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Abstract

We present a unified duality view of sev-
eral recently emerged spectral methods for
nonlinear dimensionality reduction, includ-
ing Isomap, locally linear embedding, Lapla-
cian eigenmaps, and maximum variance un-
folding. We discuss the duality theory for
the maximum variance unfolding problem,
and show that other methods are directly
related to either its primal formulation or
its dual formulation, or can be interpreted
from the optimality conditions. This duality
framework reveals close connections between
these seemingly quite different algorithms. In
particular, it resolves the myth about these
methods in using either the top eigenvectors
of a dense matrix, or the bottom eigenvectors
of a sparse matrix — these two eigenspaces
are exactly aligned at primal-dual optimality.

1. Introduction

In many areas of information processing, such as ma-
chine learning and data mining, one is often confronted
with the problem of dimensionality reduction, i.e., how
to extract low dimensional structure from high dimen-
sional data. In a concise mathematical framework, we
are given a set of high dimensional data x1, . . . , xn

in Rd (the inputs), and need to compute their “faith-
ful” representations y1, . . . , yn in Rr (the outputs),
with r much smaller than d. Here “faithful” roughly
means that nearby inputs are mapped to nearby out-
puts, while faraway inputs are mapped to faraway out-
puts (Saul et al., 2005). It is usually assumed that the
inputs were sampled from a low dimensional manifold
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embedded in Rd. An ideal algorithm should be able to
estimate the manifold’s intrinsic dimension r, as well
as to compute the low dimensional representations.

If the sampled data are mainly confined to a linear
subspace, then this problem can be well handled by
classical techniques such as principle component analy-
sis (PCA) (Jolliffe, 1986) and metric multidimensional
scaling (MDS) (Cox & Cox, 1994). Both of them
are spectral methods, i.e., methods based on eigen-
value decomposition of either the covariance matrix
(for PCA) or the Gram matrix (for MDS) of the in-
put data. For data sampled from general nonlinear
manifolds, however, these linear methods do not give
satisfactory answers.

Recently, several new spectral methods have been de-
vised to address nonlinear dimensionality reduction:
Isomap (Tenenbaum et al., 2000), locally linear embed-
ding (LLE) (Roweis & Saul, 2000), Laplacian eigen-
maps (Belkin & Niyogi, 2003), Hessian LLE (Donoho
& Grimes, 2003), maximum variance unfolding (MVU)
(Weinberger & Saul, 2004; Sun et al., 2005), local
tangent space alignment (Zhang & Zha, 2004), and
geodesic nullspace analysis (Brand, 2004). Excellent
overviews of these methods can be found in Saul et al.
(2005) and Burges (2005).

As summarized in Saul et al. (2005), although these
new methods share a similar computational structure,
they are based on rather different geometric intuitions
and intermediate computations. For example, Isomap
tries to preserve the global pairwise distances of the in-
put data as measured along the low dimensional man-
ifold (geodesic distances); LLE and Laplacian eigen-
maps try to preserve certain local geometric relation-
ships of the data; MVU, on the other hand, preserves
local distances but maximize a global objective — the
total variance. Computationally, Isomap and MVU
construct a dense matrix and use its top eigenvec-
tors (eigenvectors associated with the largest eigenval-
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ues) in producing the low dimensional representations,
while LLE, Laplacian eigenmaps, and Hessian LLE
construct a sparse matrix and use its bottom eigenvec-
tors (eigenvectors associated with the smallest eigen-
values). In addition, methods using dense matrices
(Gram matrix) can often detect the intrinsic dimen-
sion by a tellable gap between a few top eigenvalues
and rest of the spectra, but methods using sparse ma-
trices (e.g., Laplacian) do not yield such an estimate
since their bottom eigenvalues are usually closely lo-
cated. In the latter case, an additional step of estimat-
ing the intrinsic dimensionality is needed beforehand;
see, e.g., Costa and Hero (2004) and references therein.

Each of these spectral methods for dimensionality re-
duction has its own advantages and disadvantages
(Saul et al., 2005), and each can be favorable for differ-
ent classes of data sets. Nevertheless, these seemingly
very different methods are capable of producing quite
similar results, at least for some pedagogical examples.
In an effort of trying to better understand the connec-
tions between these methods, Ham et al. (2004) gave
a kernel view of these algorithms, interpreting each of
them as an instance of kernel PCA (Schölkopf et al.,
1998) on specially constructed kernel matrices.

Our main contribution in this paper is to provide a uni-
fied duality view of different spectral methods for non-
linear dimensionality reduction. After a brief review of
PCA and MDS in §2, we discuss in §3 the duality the-
ory for the MVU problem (Sun et al., 2005), deriving
two equivalent forms of its dual problem and discussing
the implications of the optimality conditions. Next we
explain how Isomap, LLE and Laplacian eigenmaps fit
in the duality framework in §4, §5 and §6, respectively.
We follow Saul et al. (2005) for basic descriptions of
these algorithms. We show that Isomap is directly re-
lated to constructing an approximate optimal solution
for the primal MVU problem, Laplacian eigenmaps
simply use feasible solutions for the dual MVU prob-
lem, and the motivation behind LLE can find interpre-
tation from the primal-dual optimality conditions for
the MVU problem. We conclude the paper in §7 with
further remarks.

2. PCA and MDS

In this section we briefly review PCA and MDS, as
they are building blocks of other spectral methods. We
emphasize their geometric intuitions that will be remi-
niscent in other methods. For convenience, we assume
the inputs are centered at the origin, i.e.,

∑
i xi = 0.

PCA projects the inputs xi onto a r-dimensional sub-
space that minimizes the approximation error. In

other words, we need to find a projection matrix P
of rank r < d that solves the least-square problem

minimize
∑n

i=1
‖xi − Pxi‖2. (1)

The optimal projection matrix can be factorized as
P = UUT where U ∈ Rd×r has orthonormal columns.
The r-dimensional representations are given as

yi = UT xi, i = 1, . . . , n. (2)

It is straightforward to show that the problem (1) is
equivalent to

maximize
∑n

i=1
‖yi‖2 = 1

2n

∑
i,j ‖yi − yj‖2

subject to UT U = I, yi = UT xi

(3)

where I denotes the identity matrix. Thus PCA com-
putes the low dimensional projections that have max-
imum variance, or equivalently, maximum total pair-
wise distances.

The solution to PCA is obtained from the eigen-
value decomposition of the covariance matrix C =∑n

i=1
xix

T
i . Suppose C =

∑d
i=1

λiuiu
T
i , where λi

is the i-th largest eigenvalue of C and ui is the as-
sociated unit eigenvector. Then the optimal low di-
mensional representations can be computed using the
equation (2) with U = [u1, . . . , ur].

MDS computes the low dimensional representations
that most faithfully preserve the inner products be-
tween the high dimensional data points. That is, it
finds y1, . . . , yn ∈ Rr to solve the problem

minimize
∑

i,j(x
T
i xj − yT

i yj)
2 = ‖G − K‖2

F

where G and K are the Gram matrices of the inputs
and outputs, with Gij = xT

i xj and Kij = yT
i yj , respec-

tively; and ‖ · ‖F denotes the matrix Frobenius norm.
Thus, MDS tries to best approximate the Gram ma-
trix. In fact MDS is often motivated by preserving the
pairwise distances. Let Dij = ‖xi − xj‖2 and D be
the matrix of squared pairwise Euclidean distances. It
can be shown that

G = − 1

2

(
I − 1

n11T
)
D
(
I − 1

n11T
)

(4)

where 1 denotes the vector of all ones.

The solution to MDS is obtained from the eigenvalue
decomposition of the Gram matrix G. Suppose G =∑n

k=1
λkvkvT

k , where λk is the k-the largest eigenvalue
of G and vk is the corresponding unit eigenvector. The
outputs of MDS are given by

yi =
[√

λ1(v1)i . . .
√

λr(vr)i

]T
, i = 1, . . . , n. (5)
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It turns out that MDS and PCA produce the same
outputs. Note that we can write C = XXT and
G = XT X with X = [x1 . . . xn], and the equivalence
of their outputs can be easily established using the sin-
gular value decomposition of X. In both cases, a large
gap between the r-th and the (r + 1)-th eigenvalues
indicates that the inputs can be well approximated by
outputs in a subspace of dimension r.

3. Maximum variance unfolding

MVU is also known as semidefinite embedding (SDE)
as it was first proposed in Weinberger and Saul (2004).
This algorithm attempts to “unfold” the manifold by
pulling the data points apart as far as possible, while
faithfully preserving the local distances and angles be-
tween nearby input data.

The first step of the algorithm is to construct a undi-
rected graph by connecting each input xi with its k-
nearest neighbors, where k is a small integer. Call
this graph G = (V, E), with node set V = {1, . . . , n}
representing the set of inputs, and {i, j} ∈ E if xi is
connected to xj . We assume the graph is connected.

MVU attempts to find low dimensional representations
y1, . . . , yn ∈ Rr that have the maximum possible to-
tal variance, while preserving the local distances over
each edge of the graph. This can be formulated as the
quadratic programming problem

maximize
∑

i ‖yi‖2 = 1

2n

∑
i,j ‖yi − yj‖2

subject to
∑

i yi = 0

‖yi − yj‖2 = Dij , {i, j} ∈ E .

(6)

Here the optimization variables are the yi’s, and the
problem data are the Dij ’s and E . (Recall that Dij =
‖xi − xj‖2 are computed from the input data.) The
constraint

∑
i yi = 0 eliminates the translational de-

gree of freedom. It is obvious that the objective of
maximizing the total variance has root in PCA, cf. the
formulation (3). It is also closely related MDS since it
can also be interpreted as maximizing the total pair-
wise distances.

The quadratic program (6) is not convex, but it can
be reformulated as one, in particular, a semidefinite
program (SDP) (Vandenberghe & Boyd, 1996). Let K
denote the Gram matrix of the outputs, with compo-
nents Kij = yT

i yj . Then SDP formulation is

maximize TrK

subject to K = KT � 0, 1T K1 = 0 (7)

Kii + Kjj − 2Kij = Dij , {i, j} ∈ E
where K � 0 means that the matrix K is positive
semidefinite (i.e., has only nonnegative eigenvalues).

The reformulation into SDP not only allows global and
efficient solution of the MVU problem, but also gives
the extra capability of estimating the intrinsic dimen-
sion. Note that in the quadratic program (6), we have
to first choose the output dimension r before solving
it, not to mention the hardness to find the global op-
timum. By solving the SDP (7), we obtain an optimal
Gram matrix K? without specifying the output dimen-
sion r. Then we can apply MDS on K? to estimate r
from the number of significant eigenvalues, and con-
struct the low dimensional representations yi from the
associated eigenvectors as done in (5).

3.1. The dual MVU problem

Examining the dual of an optimization problem often
gives further insight of the problem and offers theoret-
ical and computational advantages (Boyd & Vanden-
berghe, 2004). The MVU problem is no exception.

We call the problem (7) the primal MVU problem. In
forming the Lagrangian, we associate the dual variable
Z = ZT � 0 with the constraint K = KT � 0, the
dual variable ν ∈ R with the constraint 1T K1 = 0,
and the dual variables Wij with the constraints Kii +
Kjj − 2Kij = Dij for {i, j} ∈ E . For convenience, we
write the last set of equality constraints as

TrKE{i,j} = Dij , {i, j} ∈ E

where the n × n matrix E{i,j} has only four nonzero

elements: E
{i,j}
ii = E

{i,j}
jj = 1, E

{i,j}
ij = E

{i,j}
ji = −1.

We consider the dual variables Wij as elements of a
n × n matrix W with Wij = 0 if {i, j} /∈ E . Thus we
have the Lagrangian

L(K,Z, ν,W ) = TrK + TrKZ − ν1T K1

−
∑

{i,j}∈E

Wij

(
TrKE{i,j} − Dij

)

= TrK

(
I + Z − ν11T −

∑

{i,j}∈E

WijE
{i,j}

)

+
∑

{i,j}∈E

DijWij .

The dual function is obtained as

g(Z, ν,W ) = sup
K=KT

L(K,Z, ν,W )

=





∑

{i,j}∈E

DijWij if I+Z−ν11T−
∑

{i,j}∈E

WijE
{i,j}= 0

+∞ otherwise.

Eliminating Z from the equality, the feasibility condi-
tion in the above equation becomes

I − ν11T − L � 0, L =
∑

{i,j}∈E WijE
{i,j}.
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Note that L is a weighted Laplacian of the graph G.
The above linear matrix inequality is equivalent to

ν ≥ 1/n, λn−1(L) ≥ 1

where λn−1 denotes the second smallest eigenvalue of
a symmetric matrix. Here λn(L) = 0 with associated
eigenvector 1. Thus the dual MVU problem is

minimize
∑

{i,j}∈E DijWij

subject to λn−1(L) ≥ 1

L =
∑

{i,j}∈E WijE
{i,j}.

(8)

This is a convex optimization problem because the
function λn−1(L) is concave under the implicit con-
straint λn(L) = 0 (Sun et al., 2005). Note that the
dual variable ν does not appear in the problem.

Since both the objective
∑

DijWij and the constraint
function λn−1(L) in problem (8) are positive homo-
geneous in W , we can just as well maximize λn−1(L)
subject to a constraint on

∑
DijWij . This leads to an

alternative formulation of the dual MVU problem

maximize λn−1(L)

subject to
∑

{i,j}∈E DijWij = c

L =
∑

{i,j}∈E WijE
{i,j}

(9)

where the constant c > 0 can be chosen arbitrarily.
This again is a convex optimization problem (e.g., can
be formulated as as SDP). The two formulations of
the dual MVU problem are equivalent in the following
sense: If W ? is an optimal solution to problem (8)
and let c? denotes its optimal value, then (c/c?)W ? is
an optimal solution to problem (9) with optimal value
λ?

n−1
= c/c?. A similar relationship holds backward.

The formulation (9) is closely related to the abso-
lute algebraic connectivity problem (Fiedler, 1989), in
which c = |E| and the weights Wij are constrained to
be nonnegative. The same formulation and its duality
with MVU were studied by Sun et al. (2005) in the
context of finding the fastest mixing continuous-time
Markov chain on a graph.

3.2. Duality and optimality conditions

The following duality results hold for the primal MVU
problem (7) and the dual MVU problem (8).

• Weak duality. For any primal feasible K and any
dual feasible W , we have

TrK ≤∑i,j DijWij .

(Note that Wij = 0 if {i, j} /∈ E .) Thus, any dual
feasible W gives an upper bound on the optimal

value of the primal MVU problem. This can be
seen by checking the duality gap:

∑
i,j DijWij − TrK

=
∑

i,j DijWij − TrLK + TrLK − TrK

=
∑

i,j

(
Dij − (Kii + Kjj − 2Kij)

)
Wij

+ Tr(L − I)K − (1/n)1T K1

=Tr
(
L −

(
I − (1/n)11T

) )
K ≥ 0. (10)

The last inequality holds because λn−1(L) ≥ 1 im-
plies that L−

(
I − (1/n)11T

)
is positive semidef-

inite, and the trace of the product of two positive
semidefinite matrices is nonnegative. If this gap
is zero, then K is optimal for the primal, and W
is optimal for the dual. In other words, zero gap
is sufficient for optimality.

• Strong duality. There exist a primal-dual feasible
pair (K?,W ∗) with zero duality gap, i.e.,

TrK? =
∑

i,j DijW
?
ij .

This means that optimal values of the primal and
dual problems are the same. Strong duality fol-
lows from Slater’s condition for constraint quali-
fication (Boyd & Vandenberghe, 2004).

A pair (K?,W ?) is primal-dual optimal if and only if
they satisfy the following Karush-Kuhn-Tucker (KKT)
optimality conditions:

• primal feasibility

K? = K?T � 0, 1T K?1 = 0

K?
ii + K?

jj − 2K?
ij = Dij , {i, j} ∈ E

• dual feasibility

L? =
∑

{i,j}∈E W ?
ijE

{i,j}, λn−1(L
?) ≥ 1

• complementary slackness

L?K? = K? (11)

This is the result of enforcing equality in (10).

Note that we always have λn−1(L
?) = 1. Thus the

complementary slackness condition (11) means that
the range of K? lies in the eigenspace (e.s.) of L? as-
sociated with λn−1. Since K? is a dense Gram matrix
while L? is a sparse weighted Laplacian, equation (11)
means precisely

top e.s. of dense K? ⊆ bottom e.s. of sparse L? (12)
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Here “bottom e.s.” means the eigenspace associated
with λn−1. (We discard the eigenvector 1 of L? asso-
ciated with the smallest eigenvalue λn = 0.) Another
direct consequence of (11) is

r ≤ RankK? ≤ multiplicity of λn−1(L
?) (13)

where r is the dimension of the low dimensional rep-
resentations obtained by performing MDS on K?. We
have r < RankK? if there is a significant gap in the
nonzero eigenvalues of K?.

With the inequality (13), Sun et al. (2005) showed
that the maximum-variance embeddings of a path
must be one-dimensional, and for a ring it must be two-
dimensional. It can also be show that the maximum-
variance embedding of a tree can always be two-
dimensional. Göring et al. (2005) studied similar
graph embedding problems using duality theory for
the absolute algebraic connectivity problem (9).

In the rest of the paper, we will show how various
spectral methods for nonlinear dimensionality reduc-
tion are connected by the MVU duality theory.

4. Isomap

Isomap computes low dimensional representations of
the high dimensional data that best preserve pair-
wise distances as measured along the submanifold from
which they were sampled. It can be understood as a
variant of MDS in which we use estimates of pairwise
geodesic distances on the submanifold, instead of the
standard Euclidean distances.

The algorithm has three steps. First it constructs
the k-nearest neighbor graph, and assigns each edge
a length that equals the Euclidean distance between
the two nodes connected. The second step is to com-
pute the pairwise distance ∆ij , for all pairs of nodes i
and j, as the length of the shortest paths connecting
them on the graph (e.g., using Djikstra’s algorithm).
In the third step, it uses the pairwise distances ∆ij as
inputs to MDS as described in §2. More specifically,
it computes a matrix G using (4) with D substituted
by ∆, estimates the dimension r by the number of
significant eigenvalues of G, and constructs the low-
dimensional representations using (5). Note that in
this case G may not be positive semidefinite.

4.1. Connection to MVU

Isomap can be interpreted as directly constructing an
approximate solution for the primal MVU problem.
We argue as follows. Consider the Riemannian struc-
ture on a manifold induced from the standard Eu-
clidean metric on Rd. The Euclidean distance between

any two points on the manifold is always smaller than
their geodesic distance. Thus the total pairwise Eu-
clidean distances of the data points is upper bounded
by their total pairwise geodesic distances. In addition,
we see in (6) that maximizing the variance is equiv-
alent to maximizing the total pairwise Euclidean dis-
tances. So in this sense, Isomap attempts to maximize
the variance by directly using the geodesic distances.

This interpretation becomes accurate in the limit, with
increasing sampling density (n → ∞), if the sub-
manifold is isometric to a convex subset of the Eu-
clidean space. In particular, this condition guarantees
the asymptotic convergence of the Isomap algorithm
(Bernstein et al., 2000; Donoho & Grimes, 2002). In
this case, the pairwise geodesic distances become fea-
sible to the MVU problem, and the solution to MVU
approaches its upper bound obtained by Isomap. Thus
MVU converges to the same limit as Isomap.

If the above condition is not satisfied, then Isomap
and MVU could behave quite differently (Weinberger
& Saul, 2004). More general conditions for the asymp-
totic convergence of MVU is still an open question.

5. Locally linear embedding

LLE computes low dimensional representations of the
high dimensional data that most faithfully preserve the
local linear structure. The algorithm and Laplacian
eigenmaps (see next section) differ from Isomap and
MVU in that they use the bottom eigenvectors of a
sparse matrix, as opposed to the top eigenvectors of a
dense Gram matrix.

LLE has three steps. First, as other methods, it con-
struct a k-nearest neighbor graph. However, this is
a directed graph whose edges indicate nearest neigh-
bor relations, which may or may not be symmetric.
In this case, the set of edges E consists of ordered
pairs (i, j) meaning that j is a neighbor of i. We let
Ni = {j|(i, j) ∈ E} to denote the set of neighbors of i.
In the second step, LLE assigns a weight Wij to each
edge (i, j) ∈ E by solving the least-squares problem

minimize
∑n

i=1

∥∥∥xi −
∑

j∈Ni
Wijxj

∥∥∥
2

subject to
∑

j∈Ni
Wij = 1, i = 1, . . . , n.

(14)

(A regularization term may be added to the objective
to obtain unique solution.) In the third step, LLE com-
putes y ∈ Rr by solving another least-square problem

minimize
∑n

i=1

∥∥∥yi −
∑

j∈Ni
Wijyj

∥∥∥
2

subject to
∑

i yi = 0, (1/n)
∑

i yiy
T
i = I

(15)
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It turns out that the solution to (15) can be obtained
by computing the bottom r+1 eigenvectors of the ma-
trix (I −W )T (I −W ). Let these normalized eigenvec-
tors be vn, vn−1, . . . , vn−r, associated with the bottom
eigenvalues 0 = λn < λn−1 ≤ · · · ≤ λn−r. We discard
vn = (1/

√
n)1 associated with λn = 0, and use the

next r eigenvectors to form the outputs

yi = [(vn−1)i . . . (vn−r)i]
T , i = 1, . . . , n. (16)

5.1. Connection to MVU

The key idea behind LLE is that every point on the
submanifold can be approximately reconstructed by a
linear combination of its neighbors, i.e.,

xi ≈
∑

j∈Ni
Wijxj , i = 1, . . . , n. (17)

(Locally the manifold can be well approximated by its
tangent space.) The sparse matrix W obtained by (14)
encodes such local geometric properties of the inputs.
We shall show that such local linear properties are hid-
den in the optimality conditions of the MVU problem,
in particular, the complementarity condition (11).

Let Ỹ = [ỹ1 . . . ỹn] be the outputs of MVU. Then we

can write K? = Ỹ T Ỹ . Now (11) implies L?Ỹ T = Ỹ T ,
which in turn can be written as

ỹi =
∑

j∈Ni
W ?

ij(ỹi − ỹj), i = 1, . . . , n

where W ?
ij are the optimal solutions to the dual MVU

problem (8). This equation describes a local linear
relationship of the data. In fact it can be converted to

(L?
ii − 1)ỹi =

∑
j∈Ni

W ?
ij ỹj , i = 1, . . . , n (18)

where L?
ii =

∑
j Wij . We see that the equations (17)

and (18) describe very similar linear relationships, ex-
cept for a scaling factor and the fact that W ? in (18)
is symmetric while W in (17) is nonsymmetric. There-
fore the motivation behind LLE has an interpreta-
tion from the primal-dual optimality conditions for the
MVU problem.

6. Laplacian eigenmaps

Laplacian eigenmaps compute low dimensional rep-
resentations of the high dimensional data that
most faithfully preserve proximity relations, mapping
nearby inputs into nearby outputs.

First, the algorithm construct a undirected, k-nearest
neighbor graph as in MVU and Isomap. Then it as-
signs positive weights Wij to every edge of the graph;
for example, let Wij = 1 for all {i, j} ∈ E , or let

Wij = exp (−‖xi − xj‖2/σ2) where σ2 is a scalar pa-
rameter. In the last step, for a given dimension r, it
finds outputs yi ∈ Rr by solving the problem

minimize
∑

{i,j}∈E Wij‖yi − yj‖2

subject to
∑

i Liiyiy
T
i = I

(19)

where Lii =
∑

j Wij are the diagonal elements of the
weighted Laplacian L. The cost function encourages
nearby inputs to be mapped into nearby outputs.

The solution to (19) is obtained by computing the bot-
tom r + 1 unit eigenvectors of the generalized eigen-
value problem

Lvj = λj DL vj , j = n, n − 1, . . . , n − r

where DL denotes the diagonal matrix formed by tak-
ing the diagonals of L. This is equivalent to com-
pute the bottom eigenvectors of the normalized Lapla-

cian D
−1/2

L LD
−1/2

L and then scale them by the diag-

onal matrix D
−1/2

L . The outputs yi are given by (15)
as in LLE. We can also use a variation of Laplacian
eigenmaps where the constraint in (19) is changed to∑

i yiy
T
i = I. In this case, we simply use the bottom

eigenvectors of L.

6.1. Connection to MVU

There is a great deal of freedom in choosing the edge
weights Wij (these are symmetric). We relate Lapla-
cian eigenmaps to MVU by considering these weights
as feasible solutions to the dual MVU problem (8).
Note that the constraint λn−1(L) ≥ 1 in (8) can always
be satisfied by scaling up the weights, which does not
change the eigenvectors. With this in mind, we can
interpret the dual MVU problem as a particular way
to choose the weights, with the objective

minimize
∑

{i,j}∈E Wij‖xi − xj‖2. (20)

(Note Dij = ‖xi−xj‖2.) This objective has the similar
form as (19), with outputs yi substituted by inputs xi.

Thus we can solve the dual MVU problem (8) first,
finding the weights W ? that minimize the objec-
tive (20) subject to λn−1(L) ≥ 1, then use W ? in (19)
to compute the outputs. This two-step procedure is
precisely like the one use in LLE, cf. (14) and (15).
Moreover, with such a pre-optimization of the weights,
Laplacian eigenmaps compute the bottom eigenvectors
of L?, solution to the dual MVU problem. By the
MVU duality theory, in particular (12), we know that
they coincide with the top eigenvectors of the primal
solution K?, given that they use the same dimension r.

Solving the dual MVU problem (8) to obtain W ? for
Laplacian eigenmaps can be very costly, if we convert
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this problem into an SDP and solve it by interior-
point methods (Boyd & Vandenberghe, 2004). Solving
SDPs is limited to problem size up to n ≈ 2000. How-
ever, the alternative formulation (9) can be solved by
subgradient-type algorithms, for problems with n up
to 100, 000; see a similar problem in Boyd et al. (2004).

Unlike Isomap and MVU, the bottom eigenvalues of L
in Laplacian eigenmaps do not have a tellable gap that
allow us to estimate the dimensionality of the under-
lying manifold (LLE is similar). This can also be un-
derstood from the MVU duality theory — the bottom
eigenvectors correspond to closely located eigenvalues,
actually the same eigenvalue λn−1 when using L?. The
next smaller eigenvalue may be very close to λn−1, but
its associated eigenvector(s) could have little contribu-
tion in building a faithful representation. In practice,
we cannot expect to tell multiplicities of eigenvalues
from numerical results, thus it is difficult to estimate
the intrinsic dimension of the underlying manifold.

6.2. Extensions

Although producing roughly the same eigenspace for
embedding, methods based on sparse matrices lose the
scaling factors given by eigenvalues as done in meth-
ods based on dense matrices; cf. (16) and (5). Such
scaling factors can be essential in obtaining isometric
embeddings. An improvement in this direction can be
achieved by adding a post-processing step using MVU.

Let V be a n× r matrix whose columns are the r bot-
tom eigenvectors obtained from Laplacian eigenmaps
or LLE (after discarding the constant vector associ-
ated with zero eigenvalue). We can approximate the
Gram matirx in MVU by K = V QV T , where Q is r×r
and positive semidefinite. Then we form the SDP

maximize TrV QV T

subject to Q = QT � 0, K = V QV T (21)

Kii + Kjj − 2Kij ≤ Dij , {i, j} ∈ E

Comparing with (7), here the constraint 1T K1 = 0 is
automatically satisfied, but we have to relax the pair-
wise distance constraints to inequalities to preserve
feasibility. Solving the SDP (21) costs much less com-
putationally than solving (7) because the variable Q
has size r × r instead of n × n. In addition, we can
recover the scaling factors using the eigenvalues of Q.
In general, we can use more than r bottom eigenvec-
tors from Laplacian eigenmaps to form V . This gives
us the additional capability of estimating r from the
gap in the eigenvalue spectra of Q.

A very similar approach has been explored by Wein-
berger et al. (2005). They choose a set of landmarks

z1, . . . , zm ∈ Rd (m � n) of the inputs and find a
matrix V ∈ Rn×m that best approximates all the in-
puts as xi ≈ ∑

j Vijzj . The matrix V is constructed
from LLE. Then an SDP similar to (21) is solved to
get the optimal landmark kernel Q. From Q they find
low dimensional representations for the m landmarks
z̃j ∈ Rr and generate outputs yi =

∑
j Vij z̃j . We note

that the number of landmarks m, though much smaller
than n, could still be much larger than r. Sha and
Saul (2005) studied other extensions, e.g., conformal
eigenmaps, that use SDP to post-process eigenvectors
obtained from Laplacian eigenmaps or LLE.

7. Conclusions

We have shown that MVU duality theory reveals close
connections between several spectral methods for non-
linear dimensionality reduction. In particular, Isomap
can be considered as directly constructing an approx-
imate optimal solution for the primal MVU problem.
With increasing sampling density, these two methods
converge to the same solution in the limit if the un-
derlying submanifold is isometric to a convex subset
of Euclidean space. The locally linear structure em-
braced by LLE can be interpreted from the optimal-
ity conditions of MVU. Laplacian eigenmaps use edge
weights that are feasible to the dual MVU problem.
Using the optimal weights for the dual MVU prob-
lem corresponds to a two-step procedure similar as in
LLE. This duality framework also explains why using
top eigenvectors of dense Gram-like matrices and using
bottom eigenvectors of sparse Laplacian-like matrices
can produce similar results — these two eigenspaces
coincide at primal-dual optimality.

By capturing the simple yet key feature of maximizing
variance, exactly or approximately, MVU duality the-
ory offers a unified view of several spectral methods
for nonlinear dimensionality reduction. Nevertheless,
MVU is certainly not the best universal solution, and
different methods may perform well on different class
of problems. Currently we are experimenting with
new variants and extensions suggested by the dual-
ity framework, and working on empirical results to il-
lustrate the theoretical connections developed in this
paper.
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A. Zien (Eds.), Semisupervised learning. MIT Press.

Schölkopf, B., Smola, A. J., & Müller, K.-R. (1998).
Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10, 1299–1319.

Sha, F., & Saul, L. K. (2005). Analysis and extension
of spectral methods for nonlinear dimensionality re-
duction. Proc. of 22nd International Conference on
Machine Learning (pp. 785–792). Bonn, Germany.

Sun, J., Boyd, S., Xiao, L., & Diaconis, P. (2005). The
fastest mixing Markov process on a graph and a con-
nection to a maximum variance unfolding problem.
SIAM Review. Accepted for publication.

Tenenbaum, J. B., de Silva, V., & Langford, J. C.
(2000). A global geometric framework for nonlinear
dimensionality reduction. Science, 290, 2319–2323.

Vandenberghe, L., & Boyd, S. (1996). Semidefinite
programming. SIAM Review, 38, 49–95.

Weinberger, K. Q., Packer, B. D., & Saul, L. K. (2005).
Nonlinear dimensionality reduction by semidefinite
programming and kernel matrix factorization. Pro-
ceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics (pp. 381–388).
Barbados, West Indies.

Weinberger, K. Q., & Saul, L. K. (2004). Unsuper-
vised learning of image manifolds by semidefinite
programming. Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR’04) (pp. 988–995). Washington D. C.

Zhang, Z., & Zha, H. (2004). Principle manifolds
and nonlinear dimensionality reduction via tangent
space alignment. SIAM Journal on Scientific Com-
puting, 26, 313–338.


