.1% in the force 
computations). 

The force on the structure is evaluated using the Maxwell stress tensor formalism [19, 20]. 
The time-averaged force on a rigid dielectric body can be found by an integral over an 
oriented surface completely enclosing the object: 

 F T dSα αβ β= ∫   (3) 

where the subscripts α  and β  each vary over (x, y, z), and repeated indices are summed over 

all possible values. Here dSβ  is the area element with outward normal vector. The time-

averaged stress tensor Tαβ  is defined as 

 ( )* * * *1 1

2 2
T E D H B E D H Bαβ α β α β αβ γ γ γ γδ = ℜ + − +  

  (4) 

We choose to integrate this tensor over a rectangular box enclosing the unit cell of one of the 
slabs. Contributions to the stress tensor from the sides parallel to the z-axis cancel due to the 
opposite orientation of the normal vectors for the two sides and the Bloch periodicity of the 
fields. Therefore, the integral only needs to be evaluated on the two surfaces normal to the z-
direction on either side of a slab. 

Combining Eqs. (1) and (2) we see that at any plane perpendicular to the z-axis, the fields 

can be expressed in a planewave expansion over a set of reciprocal lattice vectors G : 

 ( ) ( ) [ ]exp ( )i k= + ⋅∑
G

E e G G rz   (5) 

where ( )e G  is z-dependent. Substituting this form into Eq. (4) greatly simplifies the 

computation. For example, the first term is simply 

 

( ) ( ) [ ] [ ]

( ) ( )

* *

*

1 1
exp exp

2 2

2

E D dS e d i i dS

A
e d

α α

α

′

′ ′ℜ = ℜ ⋅ − ⋅

= ℜ

∑∑∫ ∫

∑
G G

G

G G G r G r

G G

z z z z

z

  (6) 

where A is the area of the unit cell, eα  is the α -component of ( )e G , and the other 

subscripted lowercase italic variables are the components of the corresponding fields 
expanded analogous to Eq. (5). Similarly, the total time-averaged force can be found by 
summing the contributions from the two surfaces, each of which has the form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )* * * *1

2 2
z

A
e d h b e d h bα α α γ γ γ γδ ℜ + − +  

∑
G

G G G G G G G G
z z

  (7) 

Therefore, the force can be found efficiently once the Fourier coefficients have been obtained. 
Since in the SMM the fields are always expressed in terms of Fourier coefficients, this 
formalism is particularly well suited to the SMM. 

(C) 2009 OSA 23 November 2009 / Vol. 17,  No. 24 / OPTICS EXPRESS  21900
#115425 - $15.00 USD Received 7 Aug 2009; revised 8 Sep 2009; accepted 10 Sep 2009; published 16 Nov 2009



  

3. General behaviors of the lateral and normal forces 

We first comment on some of the general aspects of forces in this structure. These aspects, 
since they arise from the symmetry of the structure, apply both to the force at a constant 
incident power, as well as the force at a constant energy inside the structure, i.e. force per 
photon inside the structure. The structure is periodic in the x-direction. Also, a relative shift 

x∆  of the two slabs by a distance a along the x-direction results in the same structure. It 

follows then that both the lateral force Fx and the normal force Fz are periodic with respect to 
the relative shift of the slabs, i.e. 

 
( ) ( )
( ) ( )

x xF x F x a

F x F x a

∆ = ∆ +

∆ = ∆ +
z z

  (8) 

In addition, the structure has a mirror plane symmetry perpendicular to the x-direction for 

both 0x∆ =  and 0.5x a∆ = . Thus, the normal force satisfies the additional constraints: 

 
( ) ( )
( ) ( )

F x F x

F x F a x

∆ = −∆

∆ = −∆
z z

z z

  (9) 

which imply that the normal force Fz reaches an extremum at these two symmetric 
configurations. The same mirror symmetry also requires that the lateral force Fx satisfy 

 
( ) ( )
( ) ( )

x x

x x

F x F x

F x F a x

∆ = − −∆

∆ = − −∆
  (10) 

As a result, the lateral force vanishes at the two symmetric configurations with 0x∆ =  and 

0.5x a∆ = . If the two slabs are constrained to move in only the x direction, these two 

symmetric configurations represent equilibrium situations. They can be either stable or 

unstable. In the case as shown in Fig. 2(a), for example, 0x∆ =  is stable while 0.5x a∆ =  is 

unstable. 

 

Fig. 2. Lateral and normal forces as functions of relative shift in the horizontal direction 
between the slabs. The vertical spacing between the slabs is d = 0.5a. The forces are periodic 

with respect to the displacement. Only one period in x∆  is shown. (a) Far from resonance at 

0.57 2 /c aω π= × . (b) Near resonance at 0.58 2 /c aω π= × . Note the vastly different 

vertical scales. 

The conditions (8)-(10) above arise from general symmetry properties of the slab, and thus 
are satisfied at all operating frequencies, as can be seen in Fig. 2. The detailed behavior of the 
optical forces, however, is strongly influenced by the modal properties of the system and is 
therefore drastically different as frequency varies. In Fig. 2(a), the force variation as a 

function of relative shift x∆  is plotted at a frequency of 0.57 2 /c aω π= × , far from any 
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resonance. The force is given in units proportional to the incident power flux I0. The forces 
vary smoothly with respect to the relative shift between the slabs. In Fig. 2(b), the forces are 

plotted at 0.58 2 /c aω π= × , which happens to be near a resonance of the two-slab system 

with a relative shift of 0.2x a∆ = . The forces are greatly enhanced when the relative shift 

between the slabs creates a resonance at the operating frequency. In the following sections, 
we will provide a detailed analysis of the resonant enhancement of optical forces in this 
system. 

4. Modal properties of single and double photonic crystal slabs 

The nature of the optical force between the slabs is intimately related to the nature of guided 
resonances in the coupled slab system, which in turn, can be understood by studying the 
resonances in the single slab case. 

A single slab possesses guided resonances, which are modes that are strongly confined by 
the slab, but nevertheless can couple to external radiation and therefore in principle have a 
finite lifetime. The presence of a guided resonance in a photonic crystal slab is manifested as 
a Fano line shape in the transmission spectrum superimposed on an otherwise smooth 
background [21], as shown in Fig. 3(a). Both the frequency and the modal profile of the 
guided resonance can be obtained using a separate photonic band structure code (MPB) [22]. 
The transmission spectrum always goes through a perfect zero and unity in the vicinity of the 
guided resonance frequency. The modal profile of such guided resonance is shown in the top 
panel of Fig. 3(b). The bottom panel of the same figure shows the mode being excited by an 
external planewave source. We will refer to such a guided resonance as a “bright guided 
resonance.” 

In addition to the bright guided resonance, the single slab system also possesses “dark 
guided resonances” that cannot be seen in the transmission spectrum. These modes exist 
above the light line and hence would have been able to couple to radiation modes from band 
folding arguments alone. However they possess multipole-like mode-field distributions that, 
due to symmetry, have a vanishing overlap integral with the incident radiation modes. These 
modes do not couple to external radiation, and are therefore dark states [13, 14]. As an 
example, in the simulations, mode-solving reveals the presence of a mode with a quadrupole-

like field distribution inside the rod at a frequency of 0.58 2 /c aπ× , (Fig. 4(b), top panel). In 

contrast, the transmission spectrum does not have any sharp spectral features at the mode 
frequency (Fig. 4(a).). Instead, at the mode frequency an incident planewave passes through 
the slab without exciting the mode, as shown in the bottom panel of Fig. 4(b). A dark state 
like this possesses an infinite quality-factor (or Q-factor). 

Based on the discussions above on guided resonances in single slabs, we now consider 
dark states in two-slab systems. Here, as we will show below, there are actually two different 
mechanisms to create dark states, arising from the interaction of either bright or dark guided 
resonances in the single slab. In the first mechanism, the dark state occurs at the condition 
where the spacing between the two slabs takes specific values. In the second mechanism, the 
dark state occurs at the condition where the two slabs are arranged in a configuration such that 
the overall structure has a mirror symmetry. Small deviations from either of these conditions 
lead to states with very high quality factors, and moreover with such quality factors strongly 
dependent upon mechanical displacements. (We will refer to such states that are linked to the 
dark states as “near-dark states” below.) As a result, the presence of dark states in two-slab 
systems has important implications for the optical force between them. 

4.1 Dark state arising from coupled bright resonances 

In the single slab system, near a bright guided resonance there always exists a frequency for 
which total reflection occurs. Therefore, one can form a dark state in the two-slab system, by 

choosing an appropriate spacing (referred to as d∞  below) between the slabs, such that a 

Fabry-Perot resonance between the two slabs is formed exactly at the frequency where the 
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reflectivity of each individual slab reaches unity [23]. In the system shown in Fig. 3, 

0.65d a∞ = , at the slab spacing d d∞= , the state is decoupled from external radiation. 

 

Fig. 3. Dark state arising from coupled bright guided resonances: (a) Single slab transmission 
spectrum; the arrow indicates the frequency of a Fano resonance mode. (b) Mode profile 
calculated by MPB (top) and field profile computed with SMM at the frequency indicated by 
the arrow in (a) (bottom). (c) Double slab transmission spectrum for d = 0.5a. (d) Field profile 
at frequency indicated by the arrow in (c). (e) Double slab transmission spectrum for 

0.65d a= ; note the extremely sharp resonance peak. (f) Field profile at peak of resonance 

in (e). 
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When the slab spacing d is in the vicinity of d∞  (Figs. 3(c) and 3(e)), the transmission 

spectrum of the system exhibits a lineshape that is analogous to the Electromagnetically 
Induced Transparency (EIT) effect in atomic systems [24], where a sharp transparency 
resonance peak exists within the center of a broad resonance dip [15, 25]. Moreover, in 
comparing Fig. 3(c) (d = 0.5a), with Fig. 3(e) (d = 0.65a), we see that the width of the 
transmission peak becomes narrower, and in fact the quality factor of the transparency 

resonance peak diverges as d approaches d∞ . Corresponding to Figs. 3(c) and 3(e), the steady 

state field distributions at the frequencies of the resonance peak are shown in Figs. 3(d) and 
3(f), respectively. The higher-Q state in Fig. 3(f) exhibits a much weaker coupling to the 
external radiation. To summarize, one can start with a bright resonance in a single photonic 
crystal slab and introduce a second slab to create a near-dark state with a much higher quality 
factor. The quality factor is mechanically tunable over a wide range by adjusting the slab 
spacing. 

4.2 Dark state arising from coupled dark resonances 

In the single slab system, as indicated above, there exist dark guided resonances that are 
uncoupled to external radiation due to the mirror symmetry of the structure. In the system of 
two slabs, the two dark modes from the two slabs couple to one another to form two coupled 

modes. However, if the two slabs are vertically aligned ( 0x∆ = ), the system remains 

symmetric, and thus both of these coupled modes are dark and do not couple to external 
radiation. The transmission spectrum of the symmetric two-slab system is shown in Fig. 4(c). 
There is indeed no spectral signature in the vicinity of the dark resonances. 

By laterally shifting the two slabs relative to one other, the mirror symmetry of the system 
is broken [15]. As a result, the two coupled modes above can couple to external radiation, 
resulting in two Fano lineshapes in close proximity to each other (Fig. 4(e)). Such a Fano 
lineshape arises from the interference of the incident radiation with the guided resonance. 
Comparing the field distributions of the unshifted (Fig. 4(d)) and the shifted systems (Fig. 
4(f)), we note that the shift of the slabs allows the excitation of a state with a very different 
local modal profile. In summary, one can start with a dark resonance in a single photonic 
crystal slab and introduce a second slab to create a near-dark state, with a quality factor that is 
highly sensitive to the horizontal displacement between the slabs. 

5. Optical forces 

In general, it is known that the optical force can be drastically enhanced with the use of high-
Q resonances. The dark states for the two-slab systems are infinite-Q states that exist at 
specific frequencies and at specific displacements between the two slabs. In the vicinity of 
these special frequencies and displacements, the system exhibits high-Q near-dark states, 
which results in enhanced optical forces. 

Corresponding to the two cases of dark states in the two slab system, below we will 
consider three different scenarios to reveal some of the relevant physics of force enhancement 
in the vicinity of these dark states. In Cases 1 and 3, we will consider the behaviors of optical 
forces as a function of slab spacing, with the two slabs maintained in configurations that 
either possess, or break mirror symmetry, respectively. We will choose to operate in a 
frequency range close to the dark state discussed in Section 4.1, since the quality factor of 
such states strongly depends on the variation of the slab spacing. In Case 2, we will consider 
the behaviors of the forces as a function of relative shift between the slabs, with the two slabs 
maintained at a constant spacing. We will choose to operate in a frequency range close to the 
dark states as discussed in Section 4.2, since the quality factor of such states is strongly 
influenced by the relative shift between the slabs. 
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Fig. 4. Dark states in the two-slab system that arise from coupled dark resonances from single 
slabs: (a) Single slab transmission spectrum; the arrow indicates the frequency of a dark state. 
(b) Mode profile calculated from MPB at the dark state frequency (top) and field profile 
computed with SMM at the frequency indicated by the arrow in (a) (bottom). (c) Double slab 

transmission spectrum for 0.5d a= . (d) Field profile at frequency indicated by the arrow in 

(a). (e) Double slab transmission spectrum for 0.15x a∆ = ; note the appearance of pairs of 

sharp resonances. (f) Field profile at lowest frequency resonance from (e). 
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5.1 Case 1: Changing slab separation, symmetric case 

We start by consider the configuration corresponding to Figs. 3(d) and 3(e), where the relative 

shift of the slab 0x∆ = , and study the effects of varying slab separation on the optical forces. 

Since the system has mirror symmetry, the lateral force vanishes. Here we will therefore focus 
on the behavior of the normal force, as influenced by the dark state discussed in Section 4.1, 

that occurs at a frequency of 0.63 2 /c aω π= ×  and at d d∞= . 

Figure 3(e) reveals a dark state near 0.63 2 /c aω π= ×  and 0.65d a= . Scanning d in the 

vicinity of d∞ , we plot in Fig. 5 the resonance peak and linewidth, both of which are 

determined from the transmission spectra. The resonance linewidth indeed vanishes at 

d d∞= , consistent with the existence of a dark state at that separation. The linewidth becomes 

nonzero away as d moves away from d∞ . 

 

Fig. 5. Resonance peak and linewidth in the vicinity of the dark state arising from coupled 
bright resonances (Case 1). 

 

Fig. 6. Divergence behavior of normal force on resonance compared to the Q as the slab 
spacing is varied away from the dark state in Case 1. For reference, the force variation at a 
constant frequency near the dark state frequency is also plotted with a dashed line. 

In Fig. 6 we plot the quality factor of the resonance as a function of d. The quality factor 
was determined by measuring the spectral line width of the resonances. For the resonances of 
interest, the spectral line shapes are nearly Lorentzian and sufficiently narrowband for this 
approximation to be accurate. Note that both axes of the plot are on a logarithmic scale and 
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that the quality factor diverges as 2( )d d −
∞−  as d approaches d∞ . Such divergence behavior 

can be understood as follows: The resonance decay rate, proportional to 1/Q, must vanish at 

d d∞= . Moreover, if one assumes 1/Q to be analytic, then the lowest order term must be 

quadratic since 1/Q is non-negative. Hence 21 ( )Q d d∞∝ − . In Fig. 6, we also plot the force 

in the direction normal to the slab (Fz) on resonance against slab spacing. The force shows an 
identical functional dependence (the solid black line in Fig. 6) as the quality factor. Moreover, 
if we instead consider the force at constant frequency slightly away from the dark state 

frequency ( 0.63 2 /c aω π= × ), the divergence behavior is also identical, as shown in the 

dotted line. Therefore, in this case the Q enhancement is the dominant mechanism for force 
enhancement in this system. 

It is also interesting to note in Fig. 6, that the same functional dependency persists for 
values of Q as low as 100. Thus the effects considered here do not require the achievement of 
extremely high Q factors. 

 

Fig. 7. Resonance peak and linewidth in the vicinity of the dark state arising from coupled dark 
resonances (Case 2). One of the pair of resonances has a Q much higher than the other, causing 
its FWHM to appear negligible. 

5.2 Case 2: Changing relative shift 

We now consider the effect of changing relative shift x∆  on the optical forces, as influenced 

by the dark state in Section 4.2, which occurs near the frequency 0.58 2 /c aω π= × . In Fig. 7, 

we plot the resonant properties of the modes as x∆  is varied. The resonant linewidth vanishes 

at 0x∆ =  and 0.5x a∆ = , which correspond the slab configurations that possess mirror 

symmetry with respect to the yz-plane. Other values of x∆  break the mirror symmetry, 

leading to a non-zero resonant linewidth. 

In Fig. 8 the Q of the resonance is plotted as a function of x∆ . The Q diverges as 2
x
−∆ , 

which is the lowest order dependence consistent with the requirement that 1/Q be a non-

negative and analytic function of x∆ . Also plotted in Fig. 8 are the forces in the normal 

direction (Fz) and the lateral direction (Fx). The normal force diverges in the same way as Q, 

with a 2
x
−∆  dependence. The lateral force, however, diverges as 1

x
−∆ , leading to certain 

parameter range within which 
x z

F F> . 

The difference in behaviors for Fz and Fx can be understood as follows: In general, the 
overall optical force is a product of the force per photon and the number of photons inside the 
structure. At a given incident power, the number of photons inside the structure is 

proportional to the quality factor. Thus, in this case it diverges as 2
x
−∆ . For the normal force, 

as seen from Eq. (9), the force per photon has an extremum at 0x∆ = , thus the overall optical 

force also diverges as 2
x
−∆ . On the other hand, the lateral force per photon vanishes at 
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0x∆ = , from the symmetry argument as shown in Eq. (10). Hence the lateral force per 

photon to the lowest order must be proportional to x∆ . As a result, the overall lateral force at 

a constant input power should diverge as 1
x
−∆  instead. As we see in this example, the 

structure symmetry can strongly influence the behavior of the resonant force enhancement. 

 

Fig. 8. Divergence behavior of normal and lateral forces on resonance compared to the Q for 

various shifts near the symmetry point 0x∆ =  for Case 2. 

 

Fig. 9. Resonance peak and linewidth in the vicinity of the dark state for Case 3 at 

0.2x a∆ = . 

5.3 Case 3: Changing slab separation, asymmetric case 

The final case we consider is a system similar to Case 1, except that the two slabs are shifted 
relative to each other by a distance of 0.2a, breaking the mirror symmetry with respect to the 
yz-plane. We again study the behavior of the optical force as a function of slab spacing. In 

Fig. 9 we plot the resonant properties as a function of slab spacing. We note that with 0x∆ ≠ , 

there still exists a dark state, which in this case occurs at a frequency of 0.631 2 /c aω π= ×  

and a slab spacing 0.65d a∞ = . In Fig. 10, we plot the Q, as well as the normal force Fz and 

the lateral force Fx on resonance, against the slab spacing. They all vary as 2( )d d −
∞− , hence 

the behavior of both the normal and the lateral forces is dominated by the Q enhancement, 
unlike the Case 2 above. The divergence behavior of the lateral force therefore depends on the 
symmetry of the structure when it supports a state that is completely dark. 
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Fig. 10. Divergence behavior of normal and lateral forces on resonance compared to the Q for 

various slab spacings near the dark state corresponding to 0.583 2 /c aω π= ×  and 

0.2x a∆ =  in Fig. 9. 

6. Practical realization 

Practical realizations of this system may prove to be interesting for optomechanical control, 
since the magnitude of force obtainable scales roughly with the quality factor of the slab 
system. The system does not require an extremely high Q in order to observe forces due to the 
delocalized nature of the fields. The two-slab system is suited for low power excitation since 
the field is confined in the vertical direction for a distance smaller than the wavelength of 
light, giving rise to a large enhancement in the near field. For an incident power of 1 mW at 
1.5 µm focused on a spot of about 100 µm

2
 (an area of approximately 250a

2
) would produce a 

force of 330 pN assuming a resonator Q of 10
5
, a force significantly larger than Van der 

Waals forces for typical slab separations on the order of the wavelength. 

7. Conclusion 

We have shown that in the coupled slab system, the optical forces are strongly influenced by 
the symmetry of the system as well as its resonance properties. The periodic nature of the 
forces leads to stable and unstable equilibrium configurations of the system. These effects 
should also generalize to 2D periodic slabs. Under selective excitation of the guided 
resonances of such slabs, step-like motion and self-trapping can arise [26]. These behaviors 
may, for example, be useful for automatic alignment of nanostructures. 

We have also shown that different types of dark states within a coupled photonic crystal 
slab system exhibit qualitatively different force divergence behaviors. Generally, the force 
enhancement scales with the Q of the resonances in the structure even for moderate values of 
Q. By placing the system configuration in the vicinity of a dark state, a dramatic enhancement 
of the optical forces may be obtained due to the large resonant enhancement of the fields. 
Moreover, the enhancement behavior is closely related to some of the symmetry properties of 
the system. The results presented are applicable for normal incidence. We do, however, 
expect similarly dramatic lateral force enhancement to arise for non-normal incidence and 
other polarizations. 
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