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ABSTRACT: 
 
Every year sugar beet diseases cause lower sugar beet yields and qualities compared to the average. For that reason, high resolution 
field and airborne hyperspectral data is used to recognize a fungal sugar beet disease in a study area of south Germany. For the 
airborne part of the study, multitemporal hyperspectral remote sensing data is provided by an airborne Spectroradiometer (AVIS), 
which is operated by the Ground Truth Center Oberbayern (gtco, Germany). Additionally, tractor based multitemporal hyperspectral 
reflection data provided by the GVIS specrometer is used to validate the AVIS data and to compare to two classification results.  
To indicate the difference between healthy and unhealthy plants a supervised knowledge-based classification approach is used. To 
detect the sugar beet disease Rhizoctonia solani, the reflection results can be elaborated with hyperspectral vegetation indices. 
Therefore, the two multitemporal datasets are analysed by calculating the OSAVI, which is one of these vegetation indices. Finally, 
the resulting images are classified into several vitality classes. 
 
This paper presents the evaluation of the generated multitemporal classification and discusses the possibility of detecting and 
regionalizing sugar beet diseases with hyperspectral systems and methods. 
 
 

                                                                 
*  Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one author. 

1. INTRODUCTION 

For the majority of the European citizens, the availability of 
daily food with high quality standards is common. Among other 
things, this matter of fact attributes to the demands of the 
legislator and the market, who claim quality control and (geo-) 
traceability of all processes within the food supply chain. With 
respect to this background, a GIS based Management 
Information System for Sugar Beet Companies was developed 
(Sugar Beet Management Information System = SuMIS), which 
includes geographical, attribute and remote sensing data 
(Laudien et al. 2005a, b & c). Therefore, a field based approach 
was chosen to collect spatial and alphanumeric information of 
every production step. This enables SuMIS to trace and track in 
a field based way – from the soil sampling to the beet-delivery 
(“from field to factory”) – and meets the above mentioned 
requirements.  
 
One objective of SuMIS is to detect sugar beet diseases by 
using multitemporal hyperspectral remote sensing data provided 
by an airborne-, tractor- and handheld spectroradiometer.     
(Laudien et. al, 2004a; Laudien et al., 2004b, Laudien and 
Doluschitz, 2004). Two different hyperspectral sensor systems 
were used to detect the sugar beet disease Rhizoctonia solani 
var. betae.  This fungal disease rots the beet roots and also 
causes a weathering of the foliage (Rieckmann and Steck, 1995). 
Rhizoctonia solani attacks the beet in the middle of its 
vegetation period. Büttner et al. (2002) estimates the affected 
area of Germany with 10,000 hectare (nearly 25,000 acres) 
already in 2001. Studies of German sugar beet seed companies, 

published via internet (Strube-Dieckmann, syngeta-seeds), 
strengthen the statement of Büttner and his colleagues. They re-
evaluated the diseased area of Germany in 2002 and reached the 
conclusion that the number of the affected fields was nearly 
reduplicated (ca. 20,000 hectares). 
 
Beside the common survey which is carried out by 
professionals in several field campaigns, the usage of remote 
sensing systems, materials, and methods can help to recognize, 
detect and regionalize growth anomalies of large areas 
(Lillesand and Kiefer, 1994).With this matter of fact, the 
increasing importance of detecting and locating Rhizoctonia 
solani is not unusual. 
 
For this purpose a method has been developed to visualize 
diseased and healthy parts of a sugar beet field. Therefore, a 
knowledge based, multitemporal, hyperspectral approach was 
used to calculate a classified vegetation index image. 
 
 

2. MATERIAL 

For agricultural applications, the analysis of airborne, field- and 
satellite-based hyperspectral reflectance data is of increasing 
importance (Clevers and Jongschaap, 2001). Consequently, two 
hyperspectral devices collected reflectance data to detect the 
disease. In contrast to multispectral remote sensing the 
hyperspectral measurements acquire very narrow spectral bands 
throughout the visible, near infrared and mid-infrared portions 
of the spectrum. Therefore, the analysis of hyperspectral 
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datasets offer more opportunities compared to multispectral 
ones. The used two sensors measure the spectral reflectance 
between the visible and the near infrared part of the 
electromagnetic spectrum by using several channels and a very 
narrow spectral interval. With their high spatial resolution, they 
are able to detect crop vitalities very detailed.  
 
2.1 

2.2 

Airborne Visible/Near Infrared Imaging Spectrometer 
(AVIS) 

Beside the field measurements provided by the FieldSpec 
Handheld Pro (Laudien et al. 2003 & 2004c), monthly airborne 
hyperspectral measurements were taken in the period of June 
2003 until September 2003 to regionalize the ground based data. 
For this purpose, hyperspectral remote sensing data was 
provided by the “Airborne Visible/Near Infrared Imaging 
Spectrometer” (AVIS), which is operated by the Ground Truth 
Center Oberbayern (gtco). The hyperspectral AVIS sensor 
measures spectral reflectance between 400 and 845 nm by using 
63 channels and a spectral interval of 9 nm. With a spatial 
resolution of 4 meters, the AVIS sensor is able to detect crop 
vitalities very detailed (Mauser and Oppelt, 2000). 
 

Ground-operated Visible/Near Infrared Imaging 
Spectrometer (GVIS) 

In contrast to the AVIS Sensor, the “Ground-operated 
Visible/Near Infrared Imaging Spectrometer” (GVIS) is a 
ground-based system which allows reflectance data acquisition 
at field sites by using a tractor as a carrier platform. Besides the 
flexible and cost-efficient use of GVIS another advantage of the 
system is the possibility to simultaneously record the 
reflectance of a reference panel due to a newly developed fiber-
optic system. The GVIS sensor collects spectral reflectance data 
between 380 to 860 nm by using 63 spectral bands. As GVIS is 
mounted 2 m above the foliage and as each of the 16 lenses has 
an FOV of 25° the ground resolution is about 0.9 m per lens.  A 
custom recording fiber-optic system consisting these 16 lenses 
enables the simultaneous perpendicular recording of up to 12 m 
across the driving direction of the tractor (Klotz et al., 2003). 
 

3. METHODS 

The red and near infra-red parts of the reflectance spectra are 
important for agricultural applications (Kumar et al., 2001). The 
significant difference of the reflectance at the red portions of 
the spectra compared to the near-infrared ones can be used to 
predict vegetation conditions. Dockter et al. (1988) and Lichti 
et al. (1997) showed that matter of fact in their hyperspectral 
studies to point out spectral differences in winter wheat and 
sugar beets. 
 
Hyperspectral vegetation indices (HVI) are calculated, by using 
red and near-infrared reflectance (Apan et al., 2003; Lillesand 
and Kiefer, 1994). The HVI values are significantly correlated 
to the vitality of the detected plants. In this study, the 
Optimized Soil-Adjusted Vegetation Index (OSAVI) of 
Rondeaux et al. (1996) is modified to analyse the multitemporal 
AVIS and GVIS datasets (see equation 1 to 3). The index is 
calculated to indicate the difference between healthy and 
diseased sugar beets. The equations 2 and 3 present the 
modified OSAVI for the AVIS/ GVIS data. 
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where 
AVIS_Band55 = reflectance at 804.62 nm [%], 
AVIS_Band37 = reflectance at 673.38 nm [%]. 
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where 
GVIS_Band67 = reflectance at 799.69 nm [%], 
GVIS_Band35 = reflectance at 670.83 nm [%]. 
 
The spatial analysis as well as the index calculation and 
classification were accomplished by using the GIS Software 
ArcGISTM 8.3 by ESRI® (Minami, 2000).  
 
In a first analysis step, the above characterised index is 
calculated for the four input datasets which are provided by 
each of the two systems. Furthermore, the OSAVI of infected 
sugar beets is identified with the FieldSpec data of June 25th, 
July 30th, August 27th and September 19th by interpolating the 
values of the collecting days from the field measurements (see 
Table 1) (Laudien et al., 2004c). 
 
Table 1: Index minima (OSAVI) of the the FieldSpec 
meassurements at the four collecting dates. 
 
Collecting Date Minimum value (OSAVI) 
June 25th 2003 0.600 
July 30th 2003 0.520 
August 27th 2003 0.405 
September 19th 2003 0.430 

 
The float chart of figure 1 shows the knowledge based method. 
In a first analysis step, the OSAVI (which is described in 
equation 2) is calculated for each monthly AVIS scene. The 
result of that procedure is an “OSAVI image”. After that, the 
given FieldSpec OSAVI values of the inoculation trial are used 
as an input threshold for the analysis to mask most of the 
abiotic growth-anomalies. This enables the production of four 
quasi binary images (“OSAVI Clips”). The “OSAVI Clip” 
image only consists of two values: 1 and “no Data” (“no Data” 
= no pixel value). Pixels, which show higher values than the 
threshold (see Table 1) receive value 1, all others get value “no 
Data”. This matter of fact enables the clipping procedure to 
calculate the “OSAVI biotic” image by multiplying the four 
“OSAVI images” by the four “OSAVI Clips”. With this 
procedure, the results contain only these pixels, which show 
higher values than the index minima. Additionally, the majority 
of unwanted field border effects are reduced by assigning the 
value “no Data”. 
 
Considering the hypothesis that the FieldSpec threshold 
indicates the minimum reflectance of infected sugar beet leaves 
at a specific collecting date, four raster images can be generated 
(OSAVI biotic) which do not contain most of the abiotic 
parameters anymore. After creating these four “OSAVI biotic” 
images they are combined by using the “add” tool of the 
ArcGISTM Raster Calculator. This algorithm only allocates 
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OSAVI values to these pixels which do not contain the value 
“no Data” in one or more of the four “OSAVI biotic” images. 
The pixels which show the value “no Data” in one or more of 
the“OSAVI biotic” images get the value “no Data”. The result 
of this procedure is the multitemporal HVI image “OSAVI 
multi”. 
In the last step the “OSAVI multi” image is classified into nine 
vitality classes by using the “Quantile Classification Method” 
of ArcGISTM Spatial Analyst. Additionally, the GPS polygons 
of the field campaign are added to the ArcGISTM 8.3 project as 
an overlay layer, to validate and compare the multitemporal 
classification. 
 

AVIS Scene AVIS Scene AVIS Scene AVIS Scene
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Figure 1: Knowledge based multitemporal analysis method 
(note: the threshold values of the clip procedures are choosen 

out of table 1, figure = exemplarily for the AVIS data) (Laudien 
et al. 2004c). 

 
 

4. RESULTS 

Figure 2 shows the multitemporal classification result of two 
selected fields (see methodological approach shown in Fig. 1 
for details). 
According to the leaf vitality of sugar beets, the values of the 
calculated OSAVI were increasing with healthier and 
decreasing with unhealthier plant conditions. 
 

 
 

Figure 2: Multitemporal AVIS classification result and GPS-
polygon overlay with at least 25% infected area (note: GPS 

measurements were only taken at one field). 
 

 
 

Figure 3: Multitemporal GVIS classification result and GPS-
polygon overlay with at least 25% infected area (note: GPS 

measurements were only taken at one field). 
 
The multitemporal images were classified into nine vitality 
classes. Lower classes were assigned to low index values, 
higher ones to high index values. Significant differences 
concerning plant vitalities within the fields can be identified.  
Red to orange areas within the two fields refer to diseased spots, 
green to blue ones to healthier parts of the fields. By using the 
above described knowledge based supervised classification 
approach most of the abiotic factors (field border effects, bare 
soil, etc.) were clipped in an early stage of the analysis. 
Therefore, the multitemporal results show many unclassified 
areas within the two fields. 
 
The overlay of the GPS polygon layer confirms the difficulty of 
surveying single infected plants within a field. With the matter 
of fact, that the stored polygons include at least 25 percent 
infected sugar beets, they do not show the spatial distribution of 
the diseased plants very detailed. In contrast, vitality 
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information concerning spatial location and intensity can be 
derived by using remote sensing sensors (i.e. the above 
described AVIS or GVIS). 
 
The area of “no Data” in the western part of the southern field 
(see Fig. 2) comes from the incomplete AVIS dataset of July. 
As there occurred sensor problems during collecting the 
reflectance data, the “flight-stripe” had to be cut off. Hence, the 
multitemporal algorithm assigns “no Data” for that region of the 
field. In contrast to the tractor based GVIS system a major 
advantage of AVIS is its very time-efficient manner of 
collecting reflectance data of a large area. The GVIS device can 
only be used to record data of a small area (field size). But as 
the spatial resolution of GVIS is much higher than the one of 
the AVIS the classification result is more detailed. Therefore, 
smaller infected areas can be differentiated a lot better. Figure 3 
presents that advantage of the GVIS system. Compared to the 
AVIS classification the one GVIS shows more abiotic field 
border effects and results in a much lower classification 
accuracy. Imprecise calibrations of the two systems by gtco 
(AVIS, GVIS) cause different reflection value ranges and result 
in these hardly comparable classification results. Nevertheless, 
the advantages of the used to hyperspectral devices are obvious.  
Both multitemporal classifications (see Fig. 2 & 3) show 
significant differences in plant vitalities within the fields under 
investigation. In combination with the DGPS measurements and 
the knowledge of the disease (disease stages, dispersion, etc.) 
the hyperspectral results can be used to detect, differentiate and 
regionalize healthy and diseased sugar beets. 
 
 

5. CONCLUTIONS 

Monitoring plant diseases during the circle of field production 
is one main objective within the food supply chain. Therefore, 
modern computer based DSS should include tools to detect and 
regionalize such plant conditions. Furthermore, demands of the 
EU market and the agricultural policy concerning food quality 
and documentation push the development of computer based 
Geographical Information Systems (GIS), which meet these 
requirements. The presented approach is part of a developed 
GIS-field based Sugar Beet Management Information System 
(SuMIS) (Laudien et al., 2004a; Laudien and Doluschitz 2004; 
Laudien et al. 2005a, b & c). SuMIS contains several types of 
geo-data which were collected in a local pilot region to fulfil 
the qualifications of a functional field based GIS. It includes - 
beside many other important tools - the visualisation, the 
documentation and the detection of all processes within a 
cultivation year of sugar beets. 
 
In this study, an airborne and a tractorbased multitemporal 
hyperspectral remote sensing dataset were classified on the 
basis of hyperspectral field data by using a hyperspectral 
vegetation index. In contrast to the conventional sugar beet 
disease survey, shape and structure of the infected areas within 
the selected fields could be spatially identified by using a 
multitemporal knowledge based classification approach. 
 
Field based hyperspectral measurements, tractor- and airborne 
hyperspectral sensors were used to detect sugar beet reflectance. 
Compared to satellite based systems, airborne platforms are 
more flexible concerning collecting date, repetition rate and 
weather conditions. The immense advantage of hyperspectral 
devices is their very high spectral resolution. The possibility of 
analysing datasets by using hyperspectral vegetation indices for 
the detection of plant vitalities instead of common multispectral 

ones - i.e. the OSAVI (which was used in this study) or the 
hyperspectral index of Gitelson et al. (1996) - offers more 
opportunities for agricultural applications (Apan et al., 2003). 
The mathematical possibilities of band calculations and 
combinations for the creation of new HVI are 
disproportionately enhanced. In the beginning of the AVIS data 
analysis for this study, the calculation and interpretation of 
several HVI result in using the OSAVI because of its low 
sensitivity concerning bare soil and other abiotic parameters. 
Furthermore, the OSAVI showed a high range between values 
of diseased and healthy sugar beets. 
 
Beside the data analysis of the tractor and airborne sensors, a 
hyperspectral library was generated by using weekly field based 
reflectance data of the artificial inoculation trail which were 
collected with the FieldSpec Handheld. This dataset contains 
the reflectance characteristics of the sugar beet disease 
Rhizoctonia solani and could be used as a reference for the 
regionalization. 
 
As the infection of the disease and its outbreak were not typical 
in 2003 and the spatial resolutions of the input datasets were too 
low for detecting single affected plants with a significant 
accuracy, the D-GPS polygon measurements showed not the 
quality of those having been collected in previous years. 
Circular affected areas within the selected fields did not occur 
in 2003. This matter of fact was reasonable for the above 
described low significance. Furthermore, “mixed pixel 
phenomena’s” within the AVIS and GVIS scenes covered the 
unusual situation of 2003, too. 
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