
Radiation loss of coupled-resonator waveguides in photonic-crystal slabs
M. L. Povinellia� and Shanhui Fan
Ginzton Laboratory, Stanford University, Stanford, California 94305
and Department of Electrical Engineering, Stanford University, Stanford, California 94305

�Received 29 August 2006; accepted 30 September 2006; published online 8 November 2006�

The authors characterize the intrinsic radiation loss of coupled-resonator optical waveguides by
defining a waveguide-quality factor Q. They find that tuning an isolated resonator in a
photonic-crystal slab to maximize its Q can also increase the waveguide Q. Due to interference
between different resonators, the waveguide can have far lower loss than the isolated cavity; in other
cases it can have far greater loss. They show that the dependence of waveguide Q on wave vector
can largely be predicted by the shifting of the light cone within a tight-binding model. © 2006
American Institute of Physics. �DOI: 10.1063/1.2387131�

Coupled-resonator optical waveguides �CROWs�,1,2 in
which light “hops” between localized resonator modes, allow
the significant reduction of light speed on chip. In dynami-
cally tuned CROWs, light may even be stopped and stored3

to create dispersion-free time delays,4 useful for optical com-
munications applications such as true-time delay, buffering,
and the resolution of packet contention. Several groups have
experimentally demonstrated CROWs within photonic-
crystal slabs,5–10 but with relatively high waveguide loss.
Loss can arise from disorder such as slight variations in in-
dividual resonators,11 as well as poor input coupling to the
CROW mode; the latter can be minimized using adiabatic
tapering schemes.12 More fundamentally, however, in a
photonic-crystal slab, even a perfect CROW without any dis-
order suffers from intrinsic radiation loss, in which the
CROW mode leaks vertically out of the slab as it propagates.
Very little quantitative work has been done to determine the
value of the radiation loss or elucidate its dependence on the
waveguide parameters. Meanwhile, recent work has shown
tremendous progress in reducing the vertical radiation loss of
single, isolated resonators in a photonic-crystal slab.13–15 A
natural question to ask is whether such improved single-
resonator designs can be adapted to produce low-loss CROW
waveguides. Here we show that optimizing the design of a
single resonator can also greatly reduce the losses of CROW
waveguides. Moreover, we find that in certain cases, the ra-
diation loss of the CROW waveguide can actually be far
lower than for an isolated cavity. We further adapt the light-
cone formulation of cavity quality factor Q �Ref. 16� to the
case of propagating modes and show how it can predict the
general trends observed in our numerical simulations.

We consider the structure shown in Fig. 1�a�. The bulk
photonic crystal is a triangular lattice of air holes with lattice
constant a and hole radius r=0.29a in a suspended, dielectric
slab with height 0.6a and refractive index n=3.45 �silicon�.
The CROW waveguide is formed by periodically spaced de-
fects �resonators� with a center-to-center separation of L �6a
in figure�. Each defect is formed by removing three holes
along the x direction and shifting the nearest neighbor holes
on either side outward by an amount s �Fig. 1�b��. The iso-
lated defect has previously been shown to have a very high
cavity quality factor Q�50 000 for s=0.15a.17,18

We calculated the dispersion relation and loss of the
CROW waveguide for periodicities L=5a, 6a, and 7a using

three-dimensional finite-difference time domain �FDTD�
simulations19,20 with a resolution of 20 grid points per a. The
computational cell was set to be Bloch periodic in the x
direction with fixed wave vector k. To measure the intrinsic,
vertical radiation loss from the slab, we set the length of the
cell in the y direction large enough �=16�3a� for the loss to
be independent of length and applied periodic boundary con-
ditions. Perfectly matched layer absorbing boundaries were
used in the vertical �z� direction. The intersection of the com-
putational unit cell with the L=6a structure is shown by the
thick solid line �orange online� in Fig. 1�a�.

For each of the structures, the dispersion relation of the
CROW band lies close to the frequency of the isolated cavity
��=0.266�2�c /a��. The center frequency, bandwidth, and
sign of the slope of the band are summarized in Table I. The
light line is given by �ll=ck. At the edge of the Brillouin
zone, the Bloch wave vector k=0.5�2� /L� and �ll

=0.5�2�c /L�=0.5�a /L��2�c /a�, which equals 0.1, 0.083,
and 0.07 �2�c /a� for L=5a, 6a, and 7a, respectively. In all
cases, the CROW mode is intrinsically lossy because the
CROW band lies above the light line.

In order to compare the loss of the CROW waveguide to
the loss of an isolated cavity, we define a waveguide-quality
factor Q�k�. In analogy to cavities, Q�k� is equal to ��k�
times the 1/e power-decay time of the waveguide mode.
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FIG. 1. �Color online� �a� Coupled-resonator waveguide in a photonic-
crystal slab. �b� Magnified view of the resonator, showing outward hole
shift s.
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Q�k� can be converted to a k-dependent 1 /e power-decay
length in the waveguide as L1/e�k�=vg�k�Q�k� /��k� or to loss
in dB/length as −4.34 dB/L1/e. Q�k� is well defined over the
entire Brillouin zone, while the loss per unit length diverges
at k=0 and 0.5�2� /L�, where the group velocity goes to
zero. We calculated Q�k� directly with a standard FDTD
method, using a narrow band, pulsed source to excite the
mode of interest and extracting the decay time from the field
magnitude after source turnoff.21

Results for Q�k� are shown in Fig. 2. Results of the
direct calculation are shown by solid lines �s=0a� and
dashed lines �s=0.15a�. Black arrows indicate the Q of the
isolated cavity for s=0a and gray �red online� arrows for s
=0.15a. For the unshifted-hole case �s=0a�, the CROW Q
lies below the Q of the isolated cavity for all periodicities.
However, for the shifted-hole case �s=0.15a�, the CROW Q
lies at least partially above the isolated-cavity Q. This trend
is most pronounced for L=6a �Fig. 2�b��, where the CROW
Q�370 000 at k=0, an order of magnitude higher than the
isolated-cavity value. The fact that the CROW Q can be
either higher or lower than the Q of an isolated cavity indi-
cates that interference between the cavities strongly affects
the radiation leakage. Interestingly, the trends in Q�k� are not

universal; Q increases with k for L=5a �Fig. 2�a�� and L
=6a �Fig. 2�b��, while Q tends to decrease with k for L
=7a �Fig. 2�c�� and s=0a �the s=0.15a curve initially de-
creases and then rises in a “notch” shape�. Below, we provide
an explanation for these trends.

For isolated microcavities, it has been shown that Q can
be related to the Fourier transform of the electromagnetic
fields above the surface of the slab.16,22 Here we extend the
analysis to Q�k� for periodic waveguides. We start by ex-
pressing

Q�k� = ��k�
�u�k��
�p�k��

, �1�

where � is the frequency of the mode at wave vector k,
�u�k�� is the time-averaged electromagnetic field energy per
unit cell,

�u�k�� 	
1

2

 dv��Ek

2�x,y,z� + �Hk
2�x,y,z�� , �2�

and �p�k�� is the time-averaged emitted power per unit cell.
All time averages are over one optical cycle. To find �p�k��,
we first consider the total power �P�k�� emitted from an in-
finitely long CROW waveguide, which can be written in
terms of the two-dimensional �2D� spatial Fourier transforms
of the free-space fields on any surface above the structure:16
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where q� = �qx
2+qy

2�1/2. Ẽk,x denotes the 2D Fourier transform
of the x component of Ek �denoted as Ek,x�, defined as

Ẽk,x�qx,qy� 	 
 dx
 dyEk,x�x,y�eiqxx+iqyy ,

and similarly for other components. The Fourier-space inte-
gral includes only q� components lying above the light line,
for these are the components that contribute to the radiation
loss. From Bloch’s theorem, the fields can be rewritten as
Ek�x ,y ,z�=eikxEk�x ,y ,z� and Hk�x ,y ,z�=eikxHk�x ,y ,z�,
where Ek and Hk are periodic in the unit cell. It follows that
the emitted power per unit cell can be written as

�p�k�� =
��o/�o

2
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dqx

2�

dqy
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where the integral in the 2D Fourier transform is taken over
one unit cell.

We explicitly verified the validity of the light-cone for-
mulation by calculating Q�k� from Eqs. �1�, �2�, and �4�. The
periodic part of the fields was extracted from the full field
obtained in the FDTD simulation by dividing by the known

FIG. 2. �Color online� Q�k� for various CROW periodicities L. Lines are
results of direct calculation method; symbols are results of light-cone inte-
gration method. Arrows indicate the Q of the isolated resonators with s
=0.15a �gray/red online� and s=0a �black�. �a� L=5a, �b� L=6a, and �c�
L=7a.

TABLE I. CROW band parameters.

L

s=0a s=0.15a

�o�2�c /a� �� /�o vg�k�0� �o�2�c /a� �� /�o vg�k�0�

5a 0.268 0.004 �0 0.267 5E−4 �0
6a 0.268 5E−4 �0 0.266 0.001 �0
7a 0.268 8E−4 �0 0.266 6E−4 �0
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Bloch phase. In the x direction, the Fourier spectrum is dis-
crete with spacing 2� /L, where L is the CROW periodicity.
In the y direction, the spacing is determined by the length of
the supercell and approximates a continuous distribution for
large enough supercell size. The 2D discrete Fourier trans-
form was taken on a plane 0.2a above the top surface of the
slab. We have verified that the result is independent of height
outside the slab. The results are shown as symbols in Figs.
2�a�–2�c�. Agreement with the direct calculation method is
good and clearly predicts the dependence of Q on k. We
attribute the discrepancies in the data to numerical error due
to the small number of discrete Fourier components inside
the light line.

Interestingly, we can predict the trend in Q�k� quite sim-
ply if we assume that the fields are well described by the
tight-binding approximation.1 In this approximation,
Ek�x ,y ,z��E�x ,y ,z�, independent of k. Making a change of
variables in Eq. �4�, �p�k�� is given by the integral of a
k-independent function over a shifted light cone:

�p�k�� =
��o/�o

2

��qx − k�2+qy

2
���k�/c

dqx

2�

dqy

2�
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2

+ 
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2 + 
H̃y�qx,qy�
2� . �5�

The wave vector components lying inside the light line are
shown in Fig. 3. For simplicity, we draw the intersection of
the light cone with the qy =0 axis. The spacing of the discrete
Fourier components qx is 2� /L, indicated by the black dots.
The frequency of the CROW band is fixed at �
�0.266�2�c /a�. The position of the light cone for k=0 is
indicated by the square brackets and is found from 
qx 


� /c�0.266�2� /a�=0.266�L /a��2� /L�. As L increases,
the light cone becomes larger. As k increases, the light cone
shifts to the right. The position of the light cone for k
=0.5�2� /L�, the edge of the Brillouin zone, is shown by
round brackets. For L=5a �Fig. 3�a��, the number of discrete
Fourier components above the light line decreases from 3 to
2 with increasing k. Fewer Fourier components correspond to
less power leakage and increasing Q�k�, correctly predicting
the trend in Fig. 2�a�. For L=6a �Fig. 3�b��, the number of
discrete Fourier components increases from 3 to 4, corre-
sponding to increasing loss and decreasing Q�k�, also in
agreement with the observed results of Fig. 2�b�. For L=7a
�Fig. 3�c��, the Fourier picture also predicts decreasing Q�k�,

in accordance with the s=0 results in Fig. 2�c�. However, it
can not predict the details of the notched shape seen in Fig.
2�c� for s=0.15a, which results from slight deviations of the
fields from the tight-binding form and redistribution of the
power spectrum. For the tight-binding model to be valid, the
evanescent coupling of neighboring defects through the crys-
tal must dominate over any radiative coupling in the air. For
this reason, it is not entirely surprising that the tight-binding
prediction begins to fail at increasing periodicities, where the
evanescent coupling is expected to be weakest.

The results of this letter suggest that the waveguide Q of
a CROW waveguide can be far higher or lower than that of
the cavities of which it is composed. Moreover, the depen-
dence of Q on wave vector can be dramatic, spanning more
than an order of magnitude across the waveguide band, and
varies strongly with CROW periodicity. These considerations
should be taken into account in any future CROW designs.
The validity of the light-cone method for calculating CROW
waveguide losses should also allow further optimization of
such structures, such as by inverse-design techniques.22
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FIG. 3. �Color online� Number of Fourier components inside the light cone.
�a� L=5a, �b� L=6a, and �c� L=7a.
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