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Abstract—We demonstrate through theoretical analysis that
unlike predicted by others, an unbiased coupled resonant optical
waveguide (CROW) gyroscope made of N ring resonators has
a response to a rotation rate Q that is proportional to (IN€2)?,
and hence its sensitivity to small rotation rates is vanishingly
small. We further establish that when proper phase bias is applied
to the CROW gyro, this response becomes proportional to N2
and the sensitivity to small rotation rates is then considerably
larger. However, even after optimizing the CROW parameters (/N
and the ring-to-ring coupling coefficient <), the CROW gyro has
about the same sensitivity as a conventional fiber optic gyroscope
(FOG) with the same loop loss, detected power, and footprint. This
maximum sensitivity is achieved for N = 1, i.e., when the CROW
gyro resembles a resonant FOG. The only benefit of a CROW
gyro is therefore that it requires a much shorter length of fiber,
by a factor of about 1/(2k), but at the expense of a stringent
control of the rings’ optical path lengths, as in a resonant FOG.
Finally, we show that the slower apparent group velocity of light
in a CROW gyro compared to a FOG is unrelated to this shorter
length requirement.

Index Terms—Coupled resonant optical waveguide (CROW),
fiber optic gyroscope (FOG).

1. INTRODUCTION

ECENT investigations have shown that slow light can

have a profound impact on the optical properties of ma-
terials and systems. In particular, under certain conditions, the
sensitivity of interferometric sensors can be in principle greatly
enhanced by interrogating the interferometer with slow light [1].
This intriguing property has a number of physical origins, de-
pending on the nature of the waveguide and of the perturbation
applied to it. However, irrespective of the exact origin, the sen-
sitivity of a number of different sensors has been shown to scale
like the reciprocal of the group velocity. Since slow light can
be characterized by an extremely large group index (> 10°), its
use can in principle improve the sensitivity of optical sensors by
many orders of magnitude. This prospect has far-reaching im-
plications for many applications.

As part of an on-going investigation of the specific condi-
tions under which this sensitivity does and does not take place,
we have carried out a detailed study of one particular sensor
for which slow light has been recently claimed to be benefi-
cial, which is a gyroscope based on coupled resonant optical
waveguides (CROW).[2] This claim is particularly noteworthy
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Fig. I. A CROW gyro with N = 7 rings.

because first the fiber-optic gyroscope (FOG) has been for
many years the most successful commercial fiber sensors,[3]
and second because developing an optical gyroscope with
a sensitivity greater than possible with a conventional FOG
is an appealing prospect that would find several important
applications.

A diagram of the CROW gyro is shown in Fig. 1. It consists of
a series of N low-loss rings (N = 7 in Fig. 1) optically coupled
to each other with a power coupling ratio « to form an open loop.
This loop is closed with a 3-dB loop coupler to create a Sagnac
interferometer. In the original reference where this sensor was
first discussed,[2] an expression was presented for its sensitivity
to rotation. This sensitivity was found to vary as (N +1)% and as
1/k. The conclusion that was drawn in [2] is that by using a large
number of rings and weak coupling, a CROW gyro can be made
considerably more sensitive than a conventional FOG. The term
“slow light” was invoked in that original publication [2] presum-
ably because the apparent group velocity of the signals traveling
through these coupled resonators is greatly reduced [4] as the
coupling coefficient « is varied from 1 to very small values.

In this paper, we are concerned with assessing the best pos-
sible rotation sensitivity a CROW gyro can have compared to a
conventional FOG, assuming similar gyroscope footprints. We
show that although the sensitivity’s (N + 1)? dependence pre-
dicted in [2] is correct, it is only applicable when no external
phase bias is applied between the gyro’s counterpropagating
signals. However, it is well known that in a conventional FOG
with such zero phase bias, the response to first order in rotation
rate {2 is zero [5]. Hence the power returning to the detector
depends on the next higher (second) order term in the phase
difference between the signals, i.e., on the square of the rota-
tion rate. This configuration has therefore a very poor sensitivity
to small rotation rates. We demonstrate that this is also true in
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a CROW gyro. A simple solution explored in this work is to
supply a suitable phase bias to the CROW gyro and hence make
the gyro signal proportional to 2. This approach then raises a
number of new questions. Can it be more sensitive than a con-
ventional FOG or a resonant fiber optic gyroscope (RFOG), and
under what conditions? If it can be more sensitive, what role
plays the slow nature of the light traveling through its loop? We
show that when a proper phase bias is added, the signal does
become proportional to €2 rather than 2. The CROW gyro is
then more sensitive to small rotation rates, but its sensitivity is
no longer proportional to (N + 1)2, but rather to N + 1. As a
result, the biased CROW gyro turns out to have a sensitivity to
rotation comparable to that of a FOG with the same footprint
and the same total propagation loss when N = 1, and increas-
ingly smaller relative sensitivity as /N increases. The number of
rings that maximizes the relative sensitivity of a CROW gyro is
N =1, and in this configuration the CROW gyro looks sensibly
like an RFOG, although this CROW gyro is operated differently
than the RFOG typically is. The conclusion is that compared to
a FOG, the CROW gyro has about the same sensitivity, and its
only benefit is that it requires a shorter length of waveguide.
However, it also has the same disadvantages over a FOG as an
RFOG, namely stringent thermal and mechanical path-length
stabilization requirements. This significant downside adds great
engineering complexity and cost, and it certainly does not out-
weigh the length advantage. Finally, we demonstrate that un-
like implied in the original publication,[2] the apparent lower
group velocity of the light traveling through a CROW gyro has
no bearing on its sensitivity. Unfortunately, the CROW gyro be-
longs to the class of sensors that are not enhanced by slow light.

II. PRINCIPLE OF THE CROW GYROSCOPE

As in a conventional FOG, in a CROW gyro light is launched
into the loop coupler, which splits it with equal power into two
signals (see Fig. 1). One signal travels clockwise (cw) around
the Sagnac loop, and the other one counterclockwise (ccw). For
simplicity, we assume that the rings all have the same radius R,
and that the power coupling coefficient between any two adja-
cent rings or between the rings and the leads is the same, and
equal to . The conclusions of the following analysis are qual-
itatively the same when the dimension and/or the coupling co-
efficient vary from ring to ring. Note also that the exact shape
of the loop has no bearing on the overall behavior of the sensor.
For simplicity, we assume throughout that the rings are all cen-
tered on a circle of radius Ry, and that the leads connecting the
rings to the 3-dB coupler are circular arcs with the same radius
of curvature as the rings (see Fig. 1).

To understand the operating principle of the CROW gyro,
consider first the limit of strong coupling (v = 1). The cw
light signal then travels about half way through the first ring
to the coupler at the far end of the first ring, where it is fully
coupled to the second ring. The same process takes place in
each subsequent ring, until the signal reaches the 3-dB loop cou-
pler. The light signal has therefore traveled around the loop in a
“scalloped” pattern that encompasses a certain area B. The ccw
signal undergoes the same process, except that it encounters the
rings in the reverse order. So it follows the same optical path, in
the opposite direction. Hence as in a conventional FOG, in the
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absence of rotation and nonreciprocal effects, the two signals ex-
perience the same phase shift as they travel around the CROW
loop. Consequently, when they recombine at the 3-dB coupler,
they interfere constructively into the input arm of the coupler,
and all the light (minus what is lost to losses within the loop) is
detected at the detector (see Fig. 1). When the loop is rotated at
arate {2 about its main axis (i.e., perpendicular to its plane), as a
result of the Sagnac effect light traveling in the direction of the
rotation undergoes a stronger phase shift than light traveling in
the opposite direction. The two signals are no longer in phase,
which translates into a change in the power received by the de-
tector. Except for the scalloped shape of the path followed by
the light around the loop, this particular configuration behaves
exactly the same way as a conventional FOG. In particular, it
has the exact same sensitivity to rotation as a FOG encircling
the same area .

Note that for the cw and ccw signals to return to the loop
coupler instead of to port C and port D, respectively, which is
undesirable, the number of rings must be odd. By switching the
ports of one of the two injection couplers, a similar configura-
tion is created that supports only an even number of rings. Both
configurations have the same basic properties.

The CROW gyro starts differing from a FOG and becomes
more interesting when x < 1, especially when « is very weak.
Each ring in the Sagnac loop is then a high-finesse resonator.
The signal frequency is selected to coincide with a resonance
frequency of the (identical) rings at rest (zero rotation). When
the gyro is at rest, each signal must thus travel multiple times
around each ring, one ring after the other, before reaching the
far end of the Sagnac loop and interfering with each other. As a
result of these multiple passes, each signal accumulates a larger
rotation-induced (Sagnac) phase shift in each and every ring
than if it were traveling through each ring only once, and the dif-
ferential phase shift is enhanced. This enhancement is expected
to scale like the number of times each signal travels around each
ring, i.e., like 1/x. For weak coupling (x < 1), the increase in
sensitivity can therefore be quite significant, as is the case in a
resonant fiber optic gyroscope (RFOG) [5].

For the CROW gyro to work optimally, (1) all the rings
must have a common resonance frequency at all times, (2) the
frequency of the interrogating light must remain tuned to this
common resonance frequency at rest, and (3) the linewidth
of the light signal must be substantially narrower than the
linewidth of the resonant modes of each resonator. These
conditions require very tight control of the optical path length,
index, and transverse dimensions of all /V rings simultaneously,
which constitutes a significant engineering challenge in prac-
tice. However, since the goal of this study is to investigate the
validity of the claimed superiority of the ultimate theoretical
sensitivity of this sensor,[2] and since similar conditions have
been successfully met for the RFOG, in the remainder of this
paper we assume that these conditions are satisfied.

III. MODELING THE SAGNAC PHASE SHIFT IN A CROW GYRO

To model the sensitivity to rotation of a CROW gyro, we used
the transfer-matrix method detailed in [2]. The transfer-matrix
method keeps track of the total phase each signal accumulates
as it propagates from one coupler to the next inside the CROW.
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The total phase consists of both a rotation-independent compo-
nent and a rotation-dependent component due to the special-rel-
ativistic Fresnel drag experienced by a signal in a moving ma-
terial. [2], [6] The transfer matrix of each element in the gyro
(portion of a ring between couplers) was expressed as a func-
tion of the ring radius R, the effective index of the ring mode
n, the power coupling coefficient between rings ~ the rotation
rate €2, and the signal frequency w. The matrix of the total gyro
is then simply the product of these matrices. For a given input
electric field coupled into the gyro loop, this final matrix pro-
vides a means for calculating the electric fields interfering at
the output coupler. From these two fields, the rotation-induced
Sagnac phase shift A¢ was then easily determined, for an arbi-
trarily number of rings N . The sensitivity was then calculated by
inserting the Sagnac phase shift in the expression for the basic
response of a Sagnac interferometer, which takes into account
the phase bias of the interferometer.

The product of the transfer matrices was evaluated by one
of two methods. In the first method, we used MATLAB to cal-
culate this product numerically after assigning a value to each
parameter. This approach works for any arbitrarily high number
of rings.

The second method consisted in multiplying the transfer ma-
trices symbolically using Mathematica, which yielded a closed-
form analytical expression for the output electric field versus
rotation rate. This approach allowed us to visualize the analytic
dependence of the CROW gyro phase shift on the sensor pa-
rameters, in particular x and N, which provides some guid-
ance into the physics of this gyro. For example, for N = 1
and N = 3 this approach yielded the exact expressions for the
electric field of the corotating output signal shown in (1) and
(2) at the bottom of the page, where c is the speed of light in
vacuum and F' = 27 Rw/c?. The corresponding expressions for
the counterrotating signal are the same, except that {2 is changed
into - €2. The total electric field at the coupler is the sum of the
co- and counterrotating signals.

This analytical approach becomes increasingly unyielding for
larger values of N, and it was therefore not pursued for values
of N larger than 3. However, in the important limit of small ro-
tation rates (Q < Qo/(N + 1), where Qg = kc?w 1 R™2), the
phase of the electric fields given in (1)—(2) can be expanded in
a Taylor series to first order in e = Q/(Qy/(N + 1)). Compar-
ison between these two expansions, one valid for N = 1 and
the other for N = 3, suggests the following expression for the
dependence on N (to first order in €) of the Sagnac phase shift:

ArR2wQ (N +1  2cot(a/2)+a—m
Apcrow = 2 ( o + ( /Oz

3)

0.6
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Fig. 2. Comparison of analytical (approximate) and numerical (exact) results
for phase delay.

where o = 27 /(N +2) is the angle subtended by each ring from
the center of the gyro loop. Note that (3) states that the phase
delay is independent of the refractive index of the fiber. This
is in strict agreement with the well-known fact established by
Arditty and Lefévre in 1981 using relativistic arguments that the
response of a gyroscope is independent of the material index.[7]

This expression in (3) is exact for V. = 1 and /N = 3. To con-
firm its expected validity for higher values of N (to first order
in €), we plot in Fig. 2 the approximate phase shift predicted
analytically by (3) versus the normalized rotation rate /€
for N = 1,7,15,21, and 29 while keeping R, w, and ~ con-
stant. For comparison, we also plot the exact Sagnac phase shift
for the same values of N, calculated numerically using the first
(exact) method. Note that for all practical small rotation rates,
the ratio 2/ is extremely small, and the agreement between
the two models is extremely good. For example, for reasonable
CROW parameters (£ = 0.001, A = 1.5 ym, and R = 1 cm),
Qo = 716 rad/s. For a rotation rate equal to Earth rate (conven-
tional FOGs can routinely detect rotation rates three orders of
magnitude smaller than Earth rate), Q/Qg = 10~7. The max-
imum ratio €2/ plotted in Fig. 2 (0.003) therefore corresponds
to an extremely large rotation rate (30 000 times Earth rate).
Fig. 2 thus shows that even up to fairly high rotation rates, (the
agreement improving for smaller rates), the agreement between
the two models is exceedingly good, even for a large N. This
agreement lends credence to the validity of this useful approxi-
mate analytical model.

One can investigate a number of useful limiting cases with
(3). When k = 1, the bracket becomes equal to a geometrical

KeiF(—cn(a—37r)+3(7‘r—a)RQ—6R0Q cos(a/2))/(27)

ey

Eq(N =1) = PR 4 ()5 — 1)eiFen
KVQeiF(—cn((y—57‘r)+5RQ(7T—(y)—10R0Q cos(a/2))/(2m)
Equ(N =3) =

i2FRQ (15 — 1)(2¢iF (cntRQ) _ 2¢i2F(entRR) 4 ¢iF (Ben+RQ) 4 ¢iF (cn+3RQ) 4 (i — 1)ei2Fen) &
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form factor which, when multiplied by the 7 R? term in front of
the bracket, yields the area B of the scalloped region traced by
the signals through the coupled rings (see Fig. 1). Equation (3)
then becomes

. 4Bw?
lim Adcrow = Q2 C))

which is exactly the expression of the Sagnac phase shift in a
FOG of area B [5]. It shows that in this limit of strong coupling,
as described with physical arguments earlier on, the CROW
gyro has the same sensitivity as a FOG of same area. This re-
sult could not be predicted from the expression provided in [2]
because only the term in 1/k was retained there.

In the opposite limit of weak «, for any value of N the second
term in the bracket of (3) becomes negligible compared to the
first term. The Sagnac phase shift then becomes

®)

. ATrR%2wQ (N + 1
ilgb A¢crow = 2 < o ) .
The phase shift is now equal to that of a conventional FOG of
area (N + 1)mR?, but enhanced by factor of 1/(2). This term
originates entirely from light resonating around each of the NV
rings. As expected, it is proportional to area A = wR? of each
ring. The effect of the resonant structures is therefore to increase
the Sagnac phase shift in inverse proportion to the coupling
strength, as in an RFOG. It is interesting to note that the Sagnac
phase shift depends on the number of rings as (N +1), instead of
the expected V. Although this dependence is predicted by both
our models as well as in [2], we do not have a physical expla-
nation for it. However, as we shall see this detail has no impact
on the conclusions of this study (if only because of large NV the
difference becomes vanishingly small).

To summarize, these two limits and the form of (3) indicate
that in the CROW gyro two contributions are present: a phase
shift independent of « that depends on the overall loop area B,
as in a FOG, and a resonant phase shift proportional to 1/ and
to the area of each ring A, as in an RFOG. Another important
conclusion from (3) is that in order to optimize a CROW gyro
with a given footprint, since the resonant term in the Sagnac
phase shift is proportional to the second power of R but only the
first power of (N + 1), it is best to increase the ring radius R,
rather than the number of rings N. Hence, for a given footprint
a CROW gyro has an optimum sensitivity when R is as large as
possible, which is when NV = 1.

We emphasize that the (N + 1)2/x? dependence of the re-
sponsivity pointed out in [2] arises strictly from the choice of
phase bias (zero), a point not specifically mentioned in [2]. In a
conventional FOG with a zero phase bias, the detected power
is proportional to cos ?(A¢/2). Since A¢ is proportional to
Nrog, the number of turns in the sensing coil, the detected
power scales like NZoq. But it also scales like Q2. Conse-
quently, the zero-bias sensitivity exceeds the 7 /2-bias sensi-
tivity only for large enough rotation rates, a property that has
unfortunately little practical utility. On the other hand, for very
slow rotations, which is what most high-accuracy applications
require, (NrogQ)? < Nrog$2, and the sensitivity is extremely
poor. Our simulations show that the same is true for the CROW
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gyro. To achieve maximum sensitivity, a nonzero bias point
must be chosen.

IV. NUMERICAL ANALYSIS OF CROW GYRO WITH NONZERO
Bias

In practice, a CROW gyro could be phase biased in much
the same manner as a FOG, namely by placing a phase mod-
ulator asymmetrically in the gyro loop, for example at point M
in Fig. 1. This modulator would then be driven at the proper fre-
quency of the loop, related to the time it takes either signal to
go around the loop once (a complex but quantifiable function
of the coupling ratio ). Studying the effect of such a dynamic
biasing scheme on the sensitivity of the CROW gyro would re-
quire propagating the two time-dependent counterpropagating
signals through the N coupled rings, which would be extremely
time-consuming. As a simpler alternative, we chose to bias the
interferometer by subjecting it to a fixed rotation rate ;. Al-
though this approach is certainly not practical, it enables us
to use the transfer-matrix formalism to quickly yet accurately
study the effect of phase biasing on the sensitivity of a CROW
gyro. In particular, it can tell us which bias rotation rate €2, (and
hence which phase bias ¢;) maximizes the sensitivity to a per-
turbation 6€2 in rotation rate. The gyro sensitivity is then given
by S = dP/df), where P is the power measured by the detector
(port A in Fig. 1).

Since in this work we are concerned primarily with com-
paring the performance of a CROW gyro to that of a conven-
tional FOG, we must be careful not to unduly put the CROW
at either an advantage or disadvantage. The three independent
design parameters that affect the sensitivity of both types of
gyros are (1) the length of waveguide (fiber or otherwise), (2)
the waveguide loss per unit length, and (3) the diameter of the
sensing loop (which by and large dictates the footprint of the
packaged gyro). It would be unfair, for example, to compare a
FOG with a 200-m loop coiled in a 10-cm diameter spool to a
CROW gyro utilizing 1000 m of fiber spread on a loop of 10-m
diameter, as the CROW would then have a much greater scale
factor, and hence sensitivity.

So for fair comparison, in the following analysis we applied
the following four conditions to the two types of gyros. First,
we assumed that the same optical power P is incident on the
two gyros (port A in Fig. 1). Second, we assumed that the
waveguides forming the rings have the same low loss as the
typical conventional single-mode fiber in a gyro (~ 0.2 dB/km
at 1550 nm). (FOGs typically use a polarization-maintaining
fiber, which has a higher loss, but the exact value of the loss has
no bearing on the result of the comparison.)

Third, we imposed that their respective effective lengths are
equal to guarantee that signals suffer the same propagation loss
when going around the sensing loop. In a conventional FOG,
after propagating through Npog turns of radius Rrog each
signal is attenuated by a factor exp (—aLrog ), where Lrog =
21w Nrog Rrog is the total sensing loop length and « is the fiber
loss. In a CROW gyro, after propagating through N rings of ra-
dius R, the signal is attenuated by a factor exp (—aLcrow),
where Lcrow is approximately equal to N times the length of
one ring (27 R) multiplied by the number of times the signal
goes around each loop (~ 1/(2k), i.e., Lcrow =~ N7R/k)
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Fig. 3. (a) ACROW gyro with tightly-packed rings (dots show coupling points
between rings) and (b) a FOG with equivalent footprint. In (a) dots indicate
couplers.

[2]. The requirement for equal gyro losses therefore imposes
Lerow = Lrog, ie.

NR

NrogRroc = —.

o (6a)

However, this approximate expression for Lcrow is accu-
rate enough only for certain ranges of parameters (specifically,
when N is large and « is not too weak). To keep the com-
parison between the two gyroscopes as accurate as possible,
instead of using this expression we computed Lcgrow directly
by calculating numerically the amount of power P4 exiting
port A in the non-rotating gyro. Lcrow 1S then defined by
exp(—aLcrow) = Pa/Py, where P, is the power incident
on the first loop. Imposing Lcrow = Lroc then yielded a
condition on Npog and Rpog slightly different (and more
accurate) than (6a).

Finally, the fourth condition is that we must compare two
gyros with similar footprints. Reference to Fig. 1 shows that
when N is reasonably large (more than a few rings), the foot-
print of a CROW gyro in which the rings are arranged approxi-
mately along a circle is mostly empty. Since in such a gyro the
resonant component of the phase sensitivity is independent of
the path followed by the rings [2], one can reduce the footprint
of a CROW gyro without significantly affecting its sensitivity by
arranging the rings along a different path that better utilizes this
empty space. For example, as shown in Fig. 3(a) the string of
rings can be coiled. As a result, either more rings can be packed
in a circle of given radius, or a given number of rings will occupy
a smaller footprint. Note than in doing so, the nonresonant com-
ponent of the CROW’s phase sensitivity (second term in (3)) is
greatly reduced. However, for any reasonably small value of &
this component is negligible compared to the resonant compo-
nent, so neglecting it does not unduly disfavor the CROW gyro.

For simplicity, to calculate the total area of a “coiled” CROW
gyro of the type shown in Fig. 3(a), we assume that this area
is simply equal to the sum of the area of the N rings, i.e.,
NCROWWRéROW. This approximation ignores the area of the
interstitial regions between the rings, which artificially reduces

the CROW gyro footprint and hence again favors the CROW
gyro over the FOG. Note that this approximation is valid not
just for the ring-packing arrangement shown in Fig. 3(a), but
for any arrangement that fills the CROW gyro footprint fairly
well.

Imposing equal footprint for this “coiled” CROW gyro and
for the conventional FOG to which we compare it (see Fig. 3(b))
then yields the fourth condition:

NerowmRErow = mRioc (6b)
In general, the Sagnac phase shift is proportional to the area
around which light has traveled. For the conventional FOG, this
phase shift is determined completely by the fiber loss as well as
the device footprint. For a CROW gyro, the maximum distance
that light can travel is still limited by the fiber loss. Thus, for
a same device footprint, the maximal phase shift that a CROW
gyro can have should be similar to the corresponding conven-
tional FOG. Intuitively therefore, one should not expect an en-
hancement of absolute sensitivity in the CROW gyro system.

Based on the foregoing, we simulated numerically using the
transfer matrix formalism the responsivity S versus phase bias
of a few CROW gyros. These gyros all have the same coupling
ratio (k = 0.001), ring radius (R = 5 cm), and loss coefficient
(0.2 dB/km) but different numbers of rings N . For each of these
CROW gyros, we compared this calculated sensitivity to that of
the “equivalent” FOG, namely the FOG with a sensing coil of
Nrog turns and radius Rpog calculated from «/NV, and R by
imposing Lcrow = Lrog and using (6b).

In the CROW gyro, as in a simple ring resonator, there ex-
ists a critical coupling value kit which maximizes the power
circulating in the individual rings. However, unlike in a simple
ring resonator, the critical coupling value is not simply given
by the single-pass resonator loss. Our simulations show that (1)
the sensitivity of the CROW gyro is maximum for a « value
greater than k¢, and (2), no value of x makes the CROW gyro
more sensitive than the equivalent FOG. Hence, for simplicity
and without loss of generality, in the following we investigate
only the case of coupling greater than critical coupling.

The CROW gyro suffers from a power-loss mechanism not
present in a conventional FOG, namely when its sensing loop is
rotated, some of the power exits the loop at ports C and D (see
Fig. 1). This is because the individual rings are on resonance
when the loop is stationary. Under rotation, the rings are no
longer on resonance, and these two ports transmit some (and
equal) amount of power.

To illustrate this point, we plot in Fig. 4 the power exiting
each port, normalized to the input power Fy, as a function of
rotation rate for a CROW with the parameters cited above and
N = 1. At Q = 0, the ring is probed on resonance and no
power exits from ports C and D. Also, as in a classical FOG, all
the power returns into port A, and none in the nonreciprocal port
(port B). As (2 is increased, the power in port A decreases while
the power in port B increases, as in a conventional fiber gyro.
However, as the cw and ccw signals both slip increasingly off
resonance, some of the power exits at ports C and D. This power
leakage increases with €, until it is strong enough that the power
in the non-reciprocal port B eventually decreases (see Fig. 4). At
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Fig. 4. Evolution of output power in the four ports of a CROW gyro with N =
1 ring.

large enough rotation rates, the power in port C (and D) reaches
a plateau. For some extremely large €2, well beyond the range
of values covered by the figure, the next resonance frequency of
the loop approaches the light frequency, and the same process
takes place again, in reverse: power drains back out of ports C
and D, until at this new resonance all the power is in port A.
This figure shows that at some rotation rate, identified as €2; in
Fig. 4, the dependence of the power in port A on {2, and hence
the sensitivity of the CROW gyro, is maximum. This confirms
the existence of a phase bias that maximizes the response of a
CROW gyro.

Fig. 5(a) shows the sensitivity computed for the same CROW
gyro with N = 1, as well as the sensitivity of the equivalent
conventional FOG, again interrogated with the same incident
power. As expected from the foregoing discussion, the CROW
sensitivity is maximum at €2, and it decreases on either side of
this optimum value. The phase bias corresponding to this bias
rotation rate is ¢, =~ 0.84 rad. This value depends weakly on the
strength of the coupling between rings. As « is reduced from the
value used in this example (x = 0.001), the resonances narrow
and hence (2, decreases. However, light also travels more times
around each ring, so the actual differential phase shift due to €,
increases. Simulations shows that these two dependences cancel
each other, as expected, so the optimum phase bias ¢, resulting
from this €2, is essentially independent of coupling strength. It
also depends weakly on the number of rings and on the ring
radius. Fig. 5(a) also shows that when the CROW gyro is op-
erated at its optimum bias (£2;, ~ 2.1 rad/s) its sensitivity is
essentially the same (within 3%) as that of the equivalent FOG.
The small difference in sensitivity is due to the different shapes
of the transmission functions for the CROW and FOG, and it
cannot be significantly enhanced by changing the CROW pa-
rameters.

Fig. 5(b) and (c) show the same curves for N = 9 and N =
81, respectively. As N increases, the maximum sensitivity of the
equivalent FOG gyro increases. The reason is that the product
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Fig. 5. Sensitivity of CROW gyro and equivalent FOG as a function of rotation
rate for N = 1,9, and 81.

Rroa Nrog increases with N (see (6a)), hence the scale factor
of the equivalent FOG, which relates the Sagnac phase shift
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(or S) to 2 and which is proportional to RZ,s Nrog.,[5] in-
creases. The sensitivity of the CROW gyro also increases with
N, but it does so more slowly than the FOG, so the sensitivity of
the CROW gyro relative to the FOG decreases. This is consis-
tent with our earlier prediction that the sensitivity of the CROW
gyro compares most favorably to that of the equivalent FOG for
N = 1. Simulations show that this ratio of sensitivities is ap-
proximately constant for x between ~ 10~% and ~ 10!, For
%k < 10~%* or k > 0.1. this ratio decreases. As stated above,
the ratio of maximum sensitivities (i.e., at the proper bias point)
cannot be significantly enhanced by changing x. For a given
N, even when the coupling coefficient  is optimized, the max-
imum sensitivity of the CROW gyro is never greater than the
sensitivity of the equivalent FOG.

It is interesting to note that we could have approximately pre-
dicted the dependence of the ratio of FOG to CROW sensitivity
from basic principles, using (3). In general, the maximum sen-
sitivity of a gyroscope is proportional to the effective area it
covers. For a FOG, this is simply NFOGwR%OG. From (3), we
can see that the effective area covered by the CROW rings is ap-
proximately Ncrow ™ REgow/(2+) for large values of N. We
ignore the first term in (3) here since it is the nonresonant term
that depends on the overall path traced by the CROW. Using
these definitions of effective area, as well as (6a), it is trivial to
show that for the same loss, the equivalent FOG has an effective
area (and hence a maximum sensitivity) N, égow times greater
than the CROW. Fig. 5 shows that this approximate expression
works quite well. Intuitively, the FOG is more sensitive than the
equivalent CROW because a signal traveling along a large loop
(as in the FOG) accumulates more rotation-induced phase per
unit length than a signal traveling along a small loop (as in the
CROW).

These conclusions were drawn for a particular example, but
they are independent of the choice of parameter values. The
overall conclusion is that the CROW gyro offers no significant
enhancement in small-rotation sensitivity compared to a con-
ventional FOG.

V. CONNECTION WITH SLOW LIGHT

The above analysis suggests that although the light travels
through a CROW gyro with an apparent group velocity that is
lower than in a non-resonant waveguide, slow light plays no role
in the enhanced response of a CROW gyro. To illustrate this
important point, consider the behavior of the CROW gyro shown
in Fig. 1 when the radius of each ring approaches zero while
keeping the overall area B covered by the loop of rings constant.
In this case, the number of rings increases indefinitely, the total
area covered by the individual ring resonators goes to zero, and
the sensing loop converges to a circle of constant area B. It is
then easy to show from (3) (and confirm with exact simulations)
that the differential phase shift approaches 4 Bw§)/c?, which is
precisely the differential phase shift of a FOG of area B. Yet
in this CROW, the apparent group velocity of the light is much
slower than in this FOG, in which light travels with a “normal”
group velocity. Specifically, it is easy to show that this group
velocity is roughly ck/(7n), independently of N. The two gyros
have very different apparent group velocity yet the same phase
sensitivity to rotation.

As was pointed out by Shahriar et al. [8] for this structure and
a similar gyro proposed by Matsko et al., [9], [10] the apparent
group-velocity dependence of the sensitivity is more physically
understood by the dependence of the sensitivity on the resonator
finesse. The important point is that, just as in a conventional
RFOQG, the resonant part of the CROW gyro phase sensitivity
depends on the total area covered by the ring resonators that
make up the CROW and the number of times each signal travels
around each ring (which is intimately connected to the finesse).
The fact that for a CROW gyro (and the gyro considered by
Matsko et al.) high finesse and low group velocity both occur
when & is small in no way implies that it is the slowness of
the light that gives rise to the sensitivity of the gyro. We shall
argue that other published slow light gyro structures, [11] in
spite of many very interesting motion-induced effects on light
propagation, in fact do not enhance the sensitivity for rotation
detection either.

VI. CONCLUSION

The dependence of the sensitivity of a CROW gyro on the
square of the number of rings reported earlier for a CROW
gyro is applicable only when the gyro is biased at zero phase,
in which case the sensitivity to small rotation rates is exceed-
ingly small. To restore good sensitivity at low rotation rates, the
CROW gyro must be biased. We showed using a transfer-matrix
formalism that in this case, the differential Sagnac phase shift
increases as 1/k, where x is the coupling coefficient between
rings. We derived a simple and useful expression for this phase
shift as a function of the size and number of the rings and the
coupling coefficient. Simulations show that the sensitivity of a
CROW gyro relative to a conventional FOG with the same loop
loss, detected power, and footprint is maximum with N = 1
ring, i.e., when the CROW gyro looks like a resonant FOG. The
CROW gyro is therefore never significantly more (a few per-
cent) sensitive to small rotation rates than a conventional FOG.
Its only benefit is therefore that it requires a much shorter length
of fiber (or waveguide), by a factor of about 1/(2x). Thus, just
like an RFOG, a CROW gyro may be superior for applications
where reduced weight and/or volume are really critical. But this
advantage comes at the expense of requiring a stringent con-
trol of the optical paths of a large number of high-finesse op-
tical resonators, which would be extremely difficult to achieve
in practice. Finally, we showed based on this analysis that al-
though light propagates with a much slower apparent velocity
in a CROW gyro than in a FOG, this slow character of the light
is not responsible for the shorter length requirement.
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