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Abstract. We consider the scattering problem of two-electron transport in one-
dimensional channel coupled with an Anderson-type impurity. The treatment
includes the backscattering of the electrons. We show that the transport
properties are fundamentally different for spin singlet and triplet states, thus
the impurity acts as a novel filter that operates based on the total spin angular
momentum of the electron pairs, but not individual spins. The filter provides a
deterministic generation of electron entanglement in spin, as well as energy and
momentum space.
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1. Introduction

There has been a significant interest in creating controllable entanglement between two
electrons for the purpose of creating electron-based solid-state systems for quantum information
processing [1]-[7]. Among many proposals to generate entanglement between electrons, that
of mobile electron scattering in a one-dimensional channel is of particular interest. In such
scattering processes, the strong correlations between flying electrons could be induced either
via direct Coulomb interactions in quantum dots [4], or by a localized magnetic impurity [3].
Such a scattering process is important because it leads to a deterministic generation of
entanglement, without the need for additional processes such as post-selection [6]. As a
result, there has been substantial theoretical interest in understanding in detail the intrinsic
behaviors of two-electron scattering by a quantum impurity, in the absence of the Fermi
sea [3, 4, 7]. However, in all previous work, the treatment is perturbative, and yet it is
well known that these few-electron systems have interesting properties beyond perturbation
theory.

In this paper, we provide an exact solution of two-electron transport in one-dimensional
channel coupled with an Anderson-type empty orbital. Our analysis shows that the transport
properties are fundamentally different for spin-singlet and triplet states. For the singlet state,
the strong on-site Coulomb repulsion can generate spatial electron—electron pairing via the
scattering process. In addition, the energy spectra of the transmitted and reflected scattering
states of the two entangled electrons exhibit a continuous distribution with side bands, a
phenomenon analogous to photonic resonance fluorescence [8]. Furthermore, the transmitted
two-electron state can manifest either bunching or anti-bunching behavior, in contrast to the
case considered in [2] wherein the singlet states only show bunching behavior. This indicates
that the spatial correlation between entangled electrons is a tunable dynamical process. On the
other hand, in the triplet case, the transport properties of the two electrons are the same as those
of two independent electrons, with no spatial electron—electron pairing. Finally, we show that
based upon the different behaviors of the singlets and the triplets, the system acts as a novel filter
that operates based on the total spin angular momentum of the electron pairs, but not individual
spins, and that the filter provides a deterministic generation of electron entanglement in spin, as
well as energy and momentum space.

In the following, we first introduce the system of interest and the Hamiltonian; we then
discuss the scattering matrix (S-matrix) of the system and the decomposition of the two-electron
Hilbert space. Using these techniques, the transport properties of the spin-singlet and triplet
states are computed; the contrast between the transport properties of the spin-singlet and triplet
states can be exploited to differentiate these two spin states. Finally, we briefly describe possible
experimental implementations of the two-electron transport. Some relevant mathematical details
are presented in the appendix.

2. The system and the Hamiltonian

To begin with, we set up the system as shown in figure 1. The electrons freely propagate in the
one-dimensional channel, which couples to an Anderson-type empty orbital [9]. In real space,
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Figure 1. Schematics of the system. Two electrons (black dots) propagate in
a one-dimensional channel (light blue) coupled to a quantum impurity (green
dot). The coupling is indicated by the dashed line. Also shown is the energy
diagram of the quantum impurity: when only one electron occupies the impurity,
the energy is €;; when two electrons with opposite spins occupy the impurity, the
total energy is 2¢; + U.

the Anderson Hamiltonian takes the following form [10, 11]:

d d
H = U;% fdx {—ih vgcga (x)acRa (x)+ih vch, (X)acLa (x)

+V8(x) (cgg ()dy +cro () + ) (X)dy + 10 (x)dj) }

+ Z Gdl’ld,g+Ul’ldTl’ld¢. (1)
o=
The first two terms describe the kinetic energy of the right-moving (R) and left-moving (L)
electrons in the one-dimensional continuum, respectively, where v, is the group velocity. c;(, (x)
(cr.s(x)) 1s the creation (annihilation) operator of the right-moving electron with spin o and
similarly for CIT_,U (x) (cL.»(x)). The third term describes the processes of electron hopping on and
off the impurity at x = 0 (‘hybridization’), where V is the coupling strength, and the operator
d; (d,) creates (annihilates) an electron of spin o on the impurity. n, , = a’idc is the electron
number operator on the impurity. €, is the energy of the empty orbital of the impurity, degenerate
for both spins of the electron. The last term with U > 0 is the energy cost to put two electrons
with opposite spin on the same impurity orbital. Double occupation of electrons is energetically
unfavorable, and becomes prohibited in the limit U — +o0o. The Hamiltonian of (1) describes
the situation where the electrons can propagate in both directions, and is referred to as ‘two-
mode’ model.
By employing the transformation ¢! (x)= (ck, (x)+ci, (—=x))/~/2, and ¢! (x)=
(c;(, (x) — C{a (—x))/ V2, the original two-mode Hamiltonian is transformed into two decoupled
‘one-mode’ Hamiltonians describing an even and an odd subspaces, i.e. H = H. + H,:

H. = Z /dx(—i)h veCl (x)%cw (x) +/dx Vé(x) (CZU (X)0_ + Ceo (X)U+)

+ Z €ing s +Ungrng,, (2)

Hy=>Y" / dx(—i)h vec! (x)%cm (x),
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with [H., H,] =0. H, is an interaction-free Hamiltonian, while H. describes a nontrivial
interacting model with coupling strength V = +/2V. H. has also been used to describe the
S-wave scattering of electrons off a single magnetic impurity in three dimensions. Also, with
the substitution V — /|t |> + |tr]?, H. describes the one-dimensional transport problem of
electrons tunneling into a small quantum dot, with #; and #g being the tunneling amplitude
from the left lead and right lead, respectively [12]. For notational simplicity, v, and 7 are set to
1 hereafter.

3. The S-matrix and the decomposition relation

The transport properties is fully encoded in the S-matrix, S. For a prepared free incoming state
(in-state) |W;,), the free state describing the outcome (out-state) is given by |Wo,) = S|W;,)
[13, 14]. Since both cga (x) and cL, (x) are linear combinations of CZU (x) and cga (x), any free
two-electron state |\W,) can be written as

|“I"2> = |\Ij>ee+|lp>eo+|qj>oe+|\y>00v (3)

where the subscript ‘ee’, for example, labels the subspace spanned by ¢ (xl)clo,(xz) |#). (The
spin labels are suppressed for simplicity.) Moreover, since the Hamiltonians, (1) and (2), do not
mix the e and o subspaces, the following decomposition relation holds [14]

S|\112> = Seelqj>ee +SCO|\I]>60 + SOellI]>OC +SOO|\II>00’ (4)

where S, is the two-electron S-matrix in the ‘ee’ subspace governed by H.; Seo = Soe = SeSo,
with S, being the one-electron S-matrix in the e subspace, and S, = 1, the identity operator,
being the one-electron S-matrix in the o subspace governed by H,; Sy, = 1.

Thus, for a given two-electron in-state |W,), to compute the out-state S|W;), one first
decomposes the in-state |\W,) into ee, 0o, eo and oe subspaces, followed by computing the
scattering states in each subspace, and finally transforms the results back to the original RR,
LL, RL and LR spaces, using (4). Note that the Hamiltonian in (1) conserves the total spins of
the two electrons, thus the singlet and the triplet states do not mix with each other by scattering.
Below we treat these cases separately.

4. The transport properties of the spin-singlet state

Any two-electron spin singlet eigenstate of the Hamiltonian H, is of the form [10]

|®) = { f dxidxs g(x1, x2)el, (x1)cy; (x2)

¥ / dx e(x) [l (0)d] =l ()d] |+ fd;dj} 1), 5)

where g(x;, x,) is the two-electron wave function of the singlet state clT (xl)cz 1 (2)]9), e(x)
is the amplitude of the singlet state [CZ¢ (x)dI — cZ ! (x)di]l(?)), wherein one electron is at the

impurity; f is the amplitude of the doubly occupied state of the impurity, dldil@). g(xy, xp) is
a symmetric function of x; and x, (see the appendix). g(x;, x2), f and e(x) can be analytically
solved (see [10, 14]).
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In order to construct the S-matrix, one interprets g(x, x,) in the third quadrant (x;, x, < 0)
as the in-state, and in the first quadrant (x;, x, > 0) as the out-state. This interpretation can be
rigorously proved using Lippmann—Schwinger formalism [14]. We note that

ee(xl’ x2|Wk,p)eea fOI')Cl, Xy < O;

(6)

tktp ee(xlv x2|Wk,p>ee, for X1, X2 > O;

glxy, x) = {

where t; = (k —e; —il'/2)/(k — €, +i'/2) with ' =V? is the one-mode single electron
transmission amplitude, and similar for ¢,,.

(k - p)(E - 2Ed - U)|Sk,p>ee - iUFlAk,p>ee
V (k= p)XE —2¢,—U)2+UT?

| Wk,p)ee (7)

with
eik)q ei pxy 4 eikxz ei pX1

2 | (8)
Sgn(x) (eik)ﬂ eiP)CZ _ eikXZeipx])

271\/5 ’

and normalized as ee(Wi | Wi p)ee = 6(k —k')8(p — p’). As a result, we have See|Wi ))ee =
tktp|Wk,p)ee-

To describe the entire scattering properties, we would need to ensure that we provide the
mapping for all states in the free two-electron Hilbert space. Thus, a completeness check on
{IWk p)ee} 18 crucial. Remarkably, we found that the completeness depends upon the sign of
E—2e;,—U. When E —2¢; —U >0, the set {|W; ,)ec : kK < p} alone forms an orthonormal
complete set of basis that spans the free two-electron Hilbert space. However, when E — 2¢; —
U <0, an additional two-electron bound state | Bg).., defined as

(x1, X2| Sk, plee = Sk, p(x1, X2) =

(X1, X2| Ak, plee = Ag p (X1, X2) =

VT iEx.—T"|x|/2
(x1, X2| BE)ee = Bg(x1, X2) me ) )
is needed, such that {|Wi,)ce, |Bg)ee} together forms a complete and orthonormal basis set.
Here, oo (Bp/|Bg)ee = 8(E — E'), and o (W) p|Bg)ee = 0. I'" = (UT') /(U +2¢4 — E) > 0 defines
the effective size of the bound state | Bg)... Such bound state has been noted in other context
before [15]. We show here that including it is crucial for describing the transport properties.
The S-matrix for the singlet state in the ee subspace, S, thus can be diagonalized as

D bty | Wi p) (Wi E—2¢,—U >0;
k<p

See = (10)
>ty We ) (Wepl+ Y 1p|Be)(Bel,  E—2e4—U <0;
k<p E

where
E—2¢e;,—U)(E —2¢;—2i") —T"?
f = ( €4 )( €q— 2il") (1)

T (E—2¢,—U)(E —2¢,+2il) -T2’
is the transmission amplitude for the two-electron bound state as a whole. The two-electron
bound state, |Bg), has a spatial extent of 1/I". It behaves as an effective single composite
particle with an energy E =k + p, and remains integral when passing through the impurity,
acquiring a phase shift 7. By tuning I'’ via €, or U, the quantum impurity therefore provides a
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local means of manipulating composite particles of electrons. The other three remaining terms
in (4) can be easily computed [14], and altogether, (4) provides a complete description of the
transport properties.

Using the S-matrix, (10), we now compute the transport properties for the singlet state.
Consider a singlet in-state

|Win)® = Sk, p )RIR) = /dxldx2 Sk, p(x1, Xz)szT(xl)Ch(xz)M) (12)

incident from the left. The out-state, S|W;,)*, gives the amplitudes for all possible outcomes: both
electrons transmitted (#3(x;, x2) = (D|cry (x2)crp (X1)|Wou)®), both reflected, and one electron
transmitted and one reflected. All of these amplitudes have exact analytic forms. Below, we
focus on #3(x;, x2), which contains the spatial correlation properties of the two transmitted
electrons.

Using (4) and (10), one has [14]

S _ 1
(X1, X2) = 13, Sk p (X1, X2) + 1 Z BSg a(x1, x2), (13)
A'<0
where 7, , = (t.,+1)/2 are the two-mode single-electron transmission amplitudes, and A =
(k— p)/2 is the energy difference between the two electrons. B represents the resonance
fluorescence similar to that in quantum optics [8, 16]. When E —2¢, — U < 0, B is given by

5 U 16iI"2 SE +il’
T U—SE—iT' \ 7 [4A2—(SE+il)2][4A” — (BE +il')?]

32iUT%(U — $E)* 1
n(U—8E —il) [4A2(U —8E)*+UT?|[4A*(U —SE)*+ UT?]

9 - 1 . L4
[SEE —U)+il'(8E —2U)][§E(SE — U) +2i' SE — U) — I'?] }

where §E = E —2¢;. When E —2¢; — U >0, {|Wi<,)e} alone is a complete set of basis. In
this regime,

Bep 4 UL | A2(BE —U)(BE —il' —2A)(BE —il' +2A)
TUA_A? [BE+il")? —4A2] [4SE — U)* A2+ UT?]

A?(BE —U)SE —il' —2A")(SE —il' +2A")
[(BE +il')? —4A”][4(8E — U)*A”* + UT?]

U’ 168E (8E +1iIN)
|

(BE —U)* BE +i")* + UT?] [4A2 — (SE +il)?] [4A" — (BE +iT')?]

4U BE—U)BE—U —il") [SESE —U) —il'($E — 2U)]
[[E BE —U)*+2il' OE —U)* — (E —2U)I'2| [4A2(BE — U2+ UT?| [4A2(BE — U)*+UT?]] |
(15)

where P denotes Cauchy principal value. The difference between (14) and (15) is the
contribution from the bound state. The background fluorescence indicates that only the total
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Figure 2. Singlet |£(x|, x,)|> (normalized by (+/2/27)?). U =6I" for both
cases. x = ['(x; — x,). (a) § E = 0. The wavefunction transitions from bunching
(I5(x = 0)|>?~ 1, when A =0) to antibunching (I5(x = 0)]>=0 when A =
—0.5T"). (b) A =0.

energy, but not the individual energy of each electron, is conserved. Thus, as one electron
inelastically scattering off a transient composite object formed by the quantum impurity and the
other electron, the individual energy of each electron is redistributed over a continuous range,
described by B [14, 16]. The background fluorescence arises purely from on-site interaction.
For the limiting case U — 0, it completely disappears.

We now explain (13). The first term in (13) describes independent transport of electrons,
while the second term describes correlated transport. In general, the effect of correlation occurs
when x; 2 x;. Since the poles for A in B are all complex, the correlated term decays to zero
when |x; — x| >> 0. The poles in B also indicate single-electron and two-electron resonances.
Specifically, when |6 E| >~ 2| A|, one electron has energy close to €; and is on resonance with
the impurity. On the other hand, when § E >~ U # 0, the electron pair is on resonance with
the impurity. The correlation typically attains its maximum degree when both conditions are
simultaneously satisfied.

We look at the effects of spatial correlation due to the presence of these resonances, when
only the single-electron resonance is present. Figure 2(a) plots |z5(x1, x2)|? for the case SE =0
and U = 6I". The transmitted singlet state transitions from bunching to antibunching when
A varies from 0 to —0.5T". Thus, the bunching behavior of the singlet state is a dynamical
process depending upon the tunable parameters of the system, and could be tuned via a gate
voltage which changes U or €,;. Note also that when U — oo, B is greatly simplified, and the
scattering properties are in fact equivalent to the strongly correlated two-photon transport of
one-dimensional Dicke model [14, 16].

For the case where both electrons satisfy the single-electron resonance condition, i.e.
E =2¢; and A =0, (13) yields

s _ V2 iEx, ur —Ilx|/2
b ) =50 [_ (1 TwSinaiv+ r)> © ] ’ (16)

as shown in figure 2(a). |£5(x;, x,)|? decays exponentially as |x| = |x; — x,| becomes large, and
thus the two transmitted electrons form a bound state. When |x| is small, |t§|2 o« 1 —TI'|x| shows
a cusp at x =0, so is |r,|*. These features should manifest in the measurement of the g®(7)
function in each case.
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(a):: n ” ” ” n n ” n (b)‘;‘j
AUV

Figure 3. (a) Triplet |#(xy, x,)|* for 8E =4I (blue curve) and 6I" (green
curve). A = —3I". The triplet is always antibunched. (b) Singlet—triplet filtering.
8E = 6I' = U = —2A. The singlet case (|5|*) is denoted by the red curve and the

triplet case (|z4|?) by the green curve. Both |£5°|? are normalized by (v/2/27)2.

Figure 2(b) plots |£5(xy, x,)|* for the case when only two-electron resonance manifests,
with §E >~ U = 61" and A = 0. In this case, away from x = 0, since neither electron is at the
single-electron resonance, the wavefunction approaches that of two independent electrons for
A =0, with a near-unity transmission coefficient. In the vicinity of x =0, the electrons can
exhibit a strong bunching effect, but no strong anti-bunching is observed.

5. The transport properties of the spin-triplet state

The triplet cases (S = 1, S, = 0, 1) can be solved straightforwardly in the same fashion. Here we
will summarize the key findings: (1) f = 0, which indicates that double occupation of electrons
at the impurity are always prohibited; and (2) independent of E, the set {|T ,)c : K < p}, with
| Tk, p)ce defined as

eik)q eipxz _ eikxzeip)q

Zﬂﬁ ’

alone forms an orthonormal complete set in the free two-electron Hilbert space. The S-matrix
in the ee subspace is

See = Y tutp| T p)(Ticp- (18)
k.p

(x1, X2/ Tk, plee = Ty p(x1, X2) = (17)

For a triplet in-state with S, =0,

Win)' = [T, o DR1RY = / dxydx; T, (x1, X2)chy (x1)ch, (x2)19), (19)

the corresponding wavefunction describing both electrons being transmitted is
t(x1, X2) = tidy Te (X1, X2) o¢sin[A(x; — x3)]. (20)

Thus, the transport properties of the two electrons in triplet are the same as those of two
independent electrons. Figure 3(a) plots |#;(xy, x2)|? for A = —=3T. When §E = 6T = —2A,
t5 vanishes, since one electron is on resonance with the impurity and the corresponding single-
electron transmission amplitudes in (20) vanishes.
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6. Spin singlet—triplet filter

The different transport properties of the singlet and the triplet states allow one to construct a
novel deterministic filter that operates on the total spin angular momentum of the electron pair
but not individual spins. In the triplet case, the transmission amplitude for the electron pair is
zero when one electron is on resonance with the impurity with energy €,. In the singlet case,
the electron pair can go through the impurity by forming a bound pair of singlet state. Thus,
the filter deterministically generates a two-electron state that is entangled in spin, energy and
momentum space (figure 3(b)). The transmission amplitude attains maximum value when the
singlet approximately satisfies both the single-electron and two-electron resonance conditions
simultaneously.

7. Possible experimental implementations

We now briefly discuss the possible experimental implementations. To prepare for the two-
electron input state, one can use a potential barrier to generate collimated two-electron state
[17, 18]. For each transmitted electron, the energy distribution n(E) is given by the product of
the Fermi distribution function f(E, u; B) (B is the inverse temperature) and the probability of
the electron transmitting through the barrier 7 (E):

n(E) = f(E, w; P)T(E), 2D

which is strongly peaked at the Fermi level w, with a specific shape and broadening linewidth
depending upon the details of the barrier [17, 18]. These thermionically emitted electrons are
input to a ballistic conductor coupled to an Anderson impurity with an empty orbital. The
ballistic conductor can be a carbon nanotube [19], graphene nanostrip [20], semiconductor
nanowire [21] or a one-dimensional constriction defined by a split-gate geometry in a two-
dimensional electron gas [22, 23]. By convoluting the electron energy distributions with the
constant energy in-states of equations (12) and (19), the two-electron wave packet could be
expressed as a linear superposition of the constant energy in-states of equations (12) and (19),
and the outcome of the two-electron scattering can be straightforwardly computed. Moreover,
one could study the temperature dependence of the two-electron correlations.

We now discuss the general criterion to observe the strong correlation between electrons.
Intuitively, for the two electrons to be able to establish correlations via interacting with the
impurity, the second electron must arrive at the impurity before the first electron escape; that
is, the difference between the arrival times of the two incoming electrons (A¢) must be smaller
than the lifetime of the excited state of the impurity of single-electron occupancy:

At<h/T=-2_ (22)

where I is the decay rate of the excited state of the impurity of single-electron occupancy,
given above in the expression of single-electron transmission amplitude ¢, (we have put back
h and v,), which can also be verified via a direct time-dependent calculation. For the quantum
dots described in [24, 25], T" ~ 10 neV, and thus At < 0.1 ns. The constraint on the distance
between the two incoming electrons is given by Ax = v, At.

As a final remark, here we show that the electron pairing can be generated by strong on-
site Coulomb repulsion. Since the same one-mode model also describes the S-wave scattering
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in two and three dimensions, we speculate that such a pairing mechanism could be important in
bulk materials involving Anderson impurities.
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Appendix. Spin-singlet and triplet state representations

In this appendix, we provide some details for the second quantization formalisms. We restrict
the discussion to the one-mode case, and thus suppress the subscript e.

The creation operator ¢! (x) creates a particle at x with spin s, while the annihilation
operators ¢, (x) annihilates a particle at x with spin s. They satisfies the commutation relations:
feq, (0, €6, (1)) = 85,5, 01 — 22, el (1), ¢, (k) = 0 and {ey, (1), ¢4, (x2)} = 0.

The bases of the Hilbert space can be obtained via successive application of the creation
operators upon vacuum state:

1. One-particle basis:

lx, s) = ¢} (0)19), (A.1)
2. Two-particle basis:
61, 813 02, 82) = ¢, (x1)e (02) 1), (A2)
and similarly,
3. N-particle basis:
N
115 Xy sw) = [ [ el ()19). (A.3)
n=1
Using these bases, an N -particle state with spin sy, ..., sy is expressed as
N
|¢) = / <1_[dxi) GX15 s X)X, S15 03 XN, SN (A4)
where ¢ (xy, ..., xy) represents the N-particle wavefunction.

These basis states form a complete set of basis of the Hilbert space:

T+ Y [arixsywost+ Y [audoln, s s s

51,82

N
+~--+Zf<]'[dxi>|x1,s1;...;xN,sN><x1,s1;...;xN,sN|+-~, (A.5)
{si} i

where I is the identity operator.

It is often convenient to use bases that are also eigenstates of the total spin operator. For the
two-particle case, this leads to the definitions of singlet and triplet states, which are the linear
superposition of the two-particle basis states
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1. Singlet basis state:

1
Too) = 15)= — (e} el ) = | e () 19, (A.6)

which is anti-symmetric with respect to the spin labels;
2. Triplet basis states:

|T1.1) = L (x1)c] (x)19), (A7)
1 N

To) = (e}l )+l nej ) ) 19), (A8)

|T1—1) = ¢} (x1)c| (x2)]9), (A.9)

which are symmetric with respect to the spin labels.

The singlet and triplet states obey the ortho-normalization relations

(S'18) = 8(x1 — x})8(xa — x5) +8 (1 — x3)8 (%3 — x}), (A.10)
(T | Tim) = Srm [8(x1 — x})8(x2 — x3) — 8 (xy — x3)8(x2 — x})] (A.11)
(S|IT) =0, (A.12)

where the primed states have all the coordinate and spin labels primed.
A singlet state can be written in two different expressions

[xdrahn. 18 = [ dndr i, (el o - ee ) 1)

1

V2
RPN F oyt

= /dx1dXz h(xi, xz)ﬁ <C¢(x1)0¢(Xz)+C¢(Xz)c¢(X1)) 19)

1
- / deidis = (a1, 22) 22, 50) €] 5 (22)18)

=[x g.nxe]oe] ), (A13)

Here h(x, x,) is an arbitrary function, while g,(x, x,) = g;(x2, x;) is a symmetric function
with respect to x; and x,.
Similarly, the triplet state |7} o) can be expressed in two ways:

[xdeahen wimio = [ dndehen )z (et el woce) 9

L
V2

= / dxydxs A(xi, x2) (ci(m)ci(xz) - ci(xz)cyxl)) 12)

1
NG
1 . .

- / deidiy = (121, 22) = b2, 50) €] (e (22)1)

_ f Ay g, (1, x)el (el (e)l). (A1)

where g,(x;, x;) = —g.(x2, x1) is an anti-symmetric function with respect to x; and x;.
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As a side note, a state with total S, = 0 can in general be written as

f dxidx, g(x1, X2)ch (x1)c] (x2)|9), (A.15)

with g(x;, x;) arbitrary. To see this, one only needs to show that the above state is a linear
superposition of |S) and |77 o), since

1 1 N
/ dxidx, g(xr, x2)ep (r)e] (0)19) = 7 / duidy = (g0n1, x2) + £ 7)) € (1)} (x2)19)
1 1 N N
— / dxidey = (8x1,x2) = gx2,x0) € (x)e ()l)

1 1
= Efdxldng(xl,x2)|S)+Efdx]dXZg(xlyx2)|Tl,0>, (A.16)

where we have used (A.13) and (A.14).
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