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Abstract—We describe a dynamically tuned system capable of
capturing light pulses incident from a waveguide in a pair of mi-
crocavities. We use coupled mode theory to design a method for de-
termining how to tune the microcavity resonant frequencies. The
results show that pulses can be captured almost completely, with
arbitrarily small reflected power. We optimize the pulse capture
bandwidth by varying the cavity coupling constants and show that
the maximum bandwidth is comparable to the resonant-frequency
tuning range. Our system may be implemented using refractive-
index tuning in a 2-D silicon photonic crystal slab. Current tech-
nology would allow for capture of pulses with widths as low as

100 ps, with a holding time limited only by cavity loss rates.

Index Terms—Coupled mode analysis, optical pulses, optical res-
onators, simulation, waveguides.

I. INTRODUCTION

T HE ability to stop light on chip has potential applications
in all-optical information processing, such as buffering,

and enhancement of nonlinear effects [1] for signal processing
[2]. In previous work, Yanik et al. have shown that dynamic
tuning processes are required for stopping light pulses [3], [4].
They designed a dynamic process for a photonic crystal system
of coupled microcavities that captures pulses by reversibly
compressing the system bandwidth. In their system the capture
process is independent of pulse shape. However, their design
necessitates the use of many microcavities [3]–[9].

This initial theoretical work has motivated experiments with
simpler, more experimentally accessible systems containing
fewer resonators. Xu et al. used a pair of silicon ring resonators
with dynamically tuned resonance frequencies to capture and
delayportionsofpulses[10].Tanakaetal.havealsodemonstrated
dynamic control of the Q factor of photonic crystal nanocavities
[11]. The question naturally arises as to whether these few-cavity
systems are capable of completely capturing pulses.

For macroscopic systems, it has been shown [12] that light
pulses can be completely captured in a single resonator. Arbi-
trarily long pulses can be captured without reflection by tuning
the reflectivity of one of the cavity mirrors. However, such a
tuning mechanism is typically not available in on-chip devices,
where one generally tunes the cavity resonant frequency instead.

In this paper, we show that resonant frequency tuning can be
used to completely transfer a pulse from an input waveguide into
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a few cavities, capturing the pulse without reflection. Essential
to the scheme is the existence of a “dark” state decoupled from
the waveguide, and a tuning process that transfers energy from
the waveguide into the dark state. In Section II, we provide a
numerical demonstration of pulse capture. We then employ a
time-reversal argument to recast the pulse capture problem as a
pulse release problem. We show that by tuning just one cavity,
only chirped pulses may be captured or released, whereas by
antisymmetricaly tuning two cavities, unchirped pulses may be
captured or released.

In Section III, we describe how to determine the tuning
process required to capture a pulse of a given shape with
negligible reflection. General features of the dynamics in
the adiabatic (slow tuning/long pulse) and nonadiabatic (fast
tuning/short pulse) limits are discussed in Section IV. Section V
shows how the system parameters may be designed to optimize
the pulse bandwidth. We conclude with a brief description of a
buffer design and practical considerations for the experimental
implementation of the pulse capture system.

II. DEMONSTRATION

We first numerically demonstrate the complete capture of a
light pulse in a system of a few cavities using coupled mode
theory. Specifically, we consider three cavities with resonant
frequencies , , and , coupled to each other with cou-
pling constant and to a waveguide with coupling constant .
The system is shown schematically in Fig. 1. Incomplete pulse
capture in similar systems has previously been described in [13].
For ease of simulation, we initially assume that the waveguide is
a coupled resonator optical waveguide (CROW) [14], [15] with
inter-cavity coupling constant , shown schematically in Fig. 2.
The three-cavity system is coupled to the CROW with coupling
constant . In Section IV we will argue that the relevant dy-
namics are independent of the details of the CROW design, and
we will explore the dynamics in a more general setting.

Assuming that the of the cavities is sufficiently large, we
may accurately model the CROW-coupled system with the
following equations for the complex field amplitudes in each
cavity:

(1)
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Fig. 1. Three-cavity system coupled to a waveguide with coupling constant � .

Fig. 2. Three-cavity system coupled to a CROW with coupling constant �. The
three-cavity system coupling constant is �, and the CROW inter-cavity coupling
constant is �.

Loss terms (e.g., radiation losses) are ignored in the theory.
Section VI contains a brief discussion of the effect of loss. For
now we state that loss does not prevent the capture of pulses
without reflection. We assume that the amplitudes are normal-
ized such that the energy in cavity is . The energy in the
three-cavity system is

(2)

It can be shown that the total energy is conserved by (1). The
dynamic tuning process is completely specified by the tuning
curves and . We will examine the system’s behavior
by numerically integrating (1) for different tuning curves.

We assume an input pulse that is Gaussian in time, defined to
have field amplitude

(3)

where is the phase of the pulse. For an unchirped Gaussian
pulse, for some constant . The width

is chosen from the optimization process, detailed
in Section V. The corresponding intensity in the waveguide is

(4)

where is the waveguide group velocity.
We first consider the pulse dynamics in the static (untuned)

system, where and ,
as shown in Fig. 3(a). Fig. 3(b) shows the amplitude in a CROW
cavity far from the three-cavity system. The plot shows the in-
cident pulse as well as a reflected pulse of the same magnitude.

Fig. 3(c) shows the energy of the three-cavity system. The
energy increases as the pulse reaches the cavities and then de-
creases as the pulse is reflected in the opposite direction.

We next consider the pulse dynamics in the dynamically
tuned system. Fig. 3(d)–(f) show how proper tuning of
and results in the near complete capture of the input pulse.
Specifically, we set and determine
as described later in the text, resulting in the tuning curve
shown in Fig. 3(d). Fig. 3(e) shows the amplitude in a CROW
cavity near the input. The incident pulse is the same as in
Fig. 3(b), but the reflected pulse is absent. The reflected energy
is less than 0.01% of the incident energy. Fig. 3(f) shows that
the energy of the pulse is almost completely transferred to the
three-cavity system. Importantly, energy transfer occurs despite
the fact that the spatial extent of the pulse is much larger than
the three-cavity system.

The capture process may be understood as the time reversal
of the pulse release process shown in Fig. 3(g)–(i). In the release
process, the system is initialized with energy stored in the three-
cavity system. In Fig. 3(g), the time reverse of the tuning curve
in Fig. 3(d) is used. This results in the release of a Gaussian pulse
[Fig. 3(h)] that is the time reverse of the pulse that was captured
in Fig. 3(d)–(f), and the near complete transfer of energy from
the three-cavity system to the waveguide [Fig. 3(i)]. The release
process is more straightforward to study numerically than the
capture process, and we will devote most of the remainder of
this paper to pulse release, bearing in mind that the results will
also apply to the time-reversed pulse capture process.

The most important feature of a pulse capturing/releasing
system is that it must end/begin in a state that is decoupled from
the waveguide, which we refer to as the dark state. Capturing
light in a dark state has been discussed previously in [4], [10],
[11]. The dark state has equal magnitude, opposite sign ampli-
tudes in cavities 1 and 2 and does not leak energy into the wave-
guide, that is,

(5)

satisfy

(6)

for all in (1). It should be noted that the dark state has infinite
lifetime only if the waveguide and cavities are lossless. In the
pulse release process, initializing the system in the dark state and
tuning and away from allows for a controlled leakage
of energy into the waveguide. The particular shape of the output
pulse depends on the shape of the tuning curves.

In the dynamic process considered in Fig. 3, we enforced the
constraint that . If instead only one side
cavity is tuned, the output pulse is chirped. Fig. 4(a) shows
the magnitude of a pulse generated in this manner with the de-
tuning specified in Fig. 4(b). Note the amplitude profile is still
Gaussian. However, Fig. 4(c) shows that the instantaneous fre-
quency of the pulse scales with the detuning. The time
reversed tuning scheme thus allows only for the capture of a
pulse with identical chirping. In contrast, when both side cavi-
ties are tuned with , the instantaneous frequency
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Fig. 3. The temporal behavior of the system shown in Fig. 2 for three different tuning schemes. The system parameters are � � ����� �� and � � ���. There
are 5000 CROW cavities. (a), (d), (g) The tuning curve�� � ��� . (b), (e), (h) The amplitude at cavity 1250. (c), (f), (i) The total energy U stored in cavities 0,
1, and 2. (a)–(c) An input pulse with � � ���� is reflected when no tuning is performed. (d)–(f) The same pulse is completely absorbed and there is no reflected
pulse when the tuning is optimized. (g)–(i) The time reverse of (d)–(f). The system begins in a stable dark state of the three-cavity system and the time-reversed
tuning curve generates a Gaussian pulse.

Fig. 4. Generation of a � � ����� chirped Gaussian pulse by tuning a single
side cavity. (a) The magnitude of the field amplitude probed at cavity 0. (b) The
tuning curve for cavity 1. (c) The instantaneous frequency of the pulse, probed
at cavity 0.

is fixed at and the time reversed process allows for the cap-
ture of an unchirped pulse. This scheme is used in the remainder
of the paper.

III. METHODS

Here, we present a method for determining the optimal tuning
curve for pulse capture and release, given the shape of the input
pulse. For a given set of system parameters , , , and ,
we wish to determine the detuning curve
such that the pulse intensity in the waveguide has a given
shape in the pulse release process. By conservation of energy,

is simply related to the change in energy in the three-cavity
system:

(7)

Let be a particular time in the evolution, and .
The parameter is some multiple of the integration time step.
Integrating (7) over a time interval gives

(8)

The left-hand side of (8) is known from the given pulse shape.
The right side of (8) depends on the value of in the time
interval through (1) and (2). In the time interval in question

is approximated by

(9)

where denotes the time derivative of . We choose trial
values for and numerically integrate (1) in the interval
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using (9) for the detuning. Each trial yields some change in ,
which can be compared with the left side of (8) to determine the
error for the trials. Given these trial values and errors, we apply
Newton’s method to determine successive trials until the error
falls below some threshold. The final value of is used
to advance the system to , where is a smoothing
parameter. Typically we set equal to 50 and . In
this manner we determine the entire tuning curve. The tuning
curve will depend on the shape of the output pulse. This method
works for arbitrarily shaped pulses (not just Gaussian pulses),
provided the instantaneous frequency is constant. It may be the
case that at some time step, Newton’s method fails to converge,
in which case the desired pulse cannot be released and we call

unfeasible. We will discuss the feasible solution space in
Section V, but first we will simplify the system and discuss the
dynamics in detail.

IV. DYNAMICS

Above, we have demonstrated pulse capture and release for
a particular choice of system parameters and pulse width. This
section is devoted to classifying and understanding the different
regimes of dynamic behavior observed for various pulse widths

and system parameters . In Section IV-A we will simplify
the system under consideration to make an analytical study fea-
sible. In Section IV-B, we will use this framework to develop an
adiabatic approximation in which the dynamics are described
in a particularly simple manner. We derive conditions for the
validity of the adiabatic approximation which correspond to the
weak waveguide coupling, low bandwidth limit. In Section IV-C
we will explore what happens when higher bandwidth pulses are
released and the adiabatic approximation breaks down.

A. Reduced Equations of Motion

Thus far we have considered the particular case of three cav-
ities coupled to a CROW. In practice many other varieties of
waveguide may be used. Therefore, we are interested in the
physical aspects of the pulse release system that are indepen-
dent of the particular choice of waveguide. A simplified model
of our system is shown in Fig. 1. The cavity system is coupled
to an external waveguide mode with a coupling constant .

The system in Fig. 1 is described by a symmetric, non-Her-
mitian 3 3 matrix,

(10)

where

(11)

Summation over repeated indexes is implied. Note that the
waveguide coupling constant shows up as an effective loss in
cavity 0. We may eliminate the dependence on by defining
amplitudes

(12)

We may also define a dimensionless time . Using the
relations and , (10) and (11)
become

(13)

and

(14)

It is easy to see from the form of that the dynamics will de-
pend only on the dimensionless ratios and and the
dimensionless pulsewidth .

B. Adiabatic Dynamics

We will show that in the adiabatic limit, the system is de-
scribed by the evolution of a single state that continuously
evolves from the initial dark state. We follow a treatment
of the adiabatic approximation commonly made in quantum
mechanics with a Hermitian system matrix [16]. We will first
derive a simple condition for the validity of the adiabatic
approximation in the limit where the three-cavity system
is weakly coupled to the waveguide. Although our system
is non-Hermitian, we find that the results are similar to the
Hermitian case. We will then describe how the dynamics are
simplified when this adiabatic condition is satisfied.

We begin by diagonalizing at each time :

(15)

The dependence is suppressed for clarity. Here is the matrix
of eigenvectors, and , is the eigen-
value matrix of . The eigenvectors are defined up to an ar-
bitrary scaling factor. We project the amplitudes onto the
time-dependent basis of instantaneous eigenstates

(16)

Henceforth, the eigenstate will refer to the eigenstate that
evolves from the initial dark state, and the eigenstates will
refer to the other initially unoccupied states. We now introduce
the evolution operator defined by

(17)

By differentiating with respect to , we find that

(18)

where . The matrix is nondiagonal and cou-
ples the instantaneous eigenstates. The form of can be sim-
plified by fixing the scale of the eigenstates such that the time
derivative of the th eigenstate has no component

(19)
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No summation is implied in (19). This condition can always
be met, provided is nonsingular. We may then apply time
independent perturbation theory to with a perturbation ,
yielding an exact value for the time derivative of the eigenstates.
This allows us to write as

(20)

where

(21)

The adiabatic approximation consists of ignoring , so that an
eigenstate of at time 0 evolves, in time , to the corre-
sponding eigenstate of , with a change in amplitude and
phase due to the term alone.

In order to determine the region of validity for the adiabatic
approximation, we first isolate the effect of by introducing ,
the solution of (18) in the absence of

(22)

with formal solution

(23)

Now define

(24)

which satisfies

(25)

where

(26)

In integral form, with appropriate initial conditions, (25) be-
comes

(27)

This equation provides a perturbative solution for . To de-
termine the condition for validity of the adiabatic approxima-
tion, we solve (27) to first order in to obtain

(28)

If the system is initially in eigenstate 0, i.e., , then
(23), (24), (26), and (28) yield, for ,

(29)

and for

(30)

Thus far, we have made no reference to the form of the dy-
namics, and (29) and (30) hold for any system, Hermitian or
not. The system under consideration is non-Hermitian, but it
is instructive to consider the weak waveguide coupling limit

in which case the system is Hermitian. In this case,
is unitary and the scale of the eigenvectors is constant. A mea-

sure of error introduced by the adiabatic approximation is given,
to first order, by the ratio of the amplitude in a state to
the amplitude in the state

(31)

The condition for validity of the approximation can now be
written as for all .

We can simplify this condition further. By examining the
characteristic equation for for arbitrary , we can
bound from below by . We may also bound the nu-
merator of in (20) from above by , as is
unitary and so the maximum magnitude of any matrix entry of

or is 1. Using these bounds, and noting that is
real, we have from (20) and (31)

(32)

so that a sufficient condition for validity of the adiabatic approx-
imation, in the Hermitian case, is

(33)

We find empirically that, for long pulses with , the
tuning curve that is generated using (7)–(9) always sat-
isfies the condition of (33). Thus, narrow-bandwidth pulses can
be captured using adiabatic dynamics, provided we work with
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Fig. 5. The evolution of the eigenstate descended from the dark state, with
system parameters ��� � ��, �� � ���. (a) The tuning curve (dashed line)
and the amplitude of the generated pulse, probed at cavity 0 (solid line). (b) The
magnitude of the amplitude in the � � � eigenstate, �� �. (c) The real part of� ,
corresponding to the eigenfrequency. (d) The imaginary part of � , proportional
to the leakage rate.

systems with so that the Hermitian assumption is ap-
propriate.

The dynamics in the adiabatic regime can be described with
a single time-dependent eigenvalue . The term in (18)
can be ignored, and we have

(34)

All of the energy of the system is contained in this single
adiabatically evolving state. The dynamics are similar to those
for macroscopic mirror, single-cavity pulse capture [12]. The
difference is in the method of controlling the leakage rate of the
cavity.

Fig. 5 illustrates the dynamics for a typical adiabatic pulse
release, with and . Fig. 5(a) shows the
tuning curve (dashed line) and the resulting output pulse (solid
line). The tuning increases monotonically until most of the pulse
energy has been released, at which point it decreases to zero.
Fig. 5(b) shows the magnitude of the amplitude in the dark state,
which decreases monotonically with time. In the adiabatic ap-
proximation, this quantity is equal to the square root of the en-
ergy in the three-cavity system. Fig. 5(c) shows the real part of

. We see this value is always zero. As a result, the instan-
taneous frequency of the output pulse is fixed at . Fig. 5(d)
shows the imaginary part of , which is proportional to the
leakage rate of the eigenstate into the waveguide, . The leakage
rate increases for most of the pulse release time and then de-
creases to zero.

The tuning curve for adiabatic pulse release may be deter-
mined in a simple manner as follows. It can be shown that for
small we have

(35)

The intensity of the output pulse is proportional to
times the energy remaining in the system. is related
to by (7). Thus, is fixed by alone, and we can
determine from and (35), without resorting to the
numerical methods of Section III.

If is of the same order as , we can no longer analytically
derive a condition analogous to (33) for the validity of the adi-
abatic approximation. In particular, the eigenvalues are not real
and is not unitary or nonsingular, so it is difficult to set useful
analytic bounds on . However, we find numerically that the
bounds we discovered in the Hermitian case actually hold for
the non-Hermitian system as well, provided . Adia-
batic behavior, in which a single state dominates the process, is
observed for even lower provided is sufficiently large.
The condition (33), although derived under the assumption that
the system is Hermitian, is adequate for predicting this behavior.

C. Nonadiabatic Dynamics

For many applications, it is useful to maximize the bandwidth
of the captured pulse. However, for large bandwidth (small ),
the adiabatic approximation breaks down, and the pulse dy-
namics no longer satisfy (33). Several subtleties emerge in the
study of the instantaneous eigensystem of in the nonadiabatic
case. First, we can no longer ignore coupling between eigen-
states. The initial dark state will transfer energy to the other two
eigenstates through the term in (18). These other eigenstates
will in general have different frequencies and decay rates. Fur-
thermore, as is non-Hermitian, the eigenvector matrix is
nonunitary and the total energy in the system

(36)

The cross terms of prevent us from interpreting the indi-
vidual as energies. This also implies that the imaginary
parts of the eigenvalues are not strictly proportional to energy
leakage rates from the corresponding eigenstates.

There is another nonadiabatic regime distinct from the small
regime, which occurs when the non-Hermitivity of be-

comes important. Specifically, when , there exists
a critical value of at which becomes singular, ,
and the adiabatic approximation breaks down. For certain values
of , the solution for crosses this critical point. The

eigenstate becomes indistinguishable from one of the
eigenstates. The frequencies of these two states (i.e., the

real part of the eigenvalues of in (10) split symmetrically from
, while the frequency of the third eigenstate remains fixed at
. In other cases the frequencies begin symmetrically split, and

diverge or reconverge during the tuning process, depending on
the value of .

We demonstrate the behavior of the system in the two nona-
diabatic regimes. Fig. 6 illustrates the typical behavior of the
system in the high-bandwidth (small ) regime. The example
shows a system with releasing a pulse of width

. Fig. 5 shows the tuning curve (dashed line) and re-
leased pulse (solid line). Fig. 6(b)–(d) show the magnitude of
the amplitudes in the eigenstates , the real part of the eigen-
values, and the imaginary part of the eigenvalues, respectively.
In (b)–(d), the solid line corresponds to the eigenstate.
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Fig. 6. Nonadiabatic evolution of the three eigenstates in the small �� regime.
The solid line corresponds to the � � � eigenstate in (b)–(d). The system pa-
rameters are ��� � ����, �� � �. (a) The tuning curve (dashed line) and
the amplitude of the generated pulse, probed at cavity 0 (solid line). (b) The
magnitude of the amplitude in the eigenstates, �� �. (c) The real part of � , cor-
responding to the eigenfrequency. (d) The imaginary part of � .

We see in Fig. 6(b) that significant amplitude accumulates in
all three eigenstates over the course of the tuning process. In
Fig. 6(c), we observe that the state is centered at , while
the other two states have symmetrically split frequencies. The
symmetrically split states have identical imaginary parts of their
eigenvalues, as seen in Fig. 6(d). This implies that the output
will have fixed instantaneous frequency , which is a general
property enforced by the anti-symmetric detuning of cavities 1
and 2. The oscillation in the detuning curve in Fig. 6(a) may
be understood as a result of a beating phenemonon introduced
by having two states contributing at frequencies split symmetri-
cally from .

Fig. 7 demonstrates the behavior of the system in the second
nonadiabatic regime, where the non-Hermitivity of the system
matrix place a particularly important role. Fig. 7(a) shows the
tuning curve and released pulse for and

. Since is larger than in the system illustrated by
Fig. 6, one might expect the behavior to be more like the adia-
batic case. In particular, one might expect less amplitude in the

states relative to the amplitude in the state. In-
stead, more amplitude accumulates in one of the states.
Fig. 7(b) shows the eigenstate amplitudes. One of the
states grows in amplitude to equal the state, and both am-
plitudes diverge near . The divergence occurs because
the eigenstates are no longer linearly independent, which occurs
as becomes singular and . This behavior is unique
to non-Hermitian systems. In such systems, the eigenstates are
not orthogonal, so the modal amplitudes do not correspond to
energies. Despite this divergence in modal amplitude, the en-
ergy does not diverge, and in fact follows the same trajectory
as in Fig. 3. At the time of the divergence, the real parts of the

Fig. 7. The nonadiabatic evolution of the three eigenstates in the small ���
regime. The system parameters are ��� � ����, �� � �. (a) The tuning curve
(dashed line) and the amplitude of the generated pulse, probed at cavity 0 (solid
line). (b) The magnitude of the amplitude in the eigenstates, �� �. (c) The real
part of � , corresponding to the eigenfrequency. (d) The imaginary part of � .

eigenstate frequencies split, as shown in Fig. 7(c). At slightly
later times, both amplitudes are equal. Another divergence is
observed in the amplitudes near , where the split fre-
quencies reconverge. Fig. 7(d) shows the imaginary parts of the
eigenvalues. During the time that the real parts of the eigen-
values are split, the imaginary parts of the eigenvalues of the
split states are equal, again fixing the instantaneous frequency
of the output pulse at .

V. BANDWIDTH OPTIMIZATION

Having characterized the dynamics of the system, we now de-
termine the attainable pulse bandwidth, given some maximum
available detuning. For each value of and each feasible
output pulsewidth , define a figure of merit

(37)

where is the bandwidth of the output pulse, and
is the peak detuning. Defining a peak detuning requires

care, as the detuning required to generate a perfect Gaussian
pulse will diverge as . There are several ways to address
this issue. One could choose a time period of interest during
which any deviation from a Gaussian amplitude is considered
unacceptable. Outside this region one could clamp the detuning
and allow for distortion of the pulse. The problem with this
method is that the peak detuning is very sensitive to the arbi-
trary region chosen. Furthermore, it is difficult to quantify the
error introduced. In our approach, we eliminate the divergence
in the detuning by allowing some small fraction of the energy
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Fig. 8. Figure of merit as a function of ����� for (left to right) �� � �,
8, 16, 32, 64, 128, and 256. The dashed line denotes the calculated boundary of
the feasible solution space.

in the cavities to remain unreleased, that is, we solve for the de-
tuning required to release a pulse with intensity

(38)

for some small . Numerical experiments demonstrate that if a
pulse is captured with the time reversed tuning curve, a similar
fraction of the incident energy is reflected. In this manner we
may control the desired capture efficiency. We set in
all numerical experiments we have discussed.

With this same value of , Fig. 8 shows the figure of merit
as a function of for various values of . increases
with increasing and decreasing . The trend

for fixed can be understood in the adiabatic case
as follows. For Gaussian pulses, the maximum required leakage
rate is proportional to . On the other hand, in the adia-
batic approximation, the leakage rate is directly proportional to
imaginary part of the eigenvalue, which for small
is approximately proportional to , as in (35). Using
these two relations, we find

(39)

This trend is roughly followed in the nonadiabatic regime as
well.

The dotted line in Fig. 8 marks the boundary of the feasible
solution space. The minimum width for a given value of
scales as for sufficiently large . This follows from
(39), which is approximately valid in the nonadiabatic regime,
and the assumption of a maximal independent of . For
small , this trend is violated, and higher values of are at-
tained. The optimal figure of merit is obtained with

and . The dynamic behavior of this op-
timal system was shown in Fig. 6. The system parameters are
the very same we saw implemented with the CROW system in
Fig. 3, with and .

Fig. 9 shows the dependence of at this optimal point. We
see is roughly independent of in the range .
If the requirements on are very stringent, decreases. On the

Fig. 9. Figure of merit as a function of � for ��� � ����, �� � �.

other hand, if only a small portion of the pulse must be captured,
higher bandwidths may be attained.

VI. CONCLUDING REMARKS

We have described a dynamically tuned few-resonator system
capable of capturing and releasing light pulses. This system
could be used as the basis of a unidirectional buffer, shown in
Fig. 10. The three-cavity system is coupled to two waveguides,
one for pulse capture and one for release. Each waveguide is
gated by an additional side cavity, which acts as a mirror when
the cavity resonant frequency is tuned to the carrier frequency
in the waveguide. The operation would be as follows. Initially,
the input gate resonator is tuned far from the carrier frequency,
and the output gate resonator is tuned to the carrier frequency. In
this case the transmission from the capture waveguide into the
three-cavity system is near unity at the carrier frequency, while
the transmission from the three-cavity system into the exit wave-
guide is zero at the carrier frequency. The three-cavity system
may then be tuned appropriately to capture a pulse. Once the
pulse is captured, the input and output gate resonators are tuned
in the opposite manner such that the transmission into the en-
trance waveguide is zero and the transmission into the exit wave-
guide is near unity. The pulse may then be released from the
three-cavity system into the exit waveguide by carrying out the
time reverse of the capture tuning process.

Finally, we will comment on the practical requirements for
experimental implementation of our pulse capture and release
system. We assume that the resonant frequencies of the cavi-
ties are tuned by modulating the index of refraction. In a 2-D
photonic crystal, cavities may be created by introducing de-
fects in a triangular lattice of air holes in a silicon slab, and the
index of refraction near the cavity can be tuned by carrier in-
jection. Current technology limits the maximum index change
to . Assuming the fractional change in
resonant frequency is directly related to the fractional change in
index of refraction, , and assuming a system
with optimal system parameters such that , the shortest
pulse that can be captured at a 200-THz carrier frequency has

1-10 ps.
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Fig. 10. Schematic of a unidirectional buffer utilizing the three-cavity system.
Two side cavities gate the input and output of the system.

The coupling constants required for implementing the cap-
ture of a 10-ps pulse may be calculated assuming an optimal
design with , . This yields values of

,
for a photonic crystal implementation with lat-

tice constant nm [11]. These values correspond to Q
factors of , . If smaller coupling con-
stants (larger Q) are chosen, the minimum width of a pulse
which can be captured will increase. Intercavity coupling and
and waveguide-cavity coupling in photonic crystals have been
studied extensively [13], [17]–[19]. The required coupling con-
stants should present no difficulties for practical implementa-
tion. For example, by spacing L3 cavities four lattice constants

nm apart, the appropriate value of
may be achieved [17]. Regarding cavity-waveguide coupling,
values of as low as 500 have been demonstrated [19]. Ex-
ponentially weaker coupling, appropriate for capturing longer
pulses, may be achieved by increasing the distance between
cavities.

Other factors limiting the system are the timescales for tuning
and loss. The timescale for optical free carrier injection is set
by the free carrier lifetime in silicon photonic crystal structures.
Typical carrier lifetimes for photonic crystal microcavities are
on the order of 100 ps [20], and this value may be further re-
duced to 70 ps using techniques such as ion-implantation [21].
It may also be possible to modulate cavities at a time scale
shorter than the carrier recombination scale by the use of reverse
bias schemes that drive the carriers out of the tuning region [22].
It should be noted that in our anti-symmetric tuning scheme we
require positive tuning of one cavity and negative tuning of the
other. This negative tuning may be implemented by designing
the cavities to have different resonant frequencies before tuning
is carried out. A positive bias signal may be applied to one of
the cavities to tune them to the same resonant frequency. The
negative tuning may then be carried out by reducing this posi-
tive bias signal.

The cavity lifetime limits the holding time of pulses in the
system. State of the art cavities have a lifetime of approximately
1 ns [23]. In conjunction with the lower limit set by the tuning
timescale, this leaves a window between 100 ps and 1 ns for
practical operation, roughly corresponding to bandwidths be-
tween 100 MHz and 1 GHz. In the presence of a uniform cavity
loss rate , the system is still capable of capturing pulses without

reflection. It can be shown that for Gaussian pulses, the re-
quired tuning curve is simply time shifted by when loss is
present. This has been verified by including uniform cavity loss
terms in the coupled mode theory simulations. There is thus no
limit on the width of the pulses which can be captured or re-
leased. In principle, then, very high field energies may be ob-
tained in the cavities with low pulse power, which suggests ap-
plications in nonlinear signal processing. The peak amplitude in
the cavities and the amplitude of released pulses is reduced by
loss. For holding times long compared to the pulsewidth ,
the released amplitude will scale exponentially as .
These results have been confirmed with coupled mode theory
simulations.

In summary, we have described a few-cavity system capable
of capturing light pulses with negligible reflection. We found
that when the system is weakly coupled to a waveguide, low-
bandwidth operation is well described by the adiabatic evolu-
tion of a single state of the system. Very high spatial compres-
sion of incident pulses, and consequently, very high nonlin-
earity enhancement, may be achieved in this regime. In con-
trast, we found that to achieve the highest bandwidths, rela-
tively high waveguide coupling is required, and multiple states
of the system are occupied at once, resulting in complicated dy-
namics and detuning curves. A simple numerical method was
presented which provides the required detuning curve in any
case, allowing operation in the high-bandwidth, nonadiabatic
regime. The system we describe should be useful for both op-
tical buffering and applications which rely on nonlinearity en-
hancement.
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